| | All ages incide | ice and death | ıs (2013) | | | | Annualised ra | ite of change | (%) | | |--------------------|--|---------------------------|--|---------------------------|---|-----------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------| | | Male populatio | n | Female popula | tion | Total | | 1990-2000 | | 2000-13 | | | | Incidence | Deaths | | Cambodia | 81 263 (68
959 to 93 966) | 616 (320
to 1034) | 59 358 (50
948 to 67 993) | 426 (232
to 731) | 140 621 (119
933 to 161
846) | 1043 (644
to 1568) | -1·39 (-1·41
to -1·37) | -1·44
(-4·84 to
1·64) | -7·65 (-7·83
to -7·42) | -8·39 (-10·95 to -5·47) | | Indonesia | 1 076 361
(191 105 to 3
596 748) | 1802
(1320 to
2434) | 927 470 (158
478 to 3 289
462) | 1341
(1002 to
1749) | 2 003 831
(354 339 to 6
883 029) | 3143
(2418 to
4019) | -3·60 (-5·19
to -1·74) | -3·37
(-5·99 to
-0·89) | -5·34 (-7·67
to -2·76) | -5.19 (-7.51 to -2.46) | | Laos | 19 132 (17
423 to 20 734) | 50 (16 to
104) | 19 817 (18
099 to 21 419) | 55 (17 to
148) | 38 949 (35
519 to 42 170) | 105 (47 to
227) | -3·07 (-3·54
to -2·62) | -5·53
(-10·64 to
-1·69) | -1·71 (-1·99
to -1·45) | -3·57 (−8·86 to 0·19) | | Malaysia | 63 361 (53
065 to 73 334) | 11 (8 to
19) | 65 962 (55
033 to 76 567) | 3 (3 to 5) | 129 323 (108
082 to 149
901) | 15 (10 to
23) | -016 (-0·36
to -0·01) | -7·42
(-10·01 to
-4·96) | -0.01 (-0.11
to 0.07) | -9·15 (-12·65 to -4·74) | | Myanmar | 2 459 973
(906 379 to 5
902 743) | 4834
(2817 to
7915) | 2 156 398
(835 746 to 4
950 837) | 4322
(2610 to
7099) | 4 616 371 (1
764 904 to 10
796 693) | 9155
(5590 to
14 544) | -355 (-5 33
to -1·76) | -3·76
(-6·69 to
-0·96) | -6·36 (-9·39
to -3·22) | -6·61 (-9·46 to -3·31) | | Philippines | 283 519 (241
103 to 323
938) | 155 (105
to 233) | 273 023 (229
455 to 315
173) | 75 (50 to
105) | 556 542 (470
324 to 639
165) | 230 (166
to 326) | -247 (-3 22
to -1·83) | -12·12
(-13·41 to
-10·84) | -0·29 (-0·49
to -0·12) | -6.69 (-9.40 to -3.80) | | Sri Lanka | 1475 (1246 to
1710) | 11 (7 to
21) | 1259 (1070 to
1453) | 9 (6 to 16) | 2734 (2316 to
3165) | 21 (14 to
34) | -10·46
(-10·49 to
-10·42) | -10·62
(-14·16 to
-7·17) | -14·14
(-14·34 to
-13·90) | -14·99 (-18·77 to
-10·59) | | Thailand | 83 572 (72
401 to 94 358) | 78 (45 to
136) | 82 312 (69
822 to 94 242) | 41 (29 to
58) | 165 884 (142
197 to 188
453) | 118 (78 to
184) | -8·27 (-9·64
to -6·94) | -17·72
(-19·18 to
-16·20) | -1·64 (-2·15
to -1·21) | -11·32 (-14·38 to -7·50) | | Timor-Leste | 9968 (8560 to
11 314) | 7 (0 to 70) | 10 356 (9075
to 11 576) | 13 (0 to
69) | 20 324 (17
664 to 22 892) | 21 (3 to
108) | -4·39 (-5·00
to -3·78) | -7·90
(-13·71 to
-2·64) | -4·15 (-5·12
to -3·30) | -15·40 (-32·58 to -3·97) | | Vietnam | 47 663 (44
070 to 51 177) | 187 (119
to 275) | 45 016 (41
641 to 48 218) | 159 (106
to 237) | 92 679 (85
719 to 99 315) | 345 (248
to 460) | -4·58 (-4·87
to -4·25) | -5·75
(-8·86 to
-2·80) | -5·99 (-6·74
to -5·23) | -10·07 (-12·95 to -6·79) | | Caribbean | 50 098 (46
165 to 53 745) | 165 (18 to
371) | 59 643 (55
171 to 64 155) | 239 (67 to
548) | 109 741 (101
549 to 117
526) | 404 (227
to 643) | -3·35 (-3·63
to -3·05) | -4·52
(-6·90 to
-1·78) | -4·08 (-4·64
to -3·53) | -7·48 (-11·51 to -3·38) | | Belize | 18 (18 to 19) | 1 (1 to 2) | 19 (18 to 19) | 0 (0 to 1) | 37 (37 to 37) | 1 (1 to 2) | -9·26 (-9·66
to -8·83) | 3·53 (0·26
to 6·57) | -30·58
(-31·09 to
-30·08) | -9·26 (-13·68 to -4·65) | | Dominican Republic | 5029 (4326 to
5699) | 4 (2 to 7) | 5075 (4382 to
5736) | 4 (3 to 8) | 10 104 (8707
to 11 435) | 8 (5 to 13) | -1·48 (-1·64
to -1·35) | -4·33
(-7·40 to
-1·63) | -1·01 (-1·10
to -0·93) | -3·42 (-7·70 to 0·73) | | Lancet. | |------------------------| | Author | | manuscript; | | available i | | in PMC 201 | | n PMC 2014 October 20. | | | | | All ages incider | ice and death | ıs (2013) | | | | Annualised ra | ite of change | (%) | | |-----------------------|------------------------------|-------------------|------------------------------|--------------------|-----------------------------------|---------------------|--------------------------------|---------------------------------|--------------------------------|------------------------------| | | Male populatio | n | Female popula | tion | Total | | 1990-2000 | | 2000-13 | | | | Incidence | Deaths | | Guyana | 2825 (2453 to
3184) | 3 (1 to 5) | 2559 (2166 to
2934) | 1 (1 to 2) | 5383 (4619 to
6113) | 4 (2 to 7) | -0·09 (-0·11
to -0·07) | -0·28
(-3·14 to
2·67) | -2·56 (-3·25
to -1·98) | -13·19 (-18·97 to -8·69) | | Haiti | 36 035 (33
327 to 38 617) | 135 (6 to
317) | 44 517 (40
927 to 48 139) | 203 (52 to
480) | 80 552 (74
426 to 86 878) | 338 (183
to 551) | -3·92 (-4·15
to -3·66) | -4·91
(-7·20 to
-2·41) | -4·78 (-5·24
to -4·30) | -7·39 (-11·97 to -3·59) | | Suriname | 348 (312 to
383) | 2 (1 to 3) | 183 (168 to
197) | 1 (0 to 1) | 530 (486 to
575) | 2 (2 to 4) | -078 (-0.92
to -0.66) | -0.24 (-2.89 to 2.65) | -7·55 (-8·08
to -7·00) | -10·29 (-13·99 to -5·90) | | Western Europe | 0 (0 to 0) | 3 (3 to 3) | 0 (0 to 0) | 0·00 (0·00 to 0·00) | 0·00 (0·00
to 0·00) | 0·00 (0·00 to 0·00) | 0·00 (0·00 to 0·00) | | Greece | 0 (0 to 0) | 3 (3 to 3) | 0 (0 to 0) | 0·00 (0·00 to 0·00) | 0.00 (0.00
to 0.00) | 0·00 (0·00 to
0·00) | 0.00 (0.00 to 0.00) | | Andean Latin America | 14 203 (12
281 to 16 046) | 13 (10 to
16) | 13 873 (11
903 to 15 753) | 10 (8 to
14) | 28 075 (24
173 to 31 791) | 23 (18 to
29) | -253 (-3·04
to -2·04) | -5·70
(-7·28 to
-4·09) | -2·79 (-3·64
to -2·05) | -13·80 (-15·92 to -11·45) | | Bolivia | 756 (665 to
841) | 1 (1 to 2) | 749 (657 to
835) | 1 (1 to 2) | 1505 (1323 to
1676) | 2 (2 to 3) | -323 (-3·91
to -258) | -7·80
(-11·61 to
-4·50) | -1·48 (-1·97
to -1·06) | -7·30 (-9·75 to −4·81) | | Ecuador | 7617 (6556 to
8628) | 6 (4 to 9) | 7625 (6565 to
8633) | 6 (4 to 10) | 15 242 (13
121 to 17 261) | 12 (9 to
17) | -2·97 (-3·42
to -2·52) | -5·63
(-7·68 to
-3·48) | -3·94 (-4·91
to -3·10) | -16·00 (-18·85 to
-13·03) | | Peru | 5829 (5052 to
6580) | 5 (4 to 8) | 5499 (4672 to
6288) | 3 (2 to 4) | 11 328 (9724
to 12 860) | 8 (6 to 12) | -1·90 (-2·47
to -1·35) | -5.98
(-8.41 to
-3.66) | -1·35 (-2·03
to -0·77) | -11·42 (-14·39 to -8·24) | | Central Latin America | 56 110 (49
168 to 62 758) | 69 (50 to
98) | 55 170 (47
750 to 62 283) | 49 (38 to
68) | 111 280 (96
932 to 125
061) | 118 (93 to
160) | -2·29 (-275
to -1·85) | -5·58
(-7·13 to
-4·18) | -2·10 (-2·76
to -1·51) | -10·06 (-12·13 to -7·34) | | Colombia | 32 242 (28
091 to 36 221) | 35 (21 to
60) | 31 681 (27
161 to 35 989) | 23 (14 to
37) | 63 924 (55
318 to 72 202) | 58 (38 to
91) | 272 (2·19 to 333) | 10·32
(8·38 to
12·23) | -1·85 (-2·44
to -1·34) | -10·46 (-14·05 to -6·31) | | Costa Rica | 5 (4 to 5) | 0 (0 to 0) | 4 (4 to 4) | 0 (0 to 0) | 9 (8 to 9) | 0 (0 to 0) | -1475
(-15·01 to
-14·44) | -15·71
(-16·55 to
-14·88) | -10·54
(-11·69 to
-9·35) | -16·41 (-17·25 to
-15·51) | | El Salvador | 45 (39 to 51) | 0 (0 to 0) | 48 (41 to 55) | 0 (0 to 0) | 92 (79 to 105) | 0 (0 to 0) | -10·30
(-11·52 to
-9·06) | -17·04
(-17·93 to
-16·11) | -3·27 (-4·11
to -2·55) | -15·13 (-16·27 to
-13·97) | | | • | 7 | |---|---|---| | ť | 2 | ٥ | | ` | Ć | 2 | | | , | _ | | | All ages incide | nce and death | ns (2013) | | | | Annualised ra | ate of change | (%) | | |---------------------------------|--|-----------------------------|--------------------------------------|---------------------------|--|-------------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------| | | Male population | on | Female popula | tion | Total | | 1990-2000 | | 2000-13 | | | | Incidence | Deaths | | Guatemala | 9936 (8732 to
11 057) | 14 (10 to
21) | 10 220 (8956
to 11 422) | 13 (9 to
19) | 20 156 (17
688 to 22 495) | 27 (20 to
37) | -9·66
