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ABSTRACT

BACKGROUND: Identifying beneficial surrogate genetic markers in psychiatric disorders is crucial but challenging.
METHODS: Given that scalp hair follicles are easily accessible and, like the brain, are derived from the ectoderm,
expressions of messenger RNA (MRNA) and microRNA in the organ were examined between schizophrenia (n for
first/second = 52/42) and control subjects (n = 62/55) in two sets of cohort. Genes of significance were also
analyzed using postmortem brains (n for case/control = 35/35 in Brodmann area 46, 20/20 in cornu ammonis 1) and
induced pluripotent stem cells (n = 4/4) and pluripotent stem cell-derived neurospheres (n = 12/12) to see their role
in the central nervous system. Expression levels of mMRNA for autism (n for case/control = 18/24) were also examined
using scalp hair follicles. ,

RESULTS: Among mRNA examined, FABP4 was downregulated in schizophrenia subjects by two independent
sample sets. Receiver operating characteristic curve analysis determined that the sensitivity and specificity were
71.8% and 66.7%, respectively. FABP4 was expressed from the stage of neurosphere. Additionally, microarray-
based microRNA analysis showed a trend of increased expression of hsa-miR-4449 (p = .0634) in hair follicles from
schizophrenia. hsa-miR-4449 expression was increased in Brodmann area 46 from schizophrenia (p = .0007). Finally,
we tested the expression of nine putative autism candidate genes in hair follicles and found decreased CNTNAP2
expression in the autism cohort.

CONCLUSIONS: Scalp hair follicles could be a beneficial genetic biomarker resource for brain diseases, and further

studies of FABP4 are merited in schizophrenia pathogenesis.
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The disease mechanisms underlying psychiatric ilinesses
remain largely undetermined. Great efforts have gone into
identifying novel biomarkers that would assist in the develop-
ment of objective diagnostic tools and novel therapeutic and
prophylactic interventions, as well as facilitate the subdivi-
sion of disease states, based on pathogenesis, for optimal
drug selection. There are, however, major obstacles in the
search for novel biomarkers, primarily the difficulty in obtain-
ing brain tissue from living donors and the lack of accurate
experimental animal models. Brain is an ectodermal tissue
and shares its developmental origins with scalp hair follicles,
which are readily accessible miniorgans within the skin.
Despite their shared embryonic origins, hair follicles have
not previously been utilized as a bio-resource in the hunt for
proxy genes in psychiatric diseases. In the current study, we
first examined whether schizophrenia-relevant genes, namely
those related to the y-aminobutyric acid (GABA)ergic system
(1-3), myelin (3-5), and fatty acids (6-11), are expressed in
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hair follicles and if expressed whether expression is differ-
ential between cases and control subjects, using an explor-
atory sample set. Next, we attempted to validate any
differential expression and examine the effects of potential
confounding factors using a second independent sample set.
We then analyzed the identified biomarker candidate FABP4/
fatty acid binding protein 4 (FABP4) expression in serum,
postmortem brain samples, induced pluripotent stem cells
(iPSCs), and iPSC-derived neurospheres. In addition to
messenger RNA (mRNA), we also examined the expression
levels of microRNA (miRNA) in hair follicles, postmortem
brains, iPSCs, and iPSC-derived neurosphere samples from
patients with schizophrenia and control subjects. Lastly, we
tested candidate gene expression in hair follicles from
patients with autism. Based on the results of our compre-
hensive analysis, we proposed scalp hair follicles as a
beneficial genetic resource for schizophrenia and autism in
the search for potential biomarkers.
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METHODS AND MATERIALS

Scalp Hair Follicle Samples

All samples were collected from ethnic Japanese within Japan.
The first set of exploratory scalp hair follicle samples for
schizophrenia and control subjects was derived from residents
in the northern district of Kanto, while the confirmatory second
set came from the Tokyo area. Diagnoses were made by at
least two experienced psychiatrists, using DSM-IV criteria.
Demographic data for scalp hair follicle samples derived from
schizophrenia are described in Table 1. The scalp hair follicle
samples from autism participants and control subjects were
collected from the Chubu area. The diagnosis of autism
spectrum disorder was made using the DSM-IV-TR criteria.
We then administered the Autism Diagnostic Interview-
Revised (ADI-R) (12) to 14 of 18 cases and made a confirmed
diagnosis of autism for those 14 cases. Interviews for the ADI-
R were conducted by experienced child psychiatrists who are
licensed to use the Japanese version of the ADI-R (13).
Demographic data relating to scalp hair follicle samples for
autism are described in Table 1.