(-10·61 to
-8·66) | -14·29
(-16·36 to
-12·07) | -3·62 (-4·43
to -2·88) | -10·87 (-13·59 to -7·87) | | Honduras | 2998 (2669 to
3298) | 6 (3 to 11) | 3135 (2813 to
3423) | 7 (4 to 12) | 6133 (5476 to
6718) | 12 (7 to
20) | -1.96 (-2.26
to -1.64) | -3·63
(-7·31 to
-0·43) | -3·19 (-3·86
to -2·55) | -8·14 (-12·04 to -3·03) | | Mexico | 82 (71 to 94) | 1 (0 to 2) | 65 (57 to 74) | 0 (0 to 2) | 148 (128 to
167) | 1 (0 to 4) | -16·51
(-16·58 to
-16·43) | -16·86
(-17·61 to
-16·06) | -13·47
(-13·84 to
-13·04) | -15·00 (-15·78 to
-14·18) | | Nicaragua | 2410 (2032 to 2776) | 1 (1 to 1) | 2463 (2076 to
2836) | 1 (1 to 1) | 4873 (4108 to 5612) | 2 (1 to 2) | -6·78 (-7·71
to -5·87) | -12·23
(-15·27 to
-9·58) | -3·91 (-4·87
to -3·10) | -21·04 (-24·04 to
-17·96) | | Panama | 409 (396 to
421) | 0 (0 to 1) | 427 (415 to
440) | 0 (0 to 0) | 836 (836 to
836) | 1 (0 to 1) | 7·72 (7·08 to 8·30) | -6·42
(-9·63 to
-3·40) | -3·16 (-3·90
to -2·59) | -5·84 (-9·33 to -1·91) | | Venezuela | 7983 (7025 to
8864) | 12 (7 to
17) | 7127 (6100 to
8102) | 5 (3 to 7) | 15 109 (13
168 to 16 970) | 17 (12 to
23) |
-0.99 (-1.32
to -0.69) | -3·84
(-6·20 to
-1·59) | -1·12 (-1·56
to -0·75) | -7·30 (-10·34 to -4·47) | | Southern Latin America | 301 (260 to
341) | 0 (0 to 1) | 308 (264 to
350) | 0 (0 to 1) | 609 (524 to
691) | 0 (0 to 2) | -9·52
(-10·71 to
-8·32) | -16·26
(-17·13 to
-15·40) | -3·21 (-4·06
to -2·48) | -16·29 (-17·17 to
-15·43) | | Argentina | 301 (260 to
341) | 0 (0 to 1) | 308 (264 to
350) | 0 (0 to 1) | 609 (524 to
691) | 0 (0 to 2) | -9·26
(-10·45 to
-8·06) | -16·11
(-16·96 to
-15·24) | -3·14 (-3·97
to -2·43) | -16·03 (-16·90 to
-15·16) | | Tropical Latin America | 66 015 (56
554 to 75 020) | 46 (30 to
68) | 65 424 (55
196 to 75 263) | 24 (17 to
35) | 131 439 (111
720 to 150
238) | 71 (50 to
99) | -6·49 (-7·87
to -5·20) | -17·58
(-19·80 to
-15·41) | -0·11 (-0·50
to 0·21) | -9·20 (-12·22 to -5·86) | | Brazil | 65 965 (56
511 to 74 963) | 46 (30 to
68) | 65 376 (55
156 to 75 209) | 24 (17 to
35) | 131 341 (111
637 to 150
126) | 71 (50 to
99) | -647 (-7·85
to -5·18) | -17·56
(-19·78 to
-15·39) | -0.08 (-0.47
to 0.24) | -9·17 (-12·18 to -5·80) | | Paraguay | 50 (43 to 57) | 0 (0 to 0) | 48 (41 to 55) | 0 (0 to 0) | 98 (83 to 112) | 0 (0 to 0) | -8·20 (-9·31
to -7·08) | -14·75
(-15·77 to
-13·77) | -2·98 (-3·76
to -2·31) | -14·55 (-15·76 to -13·32) | | North Africa and Middle
East | 1 257 700
(382 396 to 3
243 600) | 5900
(2915 to
11 443) | 857 057 (252
567 to 2 356
446) | 4703
(2009 to
9594) | 2 114 756
(638 796 to 5
569 750) | 10 604
(5415 to
19 759) | 2·14 (1·31 to 348) | 3·88 (0·73
to 7·01) | -5·74 (-9·08
to -2·40) | -7·07 (-10·62 to -3·04) | | Algeria | 0 (0 to 0) | 6 (3 to 9) | 0 (0 to 0) | 4 (3 to 7) | 0 (0 to 0) | 10 (7 to
14) | 0·00 (0·00 to 0·00) | -2·69
(-5·57 to
0·50) | 0·00 (0·00 to
0·00) | -7·46 (-11·11 to -3·07) | | | All ages incide | nce and death | ıs (2013) | | | | Annualised rate of change (%) | | | | | |------------------|--------------------------------------|---------------------------|--------------------------------------|-----------------------|--|-----------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------|--| | | Male population | on | Female popula | tion | Total | | 1990-2000 | | 2000-13 | | | | | Incidence | Deaths | | | Iran | 385 (372 to
396) | 5 (3 to 7) | 402 (391 to
415) | 6 (3 to 9) | 787 (787 to
787) | 10 (8 to
14) | -18·17
(-19·47 to
-16·77) | 0·52
(-2·67 to
3·62) | -22·32
(-23·57 to
-21·08) | -7·92 (-10·80 to -4·64) | | | Iraq | 0 (0 to 0) | -9·60
(-10·60 to
-8·55) | -14·67
(-16·70 to
-12·66) | 0·00 (0·00 to 0·00) | 0.00 (0.00 to 0.00) | | | Morocco | 0 (0 to 0) | -0·27 (-0·29
to -0·25) | -0.33 (-2.73 to 2.08) | 0.00 (0.00 to 0.00) | 0.00 (0.00 to 0.00) | | | Oman | 0 (0 to 0) | -2·61 (-2·83
to -2·38) | -3·48
(-7·28 to
0·13) | 0.00 (0.00 to
0.00) | 0.00 (0.00 to 0.00) | | | Saudi Arabia | 40 (39 to 41) | 11 (7 to
15) | 42 (41 to 43) | 2 (1 to 3) | 82 (82 to 82) | 13 (9 to
18) | -13·85
(-14·36 to
-13·25) | -3·99
(-9·06 to
1·16) | -33·50
(-34·40 to
-32·55) | -9·01 (-12·48 to -5·52) | | | Sudan | 689 118 (190
185 to 1 833
451) | 3160
(1326 to
6839) | 366 931 (78
799 to 1 177
901) | 2203 (605
to 5384) | 1 056 050
(275 911 to 2
940 472) | 5363
(2274 to
11 118) | 0·34 (-0·31
to 1·15) | 1·19
(-2·43 to
4·91) | -7·83
(-11·74 to
-3·79) | -8·71 (-12·78 to -4·35) | | | Syria | 0 (0 to 0) | -6·57 (-6·65
to -6·48) | -6·84
(-11·33 to
-2·88) | 0·00 (0·00 to 0·00) | 0.00 (0.00 to 0.00) | | | Turkey | 534 (456 to
607) | 0 (0 to 1) | 540 (457 to
618) | 0 (0 to 1) | 1073 (913 to
1225) | 1 (0 to 2) | -10·63
(-11·84 to
-9·40) | -17·20
(-18·35 to
-16·09) | -3·59 (-4·51
to -2·80) | -17·30 (-18·54 to
-16·04) | | | Yemen | 566 320 (192
251 to 1 374
706) | 2713
(1242 to
5640) | 488 281 (161
967 to 1 225
111) | 2483 (941
to 5133) | 1 054 601
(355 535 to 2
646 959) | 5196
(2471 to
10 098) | 0·14 (-0·78
to 1·12) | 1·55
(-2·57 to
5·80) | -3·51 (-5·44
to -1·70) | -4·11 (-7·91 to -0·48) | | | Oceania | 593 916 (232
012 to 1 391
577) | 1104 (485
to 1910) | 492 920 (207
650 to 1 088
266) | 915 (493
to 1565) | 1 086 836
(441 330 to 2
484 740) | 2019
(1221 to
3218) | -0.02 (-0.25
to 0.19) | -0·30
(-3·70 to
2·75) | -2·14 (-3·14
to -1·05) | -2·61 (-5·49 to 0·65) | | | Papua New Guinea | 523 910 (197
634 to 1 243
454) | 964 (419
to 1682) | 434 724 (177
464 to 965
172) | 804 (432
to 1383) | 958 634 (376
486 to 2 206
672) | 1768
(1075 to
2810) | -0·25 (-0·48
to -0·04) | -0·50
(-3·96 to
2·65) | -2·14 (-3·44
to -1·31) | -2.72 (-5.65 to 0.47) | | | Solomon Islands | 9577 (8537 to
10 514) | 19 (4 to
42) | 8847 (7818 to
9787) | 14 (5 to
33) | 18 424 (16
358 to 20 296) | 33 (11 to
66) | -1·17 (-1·39
to -0·96) | -2·90
(-6·90 to
0·69) | -1·83 (-2·26
to -1·45) | -6·15 (-9·61 to −1·88) | | | Vanuatu | 3289 (2994 to
3565) | 9 (2 to 21) | 2990 (2687 to
3262) | 7 (2 to 19) | 6279 (5684 to
6820) | 15 (5 to
33) | -0·73 (-0·86
to -0·61) | -1.70 (-5.70 to 2.06) | -2·20 (-2·67
to -1·78) | -6.06 (-10.15 to -1.72) | | | | All ages incider | ice and death | s (2013) | | | | Annualised ra | te of change | (%) | | |----------------------------|--|----------------------------------|--|----------------------------------|---|---------------------------------------|---------------------------|-----------------------------|-------------------------------|--------------------------| | | Male populatio | n | Female popula | tion | Total | | 1990-2000 | | 2000-13 | | | | Incidence | Deaths | | Central sub-Saharan Africa | 3 940 130 (1
939 904 to 7
688 653) | 28 851
(16 111 to
49 729) | 4 301 690 (2
303 019 to 7
982 794) | 31 817
(15 802 to
64 045) | 8 241 820 (4
297 149 to 15
640 374) | 60 667
(35 115 to
99 000) | -2·74 (-4·45
to -1·39) | -1·59
(-4·08 to
1·08) | -5·13 (-7·81
to -2·43) | -5·73 (-9·03 to -2·28) | | Angola | 778 653 (352
510 to 1 612
440) | 5421
(2082 to
12 081) | 638 443 (292
224 to 1 338
115) | 5240
(1083 to
12 889) | 1 417 096
(646 248 to 2
901 702) | 10 661
(4178 to
21 870) | -0.62 (-2.10
to 0.86) | 1·22
(-3·40 to
5·85) | -5·02 (-7·47
to -2·37) | -5·31 (-9·46 to -0·84) | | Central African Republic | 240 694 (129
143 to 433
562) | 1611 (876
to 2611) | 297 972 (167
115 to 517
369) | 1964 (919
to 3569) | 538 666 (298
738 to 947
709) | 3575
(2032 to
5659) | -1·49 (-276
to -0·56) | -0·24
(-4·56 to
372) | -2·80 (-4·33
to -1·36) | -3·33 (-7·33 to 0·58) | | Congo | 167 366 (72
013 to 344
886) | 977 (550
to 1804) | 159 795 (72
976 to 323
383) | 991 (298
to 2116) | 327 162 (147
092 to 665
882) | 1968
(1004 to
3472) | -0·01 (-0·62
to 0·96) | 0·73
(-2·21 to
3·90) | -4·81 (-7·57
to -2·47) | -5·96 (-10·89 to -2·09) | | DR Congo | 2 641 315 (1
317 961 to 5
137 603) | 20 087
(9338 to
38 586) | 3 087 537 (1
663 453 to 5
670 932) | 22 827
(9178 to
50 451) | 5 728 853 (3
000 717 to 10
790 512) | 42 914
(21 336 to
79 936) | -3·50 (-5·45
to -1·84) | -2·41
(-5·40 to
0·76) | -5·42 (-8·43
to -2·51) | -6·12 (-10·11 to -1·77) | | Equatorial Guinea | 37 847 (22
135 to 65 711) | 298 (75 to
572) | 45 073 (26
889 to 76 106) | 333 (106
to 625) | 82 920 (49
005 to 142
294) | 631 (252
to 1064) | 0·51 (-0·35
to 2·06) | 1·47
(-2·65 to
5·61) | -3·66 (-5·51
to -1·71) | -3.98 (-7.08 to -0.92) | | Gabon | 74 255 (35
105 to 144
155) | 457 (225
to 817) | 72 869 (35
969 to 139
716) | 462 (200
to 864) | 147 125 (71
124 to 281
843) | 919 (531
to 1515) | -1·67 (-2·75
to -0·76) | -1·65
(-4·39 to
1·27) | -5·94 (-8·51
to -2·95) | -6·00 (-9·47 to -2·26) | | Eastern sub-Saharan Africa | 12 520 054 (6
544 247 to 24
090 664) | 85 566
(65 168 to
109 586) | 13 377 215 (7
291 825 to 24
578 200) | 89 820
(66 224 to
130 417) | 25 897 270
(13 782 158 to
48 529 276) | 175 387
(140 361
to 221
113) | 0·41 (-0·29
to 1·52) | 0·77
(-0·82 to
2·33) | -6.68 (-8.94
to -3.58) | -6·76 (-8·47 to -4·40) | | Burundi | 603 449 (369
625 to 975
531) | 5362
(2862 to
8974) | 710 930 (446
217 to 1 124
371) | 5920
(3022 to
9518) | 1 314 379
(807 412 to 2
096 773) | 11 282
(6353 to
17 300) | 0·99 (-0·10
to 2·83) | 1·93
(-1·04 to
4·83) | -7.95
(-11.90 to
-3.84) | -8·05 (-11·72 to -4·60) | | Comoros | 28 650 (26
480 to 30 862) | 117 (56 to
222) | 26 067 (24
109 to 27 935) | 97 (16 to
246) | 54 718 (50
588 to 58 781) | 215 (98 to
414) | 0.05 (0.04 to 0.05) | 0·26
(-4·13 to
4·99) | -2·90 (-3·27
to -2·52) | -5·16 (-10·58 to -1·32) | | Djibouti | 21 649 (17
792 to 25 716) | 184 (68 to
369) | 19 021 (15
634 to 22 592) | 161 (49 to
297) | 40 671 (33
427 to 48 308) | 345 (147
to 599) | 2·61 (2·61 to 2·61) | 2·82
(-1·60 to
7·69) | -4·90 (-4·91
to -4·90) | -4·96 (-9·86 to -0·39) | | Eritrea | 106 098 (89
697 to 122
962) | 815 (252
to 1836) | 106 810 (90
294 to 123
790) | 821 (264
to 1770) | 212 908 (179
991 to 246
752) | 1636 (615
to 3199) | 1·01 (0·99 to 1·03) | 1·29
(-5·39 to
727) | -5·79 (-5·95
to -5·59) | -6·71 (-12·59 to -1·24) | |
Ethiopia | 1 638 589
(498 186 to 4
270 533) | 9877
(5029 to
17 293) | 1 182 333
(373 552 to 3
267 067) | 8510
(3506 to
16 787) | 2 820 922
(876 846 to 7
716 426) | 18 387
(9037 to
32 209) | -2·03 (-2·86
to -1·05) | -1.98
(-9.18 to
5.43) | -9·03
(-13·49 to
-4·40) | -8·99 (−14·92 to −2·87) | | | All ages incidence and deaths (2013) | | | | | | | te of change | (%) | | |-----------------------------|--|---------------------------------|--|---------------------------------|---|---------------------------------|---------------------------|------------------------------|--------------------------------|------------------------------| | | Male populatio | n | Female popula | tion | Total | | 1990-2000 | | 2000-13 | ··· | | | Incidence | Deaths | | Kenya | 782 119 (236
917 to 2 033
030) | 4464
(2618 to
7478) | 627 587 (175
809 to 1 772
853) | 3896
(1826 to
8102) | 1 409 706
(412 893 to 3
805 649) | 8360
(4891 to
14 436) | 0·11 (-0·62
to 0·92) | 1·07
(-2·51 to
4·74) | -10·47
(-15·44 to
-5·08) | -10·98 (-15·32 to -6·72) | | Madagascar | 459 299 (131
674 to 1 198
750) | 2123 (986
to 4137) | 612 453 (212
737 to 1 430
807) | 2783
(1420 to
4868) | 1 071 751
(352 252 to 2
626 270) | 4906
(2985 to
7867) | -2·01 (-3·47
to -0·96) | -1·42
(-4·41 to
1·43) | -5·02 (-7·63
to -2·26) | -4.54 (-8.19 to -0.46) | | Malawi | 347 806 (116
374 to 858
925) | 2147
(1094 to
3889) | 402 696 (148
948 to 930
569) | 2456
(1061 to
4910) | 750 502 (268
060 to 1 769
176) | 4603
(2546 to
8195) | -5·03 (-9·46
to -1·71) | -6·52
(-10·60 to
-272) | -6.86
(-10.48 to
-3.26) | -7·02 (-11·10 to -2·31) | | Mozambique | 2 773 504 (1
582 152 to 4
911 657) | 19 196
(13 650 to
25 948) | 3 244 189 (1
684 669 to 6
325 806) | 20 473
(14 753 to
26 654) | 6 017 693 (3
266 015 to 11
078 884) | 39 669
(31 008 to
49 712) | 1.81 (0.66 to 3.21) | 2·46
(-0·06 to
5·23) | -4·51 (-6·24
to -2·39) | -4·21 (-6·46 to -1·59) | | Rwanda . | 237 157 (89
675 to 564
253) | 1806 (811
to 3293) | 232 335 (89
900 to 553
411) | 1764 (700
to 3613) | 469 491 (179
942 to 1 118
489) | 3569
(1754 to
6572) | 1·80 (0·38 to
4·16) | 3·12
(-0·56 to
6·87) | -13·32
(-19·57 to
-6·60) | -13·13 (-18·69 to -7·48) | | Somalia | 474 870 (233
983 to 899
300) | 3314
(1561 to
6276) | 356 615 (172
956 to 709
509) | 2806
(1284 to
5202) | 831 485 (409
498 to 1 610
977) | 6120
(3066 to
10 592) | 1.08 (0.14 to 2.50) | 2·13
(-2·36 to
6·49) | -3·90 (-6·14
to -1·78) | -4·22 (-8·54 to 0·35) | | South Sudan | 301 308 (112
436 to 702
216) | 1703 (841
to 3414) | 201 184 (72
449 to 507
884) | 1399 (430
to 3252) | 502 492 (186
803 to 1 157
572) | 3102
(1547 to
5794) | 0·48 (-0·36
to 1·49) | 1·58
(-2·83 to
6·29) | -8·28
(-12·73 to
-3·81) | -8·89 (-13·00 to -3·96) | | Tanzania | 1 873 958
(934 095 to 3
672 184) | 13 495
(7362 to
22 215) | 2 307 766 (1
239 301 to 4
260 696) | 16 242
(7989 to
32 819) | 4 181 724 (2
178 550 to 7
920 536) | 29 737
(17 572 to
48 950) | 043 (-049 to 1·73) | 0·35 (-263
to 347) | -7·77
(-11·64 to
-371) | -7·90 (-11·48 to -373) | | Uganda | 1 918 386 (1
036 770 to 3
491 911) | 14 247
(7967 to
22 532) | 2 262 354 (1
245 502 to 4
007 412) | 15 298
(8111 to
25 181) | 4 180 741 (2
285 851 to 7
474 431) | 29 545
(18 946 to
45 298) | 1·18 (0·28 to 249) | 2·41 (-076
to 553) | -593 (-8·61
to -2·92) | -6.12 (-9.34 to -2.49) | | Zambia | 945 622 (525
219 to 1 635
147) | 6667
(4445 to
9435) | 1 077 049
(585 683 to 1
925 781) | 7145
(4894 to
10 132) | 2 022 671 (1
112 338 to 3
551 130) | 13 812
(10 076 to
18 903) | 1.58 (0.47 to 2.82) | 233 (-1·34
to 552) | -7·24
(-10·69 to
-345) | -7.00 (-9.68 to -3.94) | | Southern sub-Saharan Africa | 344 868 (147
187 to 780
285) | 1896
(1376 to
2580) | 275 985 (104
772 to 678
471) | 1374 (907
to 2251) | 620 853 (252
060 to 1 471
492) | 3270
(2462 to
4543) | 2·84 (1·28 to
4·19) | 2·85
(-0·40 to
545) | -563 (-8·37
to -2·64) | -7·30 (-9·74 to -4·10) | | Botswana | 18 238 (16
153 to 20 347) | 112 (53 to
223) | 9133 (8445 to
9797) | 35 (10 to
91) | 27 371 (24
696 to 30 025) | 147 (79 to
264) | 2·81 (2·54 to 3·04) | 353 (-349
to 977) | -5·03 (-5·44
to -4·60) | -6·75 (-12·19 to 042) | | Namibia | 33 857 (31
052 to 36 663) | 158 (97 to
267) | 25 990 (23
915 to 27 914) | 83 (24 to
211) | 59 847 (55
363 to 64 383) | 241 (142
to 420) | 1·76 (1·54 to
1·97) | 2·62
(-1·56 to
6·85) | -3·86 (-4·31 to -3·41) | -6·36 (-9·85 to −2·46) | | South Africa | 2755 (2663 to
2834) | 245 (105
to 537) | 2874 (2795 to
2966) | 128 (86 to
249) | 5629 (5629 to
5629) | 374 (213
to 699) | 0·25 (-049
to 1·00) | 253 (-0·30
to 5 59) | 0·08 (-0·96
to 0·85) | -13·25 (-17·68 to -7·37) | | | All ages incider | ice and death | ıs (2013) | | | | Annualised ra | Annualised rate of change (%) | | | | | |----------------------------|---|---------------------------------------|---|---------------------------------------|---|---------------------------------------|--------------------------|-------------------------------|---------------------------|--------------------------|--|--| | | Male populatio | n | Female popula | tion | Total | | 1990-2000 | | 2000-13 | | | | | | Incidence | Deaths | | | | Swaziland | 12 878 (10
579 to 15 305) | 110 (29 to
241) | 6411 (5268 to
7617) | 54 (13 to
127) | 19 290 (15
847 to 22 922) | 164 (68 to
335) | 376 (375 to
376) | 344 (-265
to 8·27) | -6.68 (-6.68
to -6.68) | -6·59 (-12·07 to -1·34) | | | | Zimbabwe | 277 139 (78
586 to 717
290) | 1272 (858
to 1885) | 231 578 (60
882 to 634
297) | 1073 (595
to 1857) | 508 717 (140
095 to 1 364
465) | 2345
(1609 to
3439) | 3·02 (1·17 to
4·87) | 2·96
(-1·94 to
6·75) | -5·96 (-9·71
to -2·38) | -3·40 (-9·25 to −1·72) | | | | Western sub-Saharan Africa | 28 989 748