RNA Extraction and Quantification

Ten hairs were plucked from the scalp of each subject using
forceps. The hairs were checked for the presence of a sheath.
Hairs were trimmed to approximately 1.5 cm in length,
containing the bulb region, and dropped into a 1.5 mL micro-
fuge tube (BM Equipment, Tokyo, Japan) containing RNAlater
solution (Ambion, Grand Island, New York). Total RNA was
extracted using the RNAqueous-Micro kit (Ambion). Single-
stranded complementary DNA (cDNA) was synthesized using
SuperScript VILO Master Mix (Invitrogen, Grand Island, New
York). Quantitative reverse-transcription PCR (QRT-PCR) anal-
ysis of mMRNAs was conducted using an ABI7900HT Fast Real-
Time PCR System (Applied Biosystems, Grand Island, New
York). TagMan probes were TagMan Gene Expression Assays
products (Applied Biosystems). All gRT-PCR data were cap-
tured using the SDS v2.4 (Applied Biosystems). The ratios of
relative concentrations of target molecules to the GAPDH
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gene (target molecule/GAPDH gene) were calculated. All
reactions were performed in triplicate based on the standard
curve method.

Statistical Analysis

We used the interquartile range to find outliers. The differences
between the 25th (quartile 1) and 75th percentiles (quartile 3)
were used to identify extreme values (outliers) in the tails of the
distribution. Statistical evaluation was performed by Mann-
Whitney U test for means between patient and control groups
and by Spearman'’s R test for correlation using SPSS software
version 19 (IBM, Tokyo, Japan).

Analyses of miRNA Expressions and Potential
Targets of miRNAs

For microarray-based miRNA analysis, we used the miRBase
Rel. 18.0 platform (Agilent Technologies, Santa Clara Califor-
nia), capable of measuring 1919 human mature miRNAs in the
age-/sex-matched subset of the first hair follicle sample set
(Table S1 in Supplement 1). The miBRNAs were labeled using
the miRNA Complete Labeling Reagent and Hyb Kit (Agilent
Technologies) and hybridized to the arrays. Images were
scanned with a High-Resolution C scanner (Agilent Technol-
ogies) and analyzed using GeneSpring GX (Agilent Technolo-
gies). Comparisons of miRNA expression values between
schizophrenia and control groups were performed using
GeneSpring 12.6 (Agilent Technologies). To normalize the
intermicroarray range of expression intensities, the percentile
shift method (90th percentile) was used. The genes whose
expression data were available in more than 50% of hybrid-
izations were statistically evaluated between schizophrenia
and control groups using the two-tailed Mann-Whitney
U test. For quantification of individual miRNAs, we performed
TagMan-based miRNA gRT-PCR (Applied Biosystems, Grand
Island, New York) according to the manufacturer's instruc-
tions, using U6 snRNA as a control probe. All reactions for
miRNA quantification were also performed in triplicate, based
on the standard curve method. Statistical evaluation methods
were the same as those for mRNA.

Table 1. Demographic Characteristics of Hair Follicle Sample Sets

Control Subjects Patients p Value
First Sample Set for Schizophrenia
i ; Schizophrenia , o g
Sex (female/male) 41721 25/ 27 .0518?
Age (mean + SD) 4126 = 12.26 50.98 = 10.86 <.0001°
Second Sample Set for Schizophrenia -
o et for Sent a 5 — -
oo fomalaiae T e —
" Age (mean = SD) 46.87 * 13.56 | 49.93 + 12.97 “ 2777°
Duration of illness (mean = SD) - 2279 * 14.66
A AR - - .
“ : o ) , L e e
Sex (female/male) 2470 16/2 A777
" Age (mean = SD) 32.60 = 3.91 2561 = 4.95 <.0001°

®Evaluated by chi-square test.
PEvaluated by two-tailed t test.
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To identify the potential targets of a specific miRNA, we
performed in silico analysis using web-based miRNA target
prediction methods, TargetScan (hitp://www.targetscan.org,
Release 6.2; Whitehead Institute for Biomedical Research,
Cambridge, Massachusetts) and miRDB (http://mirdb.org/
miRDB/; Washington University School of Medicine, St. Louis,
Missouri).