(18 569 128 to
44 034 576) | 246 973
(179 298
to 334
725) | 27 966 300
(17 623 922 to
43 268 248) | 218 875
(160 016
to 281
613) | 56 956 048
(36 282 648 to
86 449 152) | 465 848
(356 750
to 590
771) | 0.90 (0.26 to
1.72) | 145 (-0·24
to 348) | -3·79 (-5·33
to -2·00) | -3·40 (-5·15 to -1·56) | | | | Benin | 496 703 (272
131 to 893
268) | 3604
(1769 to
6020) | 589 179 (338
344 to 1 013
545) | 4085
(2429 to
5968) | 1 085 882
(607 392 to 1
908 784) | 7689
(4649 to
11 064) | 070 (-044 to
1·81) | 140 (-1·86
to 4·67) | -5·23 (-7·29
to -273) | -5·17 (-8·32 to -1·64) | | | | Burkina Faso | 1 772 734 (1
091 493 to 2
837 545) | 12 942
(8142 to
19 266) | 2 068 269 (1
260 720 to 3
396 651) | 14 319
(9910 to
19 631) | 3 841 003 (2
364 116 to 6
158 591) | 27 261
(19 599 to
36 230) | 1.68 (072 to 2.97) | 2.68 (0.22
to 5.22) | -3·54 (-5·11
to -1·90) | -3·85 (-6·24 to −1·62) | | | | Cameroon | 1 141 115
(640 140 to 2
003 619) | 8634
(4332 to
14 541) | 1 528 984
(911 130 to 2
529 638) | 10 703
(6168 to
17 005) | 2 670 100 (1
556 196 to 4
539 860) | 19 336
(11 574 to
29 258) | 2·64 (1·22 to
4·14) | 342 (049
to 6·56) | -6·47 (-9·47
to -3·19) | -6·40 (-9·50 to -2·56) | | | | Cape Verde | 38 (32 to 44) | 0 (0 to 1) | 28 (24 to 32) | 0 (0 to 0) | 66 (56 to 77) | 1 (0 to 1) | -3·60 (-362
to -3 57) | -339
(-8·78 to
0·84) | -9·01 (-9·15
to -8·85) | -9·55 (-13·74 to -5·02) | | | | Chad | 638 516 (327
314 to 1 182
104) | 4372
(2095 to
8178) | 745 182 (425
863 to 1 287
409) | 5463
(2674 to
9708) | 1 383 698
(754 840 to 2
472 300) | 9835
(5004 to
16 673) | 243 (1·10 to 4·1) | 370 (-041
to 7·68) | -3·75 (-5·46
to -1·87) | -3·93 (-7·62 to −0·18) | | | | Côte d'Ivoire | 1 116 108
(616 173 to 1
965 682) | 7931
(3796 to
14 026) | 1 270 614
(746 533 to 2
117 101) | 8849
(4705 to
13 599) | 2 386 722 (1
373 505 to 4
113 535) | 16 780
(9577 to
25 660) | 171 (073 to
279) | 2·29
(-0·63 to
5·30) | -6·23 (-9·23
to -3·05) | -6.04 (-9.41 to -2.47) | | | | Ghana | 1 131 416
(597 366 to 2
063 095) | 7843
(4899 to
11 682) | 1 274 480
(700 996 to 2
287 354) | 8572
(5486 to
12 246) | 2 405 896 (1
293 177 to 4
322 408) | 16 415
(11 390 to
22 881) | 0·84 (048 to
1·91) | 142 (-1·55
to 385) | -3·36 (-4·97
to -1·62) | -3·64 (-6·35 to -0·93) | | | | Guinea | 850 008 (528
198 to 1 364
161) | 6594
(3882 to
9881) | 1 070 541
(666 679 to 1
678 739) | 8003
(4779 to
11 599) | 1 920 549 (1
202 796 to 3
033 236) | 14 597
(9576 to
20 495) | 1·25 (042 to 238) | 1.68
(-2.23 to
568) | -4·18 (-6·17
to -2·06) | -4·40 (-7·17 to -1·23) | | | | Guinea-Bissau | 188 651 (118
426 to 302
109) | 1747
(1155 to
2514) | 202 199 (125
656 to 321
006) | 1796
(1158 to
2502) | 390 850 (244
350 to 622
761) | 3543
(2481 to
4805) | 0.68 (0.07 to
1.55) | 1·26
(-1·71 to
449) | -2·73 (-3·94
to -1·50) | -2·10 (-4·72 to 0·53) | | | | Liberia | 215 778 (119
173 to 385
255) | 1467 (765
to 2519) | 254 770 (147
560 to 431
784) | 1686 (875
to 2731) | 470 548 (269
710 to 826
308) | 3154
(1799 to
4992) |
1·24 (014 to 272) | 2·28
(-2·18 to
6·27) | -4·86 (-7·07
to -2·53) | -5·09 (-8·35 to −1·67) | | | | cet. | | |---|--| | Author | | | manuscript; | | | script; available in PMC 2014 October 20. | | | ber 20. | | | | All ages incidence and deaths (2013) | | | | | | | Annualised rate of change (%) | | | | | |-----------------------|---|-----------------------------------|--|-----------------------------------|---|---------------------------------------|---------------------------|-------------------------------|-------------------------------|-----------------------------|--|--| | | Male populatio | Male population | | Female population | | Total | 1990-2000 | | 2000-13 | | | | | | Incidence | Deaths | | | | Mali | 1 812 025 (1
148 899 to 2
815 056) | 16 526
(9857 to
24 875) | 2 412 241 (1
441 912 to 3
931 845) | 19 164
(11 403 to
27 092) | 4 224 267 (2
612 582 to 6
660 447) | 35 690
(23 410 to
50 450) | 1.92 (0.85 to 323) | 2·76
(-0·57 to
6·17) | -2·92 (-4·12
to -1·64) | −2·36 (−5·26 to 0·56 | | | | Mauritania | 164 717 (77
085 to 322
374) | 974 (444
to 1838) | 105 272 (49
402 to 215
015) | 820 (290
to 1460) | 269 989 (130
899 to 534
343) | 1795 (844
to 3103) | 4·56 (2·16 to 7·12) | 5·77 (1·59
to 9·62) | -2·34 (-3·70
to -1·16) | -2.84 (-5.92 to 0.18) | | | | Niger | 1 348 843
(837 303 to 2
127 755) | 11 564
(4559 to
20 485) | 1 608 928 (1
030 476 to 2
443 363) | 13 869
(6688 to
21 584) | 2 957 771 (1
877 757 to 4
481 069) | 25 433
(13 395 to
40 453) | 1.60 (044 to 322) | 3·06
(-1·34 to
727) | -3·31 (-4·83
to -1·71) | -2·67 (-6·93 to 1·33 | | | | Nigeria | 16 635 774
(10 707 174 to
25 163 660) | 151 794
(95 928 to
223 806) | 13 033 882 (8
224 059 to 19
909 316) | 108 611
(61 160 to
158 184) | 29 669 656
(19 004 200 to
45 297 792) | 260 405
(171 907
to 361
607) | 0·23 (-049
to 0·67) | 0.63
(-2.57 to
3.99) | -2·93 (-4·21
to -1·58) | -2·36 (-5·34 to 0·72 | | | | Sao Tome and Prfncipe | 5915 (5258 to
6577) | 35 (16 to
65) | 6027 (5360 to
6701) | 36 (17 to
61) | 11 942 (10
619 to 13 278) | 71 (37 to
119) | -0.48 (-0.50
to -044) | -0·49
(-4·15 to
2·96) | -3·41 (-3·69
to -3·11) | -4·75 (-7·98 to −1·8 | | | | Senegal | 429 236 (185
098 to 920
585) | 2970
(1400 to
5280) | 500 762 (241
439 to 992
049) | 3600
(1687 to
5828) | 929 998 (430
550 to 1 917
898) | 6570
(3511 to
10 420) | -043 (-1·31
to 0·31) | 0.65
(-1.92 to
3.11) | -9·11
(-13·59 to
-4·35) | -9·07 (-13·06 to -5·0 | | | | Sierra Leone | 519 098 (329
919 to 801
942) | 4106
(2244 to
6714) | 678 273 (416
276 to 1 092
241) | 4775
(2912 to
6784) | 1 197 371
(749 248 to 1
872 567) | 8882
(5691 to
12 669) | 0·58 (0·04 to
1·27) | 1·10
(-1·78 to
3·98) | -5·95 (-8·84
to -2·89) | -5.91 (-8.77 to -2.8) | | | | The Gambia | 153 051 (92
298 to 251
289) | 1056 (648
to 1604) | 148 981 (90
176 to 243
097) | 1034 (644
to 1510) | 302 032 (182
698 to 494
937) | 2090
(1405 to
3029) | -1·07 (-1·53
to -0·59) | -0·89
(-3·74 to
1·98) | -3·64 (-5·28
to -1·84) | -3·78 (−6·35 to −0·9 | | | | Togo | 369 830 (214
148 to 641
934) | 2811
(1429 to
5062) | 467 452 (283
814 to 760
578) | 3488
(1900 to
5575) | 837 282 (499
488 to 1 395
545) | 6299
(3690 to
9808) | -0·48 (-1·12
to -0·01) | 0·07
(-2·97 to
3·01) | -3·55 (-5·34
to -1·72) | -2.72 (-6.05 to 0.32 | | | Data in parentheses are 95% uncertainty intervals. Murray et al. # Table 8 Comparison between Global Burden of Disease 2013 verses UNAIDS 2013 HIV estimates Page 122 | | GBD 2013 | UNAIDS 2013 ^{60,160} | |-----------------------------|--|--| | Incidence, prevalence, a | nd mortality | | | Key data sources and inputs | Vital registration (VR) data UNAIDS' 1000 Estimation and Projection Package (EPP) incidence and prevalence curv GBD 2013 HIV-free life tables UNPOP World Population Prospects (WPP) 2012 population and fertility estimates Antiretroviral therapy (ART), prevention of mother-to-child transmission (PMTCT), and other intervention coverage data reported to UNAIDS HIV mortality rates on-ART from systematic literature review (102 studies) HIV mortality rates off-ART from systematic literature review (13 cohort studies) UNAIDS assumptions for other spectrum HIV inputs | Surveillance data for high-risk groups UNPOP World Population Prospects 2010 population, fertility and HIV-free mortality estimates ART, PMTCT, and other intervention coverage data reported to UNAIDS by countries; UNAIDS states these are validated by UNAIDS, WHO, and UNICEF but no method for validation is provided Assumptions on the percent of the population in high-risk groups for each country with a concentrated epidemic; UNAIDS states that estimates are | | Key adjustments to
data | VR data adjusted for completeness VR data adjusted for garbage coding and misclassification HIV deaths | • None | | Modelling strategy | All countries: Age-sex-CD4-specific estimates of HIV mortality on-ART and off-ART based on met regression of studies from literature reviews Spectrum recoded in open-source language Python to facilitate uncertainty analysis Generalised epidemics and populations with national surveys: 46 countries EPP outputs (15-49 years, both sexes) for generalised epidemics used as an input to modified Spectrum EPP fit to national prevalence data for India, Senegal, and Niger Spectrum (Python version) run with modified death rates on and off ART, GBD HIV-free mortality, and WPP 2012 population estimate intervention estimates for ART, PMTCT as reported by UNAIDS Sampling uncertainty distributions for all inpuparameters generate 10 000 year-age-sex specific estimates of HIV mortality, incidence | EPP (one of three variants) used to generate incidence and prevalence curve for urban and rural or regional breakdowns with survey and ANC surveillance data; aggregation to generate national curves for ages 15-49 years in both sexes combined. Fitting parameters including start year of the epidemic modified to eliminate unrealistic fits from the statistical mode Incidence adjusted downward by 92% for the fraction of people on ART. EPP outputs with Spectrum inputs and WPP 2010 demographic data to generat year-age-sex specific estimates of HIV mortality, incidence, and prevalence Selective modification of input parameters including ART survival based on country consultation process attractions. | #### GBD 2013 Selection of the 1000 epidemic curves that minimize the gap between GBD 2013 all-cause mortality estimates and Spectrum mortality outputs #### Concentrated epidemics with VR: - 125 countries - Space-time Gaussian Process Regression (ST-GPR) on adjusted VR data to produce complete time series of age-sex-specific mortality - EPP outputs (15-49 years, both sexes) with Spectrum inputs, GBD 2013 demographic data, and updated on-ART and off-ART mortality analysis to run Spectrum and generate 1000 year-age-sex specific estimates of HIV mortality, incidence, and prevalence - Adjusted incidence from Spectrum using the ratio of ST-GPR modelled mortality to Spectrum modelled mortality with six different assumptions of the lag from year of infection to year of death (10-15 years). This produced 6000 time series of incidence (15-49 years, both sexes) - Adjusted incidence with GBD HIV-free life tables, WPP 2012 demographic data, and updated on-ART and off-ART mortality analysis to run Spectrum and generate 6000 year-age-sex specific estimates of HIV mortality, incidence, and prevalence - Select 1000 with the smallest root mean squared error between model predictions of mortality and the vital registration data #### Concentrated without VR: - 17 countries - Extrapolation of incidence and prevalence for countries where UNAIDS does not generate estimates by randomly selecting draws from countries in the region with estimates - Regional average of all other Spectrum inputs for countries where UNAIDS does not generate estimates - EPP outputs
(15-49 years, both sexes) with Spectrum inputs, GBD 2013 demographic data, and updated on-ART and off-ART mortality analysis to run Spectrum and generate 1000 age-sex specific estimates of HIV mortality, incidence, and prevalence - Random selection of 1000 ratios used in the incidence adjustment process from countries with relatively high prevalence - Use selected ratios to adjust incidence in the absence of ST-GPR results, producing 1000 adjusted incidence curves (15-49 years, both sexes). - Adjusted incidence with Spectrum inputs, GBD 2013 demographic data, and updated on-ART and off-ART mortality analysis to run Spectrum and generate 1000 year-age-sex specific estimates of HIV mortality, incidence, and prevalence ### UNAIDS 2013^{60,160} - EPP used to generate incidence and prevalence curves for high-risk groups using surveillance data for these populations - Aggregation to generate national curves (15-49 years, both sexes) based on assumptions about the fraction of the population in each high-risk group - EPP outputs with Spectrum progression parameters, reported ART and PMTCT coverage, and WPP 2010 demographic data to generate year-age-sex specific estimates of HIV mortality, incidence, and prevalence - For some countries with insufficient data on prevalence in high-risk groups, reported HIV diagnoses over time and assumptions about the fraction diagnosed used - Selective modification of assumptions on the percentage of the population in each high-risk group and other Spectrum input assumptions through country consultation process Countries with populations less than 250 000: No estimates constructed | | GBD 2013 | UNAIDS 2013 ^{60,160} | |----------------------|---|--| | Uncertainty | Use the 1000 EPP incidence curves consistent with the available prevalence data | EPP likelihood estimation of incidence reflects uncertainty in prevalence data | | | Generated 1000 sets of CD4 progression and
CD4 specific mortality on and off ART sampl
from the meta-regression of published studies | | | | Sample a uniform distribution of -10% to +10' of the mean value for all other Spectrum parameters including numbers on ART and PMTCT | All uncertainty adjustments to non-EPP inputs are arbitrary and small compared with GBD | | | The sex ratio of incidence was sampled from a uniform distribution of -20% to +20% of mean value The sex ratio of incidence was sampled from a uniform distribution of -20% to +20% of mean value. | n variation for parameters arbitrarily selected and only for selected variables | | | Major limitation is that uncertainty intervals formany parameters are sampled from an arbitrar uncertainty interval | | | | | No uncertainty incorporated for CD4
progression overtime or distribution of
CD4 counts at seroconversion | | GBD 2013 differences | Recoded Spectrum in the Python programing
language to enable the model to run more
efficiently and allow for full uncertainty
analysis | N/A | | | Expanded uncertainty in Spectrum estimates of
mortality, incidence, and prevalence by
sampling distributions around most Spectrum
inputs | | | | Empirically estimated uncertainty for HIV mortality on-ART and off-ART | | | | Used VR data when available to inform
estimates of mortality for concentrated
epidemics | | | | Identify epidemic curves and all-cause mortal
estimates in countries with large epidemics the
are most consistent with each other | | | | Sum of cause-specific mortality estimates for
country-year-age-sex group must equal all-
cause mortality estimate at the draw level
(CoDCorrect algorithm) | a . | # $\begin{tabular}{ll} \textbf{Table 9} \\ \textbf{Comparison between Global Burden of Disease 2013 verses WHO 2013 tuberculosis} \\ \textbf{estimates} \\ \end{tabular}$ | | GBD 2013 | WHO 2013 ⁸² | |----------------------------|--|--| | Mortality | | | | Key data sources or inputs | Vital registration (VR) data (2731 country-years) Verbal autopsy (VA) data (166 site-years) | VR data (2087 country-years) WHO 2013 tuberculosis incidence estimates | | | Covariates | WHO 2012 tuberculosis case fatality rate