Immunohistochemistry

The plucked hairs were rinsed briefly in phosphate-buffered
saline and dropped into a 1.5 mL microfuge tube containing 1
mL of 10% neutral-buffered formalin (4°C, 1 hour). The fixed
hairs were pre-embedded in 4% agarose (Sigma-Aldrich, St
Louis, Missouri) in phosphate-buffered saline, pH 7.4. At this
point, it was possible to orientate the hairs into their desired
position for either longitudinal or transverse sectioning. Blocks
were embedded in capsules, which were filled with O.C.T.
compound (Sakura Finetek, Tokyo, Japan). Cryostat sections
(8 pm thick) of plucked hair follicles were processed for immuno-
histochemistry. The sections were blocked with 10% goat serum
in .05 mol/L Tris buffered saline plus .05% Tween 20 (TBST),
followed by three rinses in TBST (20 min each). The primary
antibodies were applied for ovemight at 4°C. After three washes
in TBST (20 min each), secondary antibodies were applied to
sections at room temperature (1 hour). Slides were counterstained
with 4’,6-diamidino-2-phenylindole to highlight nuclei. After wash-
ing in TBST, the slides were mounted in PermaFluor Aqueous
Mounting Medium (Thermo Fisher Scientific, Waltham, Massa-
chusetts). Fluorescent signals were detected using a confocal
laser-scanning microscope FV1000 (Olympus, Tokyo, Japan).

Antibodies
See Supplementary Methods and Materials in Supplement 1.

Analysis of FABP4 Protein Levels in Serum
See Supplementary Methods and Materials in Supplement 1.

Postmortem Brain Analysis
See Supplementary Methods and Materials in Supplement 1.

Establishment of iPSC Lines

Dermal fibroblasts (human dermal fibroblasts) from the facial
dermis of a 36-year-old Caucasian female subject (Cell Applica-
tions, Inc., San Diego, Califomia) were used to establish control
iPSCs 201B7 and YA9 (14). The remaining control iPSCs, WD39
and KA23, were generated from a 16-year-old Japanese female
subject (15) and a 40-year-old Japanese male subject (Matsumoto,
Ph.D., et al., personal communication, 2013), respectively. The
201B7 iPSCs were kindly provided by Yamanaka, M.D., Ph.D.,
Kyoto University (14). The iPSCs YA9, WD39, and KA23 have been
described in a previous report (15). The schizophrenia derived
iPSCs from patients with 22q11.2 deletions SA001 and KO001
were generated from Japanese female subjects aged 37 and 30
years old, respectively (see Clinical History in Supplement 1).

The maintenance of human dermal fibroblasts, lentiviral pro-
duction, retroviral production, infection, stem cell culture, and
characterization were performed as described previously (15).

In Vitro Neural Differentiation of Induced Pluripotent
Stem Celis

The iIPSCs were plated in T75 flasks after dissociation into
single cells and cultured for 14 days in neural culture medium
supplemented with leukemia inhibitory factor (Merck Millipore,
Darmstadt, Germany) and basic fibroblast growth factor
(Peprotech, Rocky Hill, New Jersey). Neurospheres were
passaged repeatedly by culturing in the same manner (16,17).

Comparative Genomic Hybridization Array Analysis
See Supplementary Methods and Materials in Supplement 1.

Ethical Issues

This study was approved by the Ethics Committees of RIKEN
and all participating institutes, including the Keio University
School of Medicine, an ethical committee for skin biopsy and
iPSC production (approval No. 20080016), and conducted
according to the principles expressed in the Declaration of
Helsinki. All control subjects and patients gave informed, written
consent to participate in the study after being provided with and
receiving an explanation of study protocols and objectives.

RESULTS

Expression of mRNA in Scalp Hair Follicles from
Schizophrenia and Control Subjects

Gene expression profiles of schizophrenia postmortem brains
have been well studied. However, studies have been hampered
by uncontrollable confounding factors associated with postmor-
tem brains and an inaccessibility of brain tissue from living
donors. Therefore, we set out to analyze gene expression in hair
follicles. Previous studies provide substantial support for reduced
expression of genes related to oligodendrocyte and GABAergic
systems in schizophrenia pathology (1-4). In addition, our (6,7,9)
and other studies (8,10,11) on FABPs (genes for fatty acid
binding proteins) raise the possibility of disturbed lipid metabo-
lism in the susceptibility to this disease. Based on these findings,
we selected 22 genes: 8 from the GABAergic system, 9 with
myelin relevance, and 5 with lipid relevance (Table 2). The
amount of MRNA from an individual subject’s hair follicles was
not enough for a systemic cDNA microarray. We used GAPDH
as an internal control. An exploratory scalp hair follicle sample
pane! (the first sample set) consisted of samples from 52 patients
with schizophrenia and 62 control subjects (Table 1). gRT-PCR
analysis showed that seven genes, namely CALB2, SST, CNP,
PMP22, FABP4, FABP7, and FAAH were differentially expressed
(o < .05) in samples from schizophrenia compared with control
subjects (Table 2; Figure S1 in Supplement 1).

To replicate the finding, we examined the expression levels
of these seven genes using an age-/sex-matched, independ-
ent confirmatory set (a second sample set) composed of 42
patients with schizophrenia and 55 control subjects (Table 1).
Of the seven genes, only FABP4 showed significantly dec-
reased expression (an average reduction of 43% compared
with a reduction of 40% in the first set of samples) in
schizophrenia samples (Figure 1A; Table 2). Correlation anal-
yses demonstrated no significant effects for age, dose of
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Table 2. List of Examined Genes and Their Expression in the First and Second Scalp Hair Follicle Sample Sets from
Schizophrenia

First Sample Set Second Sample Set

Mean = SD of Corresponding Mean *+ SD of Corresponding

Gene / GAPDH Gene / GAPDH
Control Schizophrenia Control Schizophrenia

Gene Category Gene Symbol Assay [D® (n =62 (n = 49) p Value® (n =62 (n = 49) _ p Value®
GABAergic System  GAD17 Hs01065893_m1 .881 = 598 1.119 = 707 118

GAD2 Hs00609534_m1 Not detectable

GABRAT Hs00168058_m1 2.347 + 2.761 .832 = .964 .378

GABRD Hs00181309_m1 1.055 + .758 945 + 618 .666

SLC6A1 Hs01104475_m1 1.047 = .830 985 = 555 682

PVALB Hs00161045_m1 1.067 += .569 1.074 + 669 .87

CALB2 Hs00418693_m1 1.024 + 355 1.163 + .303 .037‘}{ 715 = 373 .857 + .300 .095°

SST Hs00356144_m1 .626 = .549 1.052 + .923 .028¢ .910 + 683 1.812 = 1.802 151°
Myelin Relevance APC Hs01568269_m1 1.001 * .243 .939 + 233 131

CLDN11 Hs00194440_m1 .860 = .605 .984 + 854 862

CNP Hs00263981_m1 1.148 + 336 .985 + 186 .002¢ .928 = 415 1.052 + 210 456

CSPG4 Hs00361541_g1 .976 = 536 1.050 = .364 252

MAG Hs01114387_m1 Not detectable

NES Hs00707120_s1 1.018 = .496 1.013 = .403 .98

OoLG2 Hs00300164_s1 Not detectable

PMP22 Hs00165556_m1 1.006 = .370 .804 + 261 .003¢ .807 = 410 .844 = 400 .987

SOX10 Hs00366918_m1 1.072 = .748 .984 = 508 .99
Lipid Relevance FABP3 Hs00997360_m1 763 = 486 .807 * .372 292

FABP4 Hs01086177_m1 1.050 = 470 653 = .251 <.00019 1.138 = .708 .650 + .232 <.001

FABP5 Hs02339439_g1 1.118 = 215 1.084 = 179 312

FABP7 Hs00361426_m1 .562 + .332 1.018 + 744 .003¢ 519 = .372 530 = .355 754

FAAH Hs01038660_m1 1.008 = .344 .857 = .221 .013¢ .836 = .303 753 + 281 .180°
Control GAPDH Hs02758991_g1

GABA, gamma-aminobutyric acid.
®Probe ID in TagMan Gene Expression Assay system.
PEvaluated by two-tailed Mann-Whitney U test.

°For these analyses, only 49 control and 36 schizophrenia samples were available.

“Significant changes.

antipsychotics [haloperidol equivalent (18,19)], or duration of
illness on the expression levels of FABP4 (Figure S2A-C in
Supplement 1). Since serum levels of Fabp4 were reported to
be affected by nutritional fluctuations in mice (that is, sup-
pressed by feeding) (20), we examined the effect of sampling
time after the last meal on FABP4 expression in hair follicles
and found no significant change (Figure S2D in Supplement 1).
Nor did we detect an effect for sex on FABP4 levels: male
control versus female control subjects, p = .950; male schizo-
phrenia versus female schizophrenia subjects, p = .360; male
(control + schizophrenia subjects) versus female (control +
schizophrenia subjects), p = .387; all evaluated by the Mann-
Whitney U test.