(CFR) estimates Covariates | | Key adjustments to data | VR adjusted for estimated completeness in each country-year VR and VA data adjusted based on detailed analysis of garbage coding VR and VA data adjusted for misclassification of tuberculosis-HIV | Excluded VR data for South Africa and Zimbabwe due to misclassification of tuberculosis-HIV VR data adjusted for senile and ill-defined cause of death VR data interpolated for missing data and trailing or leading missing values with exponential smoothing VR data adjusted for estimated completeness in each country year | | Modelling strategy | Use the Cause of Death Ensemble Modeling strategy (CODEm) to generate mortality estimates from the VR and VA data for all countries; covariates informed the model; CODEm tests a wide range of models and constructs an ensemble model on the basis of performance of different models judged with data held-out from model -building Model fraction tuberculosis-HIV with the fraction of tuberculosis-HIV in HIV mortality from the VR data - HIV-mortality estimates used to generate TB-HIV deaths | Tuberculosis mortality directly from VR data: 123 countries (45% estimated global deaths) Countries without VR with ten covariates available: Negative binomial model estimated based on the 123 countries in the first group; predictions from the model used for 27 countries Countries without VR without complete covariates: Mortality estimated by multiplying estimated incidence multiplied by an estimate of the case-fatality rate for allages combined (67 countries) Regional case-fatality rates (CFR; highincome, middle-income, and low-income countries) generated from case notifications by type (notified and nonnotified) and VR data (Bayesian linear modelling done separately by region) All countries: HIV plus tuberculosis incidence from UNAIDS' Spectrum model and estimated CFR of tuberculosis mortality in HIV-positive people (six CFRs corresponding | | Uncertainty | CODEm generates uncertainty intervals for predicted death rates by sampling the posterior distribution of each of the component models in proportion to the | to six CD4 cell-count groups and one CFR for cases on ART) Countries with VR: • Uncertainty was computed based on sampling uncertainty Countries without VR with ten covariates available: | | • | GBD 2013 | WHO 2013 ⁸² | |-----------------------------|---|--| | | weight of each model in the enseml mixed effects component model uncertainty includes uncertainty in betas and the hierarchical random e spatiotemporal Gaussian Process Regression component models incluncertainty from the mean prior andata variance Uncertainty interval coverage evaluobjectively with out-of-sample prevalidity Each country-year-age-sex draw ad so it is consistent with the sum of a 2013 causes and the all-cause
mortestimate for that country-year-age-group Uncertainty distributions across conwere assumed to be independent | uncertainty in the regression coefficients the effects; ade it the deficts without VR without complete covariates: • Mortality estimate uncertainty computed with posterior distributions of CFR (assumed time independent within respective case categories [notified or not, HIV positive or negative]) and country-year distributions of estimated incidence All countries: Assumed uncertainty distribution correlation across countries unknown | | GBD 2013 differences | Tuberculosis mortality in all countr
based on models constructed from
VA data | √R and | | | VR and VA data corrected for garb
coding and misclassification of HIV
as tuberculosis deaths | | | | Fraction tuberculosis-HIV in HIV
empirically estimated with VR data | | | | Out-of-sample predictive validity to
used to select the ensemble model if
estimating mortality in all countries | or | | | The same approach was used for al countries | | | | Sum of cause-specific mortality est
for a country-year-age-sex group mequal all-cause mortality estimate a
draw level (CoDCorrect algorithm) | ust
t the | | Incidence and prevalence | | | | Key data sources and inputs | WHO tuberculosis case notification
sex-country-year specific) | s (age- • WHO tuberculosis case notifications (country-year specific) | | | Tuberculosis prevalence surveys (2
national survey-years and 24 subna
survey-years in 24 countries) | | | | Expert opinion and consultation on
case-detection rate as reported by V | | | | GBD 2013 tuberculosis mortality e Pre-1994 case notifications for seld | data, programmatic data, and inventory | | | Pre-1994, case notifications for sele
countries (Australia, Canada, Germ
UK, and Japan) | | | | GBD 2013 HIV prevalence estimat
and antiretroviral therapy [ART]-st
specific) | es (CD4 from Demographic and Health Surveys | | | Relative risks (RRs) of tuberculosis
compared with tuberculosis-only fr
literature review (eight studies) | tuberculosis-only (three studies) | | | GBD 2013 | WHO 2013 ⁸² | |-------------------------|--|--| | | | UNAIDS estimates of HIV prevalence in
children and in adults | | Key adjustments to data | Correction of case notifications for missing age groups, smear-unknown and relapsed cases, and missing diagnostic categories Case notifications adjusted upwards for underreporting with CDR Prevalence surveys adjusted for likely proportion extra-pulmonary tuberculosis missing in a survey with case notification data | Triangulation of expert opinion on under reporting CDR, subnational administration data, programmatic data, inventory studies, and DHS data Case notification data reviewed and cleaned for underreporting, misclassification and over-reporting Prevalence measurements reviewed and adjusted for childhood tuberculosis and extra-pulmonary tuberculosis | | Modelling strategy | All countries: | Countries with regional workshops: | | | Derivation of remission and excess mortality from incidence to prevalence ratio and CFR models with the adjusted and historic case notifications, prevalence data, and VR data Bayesian internally consistent estimation of incidence, prevalence, excess mortality, remission and mortality estimates in DisMod-MR 2.0 | Extrapolation of CDR estimates for 1997 2003, and 2008-12 using a beta distribution of plausible CDRs on three data points per country Estimation of incidence from CDR and case notifications for 96 countries. Trends based on tuberculin surveys (three countries) and mortality estimates (40 countries) | | | Estimation of the proportion of total | Countries with national prevalence surveys: | | | tuberculosis incidence and prevalence that occurs in HIV-positive individuals with GBD 2013 CD4-specific HIV prevalence and CD4-specific RRs from a metanalysis in a population attributable | Incidence from empirical measurements
of disease prevalence and duration
estimates for two countries | | | fraction calculation | High-income countries: | | | | Incidence from case notifications and
expert opinion or capture-recapture
modelling | | | | All countries: | | | | Proportion of tuberculosis incidence that is due to tuberculosis-HIV in UNAIDS' Spectrum model based on population surveys of HIV prevalence among tubeculosis cases, sentinel HIV data, and routine HIV testing of reported tuberculosis cases Prevalence directly estimated from national surveys adjusted for extrapulmonary and childhood tuberculosis o indirectly from estimates of tuberculosis incidence and duration | | Uncertainty | Uncertainty in case notifications based on
expert reported upper and lower bounds of
the case-detection rate adjusted so that the
minimum interval is plus or minus 20
percentage points | Uncertainty in incidence based on primarily on uncertainty in expert opinion on the case-detection rate Prevalence uncertainty based on either | | | Uncertainty in corrected incidence,
remission rates, and excess mortality rates
estimated by use of draws from the
regression variance-covariance matrix of
the betas and draws from the random | sampling uncertainty in surveys and
assumptions about extra-pulmonary and
childhood tuberculosis (derived from
case notification data) or incidence
uncertainty and an assumed duration | | | effects distributions | Assumed uncertainty distribution are
uncorrelated | | | Prevalence survey uncertainty computed