Circulating FABP4 is known to be associated with meta-
bolic markers (21,22), so we examined the effects of weight,
height, body mass index, and body fat percentage on FABP4
expression in the second hair follicle sample set (Figure S3 in
Supplement 1). None of these factors affected the expression
ratios of FABP4/GAPDH in hair follicles. Despite the fact that
olanzapine alters lipid metabolism (23,24), we detected no
significant correlation between FABP4 expression levels in hair
follicles and olanzapine dose (mg/day) in the second set of
schizophrenia samples (Spearman’s rho = —.2289; 95%
confidence interval = —.5258 to .1178; p = .180).

From these results, FABP4 expression levels in hair follicles
would appear to be a robust marker for schizophrenia.
Receiver operating characteristic curve analysis determined
an optimal cutoff level of .769, based on the minimum distance

4 Biological Psychiatry §l, 2014; §:E—HE1 www.sobp.org/journal

from the curve to upper left corner (= .191) and area under the
curve = .713 (95% confidence interval = .609-.817) (Figure S4
in Supplement 1). With this cutoff level for the FABP4/GAPDH
mRNA ratio, the sensitivity, specificity, and positive and
negative predictive values were 71.8%, 66.7%, 60.9%, and
76.6%, respectively.

Immunohistochemical Analysis of FABP4 in Scalp
Hair Follicles

Figure 2A shows the structure of a hair follicle (25,26). Moving
inward, a plucked scalp hair consists of the following compo-
nents: the outer root sheath, companion layer, inner root sheath
(IRS), the cortex, and medullar. Each of these components has
an epidermal origin and each compartment expresses specific
genes from the keratin family (26) (Figure 2B). FABP4 is co-
expressed with K71 in the IRS cuticle layer and displays
partially overlapping expression with K85 in the cuticle,
matrix/precortex, and mid/upper cortex (27). However, FABP4
shows scant co-expression with K14 in the outer root sheath
layer (Figure 2C, D). These results indicate that FABP4 is
expressed in the IRS and part of the hair cortex.

Expression of FABP4 in Serum and Postmortem
Brains

We measured FABP4 protein levels in the same cohort as the

second hair follicle sample, using an enzyme-linked immuno-
sorbent assay kit, to see whether serum levels of FABP4 could
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Figure 1. FABP4/fatty acid binding protein 4 (FABP4) expression analyses in schizophrenia and control samples. (A, B, D, E) Results for hair follicles (the
second sample set), serum, and postmortem brain tissue (Brodmann area [BA]46 and cornu ammonis [CA]1) are shown. GAPDH was used as an internal
control. p values were calculated using two-tailed Mann-Whitney U test. Horizontal bars show mean = SD. (C) Correlations between relative FABP4 expression
levels in scalp hair follicles and FABP4 levels in serum are also shown. Statistical evaluations were performed using Speaman’s rank correlation test.

also be a proxy for schizophrenia. However, the measure did
not differ significantly between schizophrenia and control
samples, although a trend of increase was seen in schizo-
phrenia (Figure 1B). In addition, using the second sample
cohort, there was no significant correlation between serum
FABP4 and FABP4 mRNA levels in hair follicles (Figure 1C).
Interestingly, in contrast to findings in mice (20), serum FABP4
levels were not affected by time elapsed after the last meal in
either disease or control groups (Figure S5 in Supplement 1).
In postmortem brains, FABP4 transcript expression was
significantly elevated in the frontal cortex (Brodmann area
[BAJ46) of schizophrenia compared with control samples
(o = .0047) (Figure 1D), suggesting its role in schizophrenia
pathophysiology. Expression of FABP4 in hippocampus cornu
ammonis 1 remained unchanged between schizophrenia and
control samples (Figure 1E), implicating region specificity for the
function of FABP4 in schizophrenia. Both of these brain regions
showed particularly high expression levels in four schizophrenia
samples derived from patients not recorded to have taken
particular therapeutic drugs (Table S3 in Supplement 1),
although the possibility of drug effects cannot be excluded.