from the sample size and sample design | Estimates and their uncertainty are not based on analysis of age-specific rates | | | DisMod-MR generates posterior
distributions for incidence, prevalence, | | | | GBD 2013 | | WHO 20 | 01382 | | |----------------------|----------|--|--------|-------|--| | | • | remission, and excess mortality that is a function of data variance and model parameter uncertainty Uncertainty distributions across countries assumed to be uncorrelated | | | | | GBD 2013 differences | • | DisMod-MR 2.0 simultaneously synthesizes all available data for incidence, remission, excess mortality and prevalence ensuring internal consistency | • | N/A | | | | • | Estimation of incidence, prevalence, remission, and excess mortality is age-sex specific | | | | | | • | All countries modelled with the same approach | | | | Table 10 Comparison between Global Burden of Disease 2013 verses WHO 2013 malaria estimates | | GBD 2013 | WHO ^{110,162} | |----------------------------|--|--| | Mortality | | | | Country groupings | High malaria transmission countries in Africa Countries outside of Africa and low malaria transmission African countries Countries with mostly or only Plasmodium vivax malaria | High transmission countries in Africa Countries outside Africa and low malaria transmission African countries | | Key data sources | Verbal autopsy (VA) studies and vital
registration (VR) data | For countries outside Africa and low transmission African countries: NMCP reports for case estimates, as described below, as well as clinic records and reported malaria case fatality data For high malaria transmission countries in Africa: verbal autopsy studies, vital registration data, and clinical malaria mortality data | | Key adjustments to
data | VR adjusted for completeness
Adjustments for child deaths in VA and
VR for garbage coding | • None | | Modelling strategy | Separate CODEM models for high malaria transmission countries in Africa and countries outside of Africa and low malaria transmission African countries; separate models for under 5 and ≥5 years CODEm covariates: Plasmodium falciparum parasite rate (PfPr) from the Malaria Atlas Project (2010), Lysenko endemicity, WHO population-at-risk, prevalence-weighted first-line drug resistance, health-system access, indoor residual spraying (IRS) and insecticide-treated nets (ITN) coverage, rainfall, education, and lagged gross domestic product (GDP). Deaths for countries with mostly or only P vivax malaria estimated with a negative binomial model | Deaths estimated by multiplying malaria case estimates by fixed case fatality ratios (045% in Africa; 0.3% outside of Africa), based on clinical malaria mortality and reported malaria case fatality data For high-transmission countries in Africa: Child deaths estimated using a verbal autopsy multi-cause model (VAMCM) developed by the WHO Child Health Epidemiology Reference Group (CHERG),145 adjusted post hoc for the effect of bednets and use of Haemophilus influenzae type b (Hib) vaccine | | Uncertainty analysis | Uncertainty generated by CODEm CODEm generates uncertainty intervals for predicted death rates by sampling the posterior distribution of each of the component models in proportion to the weight of each model in the ensemble; mixed effects component model uncertainty includes uncertainty in the betas and the hierarchical random effects; spatiotemporal Gaussian Process Regression component models include uncertainty from the mean prior and the data variance | For countries outside Africa and low transmission African countries: • Uncertainty in the case fatality rates assumed arbitrarily to be a uniform distribution between 0.225% and 0.675% for African countries and between 0.15% and 0.45% for outside of Africa • Incidence rates: see section on morbidity below For high-transmission countries in Africa: • For child deaths estimated by CHERG with the VAMCM, "the bootstrap method was employed to estimate uncertainty intervals by re-sampling from the study-level data to | | | GBD 2013 | WHO ^{110,162} | |---|---|--| | | Uncertainty interval coverage objectively using out-of-samp validity For P vivax countries: 1000 draws generated from the covariance matrix of coefficien egative binomial model Each country-year-age-sex dreso it is consistent with the sur 2013 causes and the all-cause estimate for that country-year group Uncertainty distributions acrowere assumed to be independent. | e variance- nts from wadjusted an of all GBD mortality age-sex ss countries | | Main GBD 2013
differences | Malaria mortality in all count models constructed from VR VR and VA data corrected for coding in children Models include drug resistance and IRS coverage Out-of-sample predictive valified used to select the ensemble mestimating mortality in all confected those with mostly or a malaria Sum of cause-specific mortality for a country-year-age-sex graying equal all-cause mortality esting draw level (CoDCorrect algorithm) | and VA data garbage e and ITN lity testing odel for ntries II P vivax ty estimates out the data of the control contro | | Morbidity Country groupings | As defined by Hay and colleagues 163 | High-transmission countries in Africa | | g | Countries with reliable survei systems (eight countries) Countries with incomplete surveints (55 countries) Countries with unreliable surveints (45 countries) | lance 2 Countries outside Africa and low-malaria- transmission African countries veillance | | Key data sources | For countries with reliable sursystems and incomplete surve systems: national malaria con programme (NMCP) reports on number of cases, supplemente reported malaria case data at subnational levels for China a For countries with unreliable systems: published epidemiol studies of malaria incidence | illance countries for which the quality of data were considered adequate: NMCP reports on malaria cases and nationally representative household surveys on source of care household surveys on source of care systems: published epidemiological studies o malaria incidence | | Modelling strategy,
including adjustments
to data | For countries with reliable sursystems: cases directly from I data For countries with incomplete systems: cases from NMCP d for completeness of reporting system access proxy covariate regression model | IMCP report countries for which the quality of data were considered adequate: cases from NMCP reportant adjusted for proportion of cases receiving a diagnostic test, completeness of reporting, and health-care seeking with the fraction of fever cases accessing facilities based on | | • | For countries with unreliable surveillance | |---|--| | | systems: cases estimated using the relation | | | between studies of malaria incidence and | | | malaria mortality rates estimated from | | | CODEm with covariates for age group, | | | active versus passive case detection, inside | or outside Africa, and the ratio of sitespecific to national PfPR from MAP2010 GBD 2013 ## WHO^{110,162} (MICS), or other nationally representative household surveys - For high-transmission countries in Africa: populations were classified as living at either high, low, or no risk of malaria and then high, low, or zero case-incidence rates were applied to the populations living in each endemicity class (procedure defined by Snow and colleagues164). Estimates were adjusted posthoc for urban and rural differences and bednet and IRS effects - For countries with unreliable surveillance systems: high, low, and zero case-incidence rates were applied to populations classified as living at either high, low, or no risk of malaria defined according to climactic suitability (as per the Mapping Malaria Risk in Africa [MARA] project). Estimates were adjusted for urban and rural differences, and the effect of bednets and IRS Uncertainty analysis For countries with unreliable surveillance systems (45 countries) and countries with incomplete surveillance systems (55 countries): - 1000 draws generated from the variancecovariance matrix of coefficients from the incidence regression - Age pattern predicted with regression and applied to non-age-specific WHO case report data for countries with reliable surveillance systems (eight countries) For countries outside Africa and low-transmission African countries: - uncertainty in the completeness of reporting assumed to be uniform for reported values between 50% and 80% (low and mid value at 80% and high values at 100%) and triangular distributions for values below 50% (low 0%, mid and high 50%) and above 80% (low and mid 80%, high 100%) - Proportion of slide-positive cases assumed to have a normal distribution with SD from a least square regression of SDs on means across countries - Uncertainty in the proportion of population with fever using health facilities that are covered by the health-facility reporting system of cases and proportion not seeking treatment: based on survey SDs - Final uncertainty based on bootstrap methods assuming no correlation between
sources of uncertainty within a country - Uncertainty distribution correlation across countries unknown For high-transmission countries in Africa: - incidence rates by age and category of transmission risk - triangular distributions (with low, mid, and high values based on median and interquartile values as reported by Snow and colleagues ¹⁶⁴) "truncated so that their lower limit did not fall below 1" - Adjustments for rural or urban differences and for coverage of malaria preventive activities (ITNs and IRS): not included in the description of uncertainty methods - Uncertainty distribution correlation across countries unknown N/A GBD 2013 differences Malaria cases were predicted with a mortality-incidence model for countries with unreliable surveillance systems | GBD 2013 | WHO ^{110,162} | |----------|---| | | Predictions are adjusted for detection methods (active vs passive case detection) | The description of WHO estimation methods was based on the World Malaria Report 2008 and World Malaria Report 2011. # Research Article ## DSM-5 AND ICD-11 DEFINITIONS OF POSTTRAUMATIC STRESS DISORDER: INVESTIGATING "NARROW" AND "BROAD" APPROACHES Dan J. Stein, M.D., Ph.D., ^{1*} Katie A. McLaughlin, Ph.D., ² Karestan C. Koenen, Ph.D., ³ Lukoye Atwoli, M.D., ⁴ Matthew J. Friedman, M.D., ⁵ Eric D. Hill, M.S.P.H., ⁶ Andreas Maercker, M.D., Ph.D., ⁷ Maria Petukhova, Ph.D., ⁶ Victoria Shahly, Ph.D., ⁷ Mark van Ommeren, Ph.D., ⁸ Jordi Alonso, M.D., Ph.D., ^{9,10} Guilherme Borges, Sc.D., ¹¹ Giovanni de Girolamo, M.D., ¹² Peter de Jonge, Ph.D., ¹³ Koen Demyttenaere, M.D., Ph.D., ¹⁴ Silvia Florescu, M.D., Ph.D., ¹⁵ Elie G. Karam, M.D., D.M.Sc., ¹⁶ Norito Kawakami, M.D., D.M.Sc., ¹⁷ Herbert Matschinger, Ph.D., ¹⁸ Michail Okoliyski, Ph.D., ¹⁹ Jose Posada-Villa, M.D., ²⁰ Kate M. Scott, Ph.D., ²¹ Maria Carmen Viana, M.D., Ph.D., ²² and Ronald C. Kessler, Ph.D. ¹Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa $^2\mbox{Department}$ of Psychology, University of Washington, Seattle, Washington ³Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York ⁴Department of Psychiatry, Moi University, Eldoret, Kenya ⁵National Center for PTSD, US Department of Veteran Affairs, VA Medical Center, White River Junction, Vermont ⁶Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts ⁷ Division of Psychopathology, Department of Psychology, University of Zurich, Switzerland ⁸Department of Mental Health and Substance Abuse, World Health Organization, Geneva, Switzerland ⁹Health Services Research Unit, Institut Municipal d Investigacio Medica (IMIM-Hospital del Mar), Barcelona, Spain ¹⁰CIBER en Epidemologia y Salud Publica (CIBERESP), Barcelona, Spain ¹¹Division of Epidemiological and Psychosocial Research, Department of Epidemiological Research, National Institute of Psychiatry (Mexico) & Metropolitan Autonomous University, Mexico City, Mexico 12/IRCCS Centro S. Giovanni di Dio Fatebenefratelli, Brescia, ¹³Department of Psychiatry (PdJ), University Medical Center Groningen, Groningen, The Netherlands ¹⁴Department of Psychiatry, University Hospital Gasthuisberg, Leuven, Belgium ¹⁵Health Services Research and Evaluation Center, National School of Public Health Management and Professional Development, Bucharest, Romania opment, Bucharest, Romania 16 Institute for Development, Research, Advocacy & Applied Care (IDRAAC), Medical Institute for Neuropsychological Disorders (MIND), St. George Hospital University Medical Center, Faculty of Medicine, Balamand University, Beirut, Lebanon 17 Department of Mental Health, School of Public Health, University of Tokyo, Tokyo, Japan ¹⁸Public Health Research Unit (HM), Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany ¹⁹Department of Mental Health, National Centre of Public Health and Analyses, Ministry of Health, Sofia, Bulgaria Health and Analyses, Ministry of Health, Sofia, Bulga ²⁰Instituto Colombiano del Sistema Nervioso, Pontificia Universidad Javeriana, Bogota D.C., Colombia ²¹Department of Psychological Medicine, Otago University, Dunedin, New Zealand ²²Department of Social Medicine, Federal University of Espírito Santo, Vitória, Brazil Contract grant sponsor: United States National Institute of Mental Health; Contract grant number: R01MH070884; Contract grant sponsor: John D. and Catherine T. MacArthur Foundation: Contract grant sponsor: The Pfizer Foundation; Contract grant sponsor: The US Public Health Service; Contract grant numbers: R13-MH066849, R01-MH069864, R01-MH092526, and R01-DA016558; Contract grant sponsor: Fogarty International Center; Contract grant number: FIRCA R03-TW006481; Contract grant sponsor: The Pan American Health Organization; Contract grant sponsor: the Eli Lilly & Company Foundation; Contract grant sponsor: Ortho-McNeil Pharmaceutical, Inc.; Contract grant sponsor: GlaxoSmithKline; Contract grant sponsor: Bristol-Myers Squibb; Contract grant sponsor: Shire Pharmaceuticals; Contract grant sponsor: State of São Paulo Research Foundation (FAPESP) Thematic Project; Contract grant number: 03/00204-3; Contract grant sponsor: European Commission; Contract grant numbers: QLG5-1999-01042 and SANCO 2004123; Contract grant sponsor: The Piedmont Region; Contract grant sponsor: Fondo de Investigación Sanitaria; Contract grant sponsor: Instituto de Salud Carlos III; Contract grant number: FIS 00/0028; Contract grant sponsor: Ministerio de Ciencia y Tecnología, Spain; Contract grant number: SAF 2000-158-CE; Contract grant sponsor: Departament de Salut, Generalitat de Catalunya; Contract grant sponsor: Instituto de Salud Carlos III; Contract grant numbers: CIBER CB06/02/0046 and RETICS RD06/0011 REM-TAP; Contract grant sponsor: Japan Ministry of Health, Labour and Welfare; Contract grant numbers: H13-SHOGAI-023, H14-TOKUBETSU-026, and H16-KOKORO-013; Contract grant sponsor: National Institute of Health/Fogarty International Center; Contract grant number: R03 TW006481-01; Contract grant sponsor: Astra Zeneca: Contract grant sponsor: Hikma Pharm; Contract grant sponsor: Janssen Cilag; Contract grant sponsor: MSD; Contract grant sponsor: Novartis; Contract grant sponsor: Sanofi Aventis; Contract grant sponsor: Servier; Contract grant sponsor: The National Institute of Psychiatry Ramon de la Fuente; Contract grant number: INPRFMDIES 4280; Contract grant sponsor: National Council on Science and Technology; Contract grant number: CONACyT-G30544-H; © 2014 Wiley Periodicals, Inc.