Expression Analysis of miRNAs in Scalp Hair Follicles
and Postmortem Brains

We further performed microarray-based miRNA analysis and
measured the expression levels of 1919 human mature
miRNAs using the miRBase Release 18.0 platform (Agilent)
in an age- and sex-matched subset of the first hair follicle
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sample set (Table 81 in Supplement 1). We detected three
miRNAs, which satisfied our criteria of an absolute fold change
(FC) (schizophrenia group/control group) = 2 and p < .05
(by Mann-Whitney U test, two-tailed). These were hsa-miR-
4449 (FC = 3.45, p = .0032), hsa-miR-1237 (FC = 2.55,
p = .028), and hsa-miR-4769-3p (FC = 2.03, p = .028). In the
next step, we tested these three miRNAs in the second hair
follicle sample set (Table 1), using gRT-PCR, with U6 small
nuclear RNA as a control probe. hsa-miR-4449 showed a top
hit with upregulation, although not to significant levels, in
schizophrenia (FC = 1.25, p = .063) (Figure 3A).

In - postmortem brains (BA46), hsa-miR-4449 showed
increased expression (p = .0007) in schizophrenia samples
(Figure 3B), suggesting possible contribution of this gene also
to schizophrenia.

Expression Analysis of FABP4 and hsa-miR-4449 in
iPSCs and iPSC-Derived Neurospheres

Recently, iPSCs have been used for human disease modeling,
particularly in neurological disorders (28-30). We have estab-
lished iPSCs from control subjects (one line each from four
subjects) and schizophrenia patients carrying a 22q11.2
microdeletion (two lines each from two patients) (31)
(Figure 4). Then, we established three neurosphere fines from
each iPSC line. We chose 22q11.2 deletion carriers for
analysis (for comparative genomic hybridization array analysis
using the iPSCs, see Supplementary Methods and Materials in
Supplement 1), since the 22q11.2 deletion is a well-defined

Biological Psychiatry i, 2014; Lim-111 www.sobp.org/journal 5
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Figure 2. Expression patterns of fatty acid binding protein 4 (FABP4) in scalp hair follicles. (A) Schematic illustration showing the structure of hair follicles.
{B) Schematic presentation of epithelial/hair keratin expression patterns. Keratin K71 is expressed in the three inner root sheath (IRS) layers, while K14 is
known as outer root sheath (ORS) keratin. Keratin K85 is present in the hair-forming compartment. (C) Immunofluorescent labeling of FABP4 and hair keratins
(K14, K71, and K85) in scalp hair follicles. K14 is uniformly expressed throughout the widely stratified follicular ORS. K71 is expressed in all compartments of
the hair IRS. Keratin K85 expression extends from the hair matrix to the upper cortex and the hair cuticle. FABP4 is seen in the IRS and part of the hair cortex
(merged green and red). 4',6-diamidino-2-phenylindole (DAPI) was used for nuclear staining. (D) Magnified picture of (C). APM, arrector pili muscle; cl,
companion layer; DP, dermal papilla; DS, dermal sheath; gm, germinative matrix; ma/co, matrix/precortex; med, medulla; SG, sebaceous gland.
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Figure 3. Expression analyses of hsa-miR-4449 in
schizophrenia and control samples. Results from hair
follicles (the second sample set) (A), postmortem
brains (Brodmann area [BAJ46) (B), induced pluripo-
tent stem cells (iPSCs) (C), and neurospheres (D) are
shown. U6 small nuclear RNA (snRNA) was used as
an internal control. p values were calculated using
- two-tailed Mann-Whitney U test. Horizontal bars
show mean =* SD.
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genetic feature with the highest risk for schizophrenia, affecting
around .3% of schizophrenia patients (32). The FABP4 gene
shows little expression in iPSCs derived from either control
subjects or patients (data not shown). The gene is expressed in
neurospheres, suggesting that its expression starts at a very
early stage of neuronal development. Neurospheres are com-
posed of free-floating clusters of neural stem or progenitor
cells, differentiated from iPSCs. However, FABP4. expression
levels were not significantly different between control subjects
and cases (Figure S6 in Supplement 1; expressional variance in
the control group was' large). Expression of hsa-miR-4449
showed a trend of upregulation in iPSCs from patients (p =
.0571) (Figure 3C); however, there was no differential expression
between neurospheres derived from control subjects and cases
(Figure 3D).

Examination of Autism Samples

We also performed a preliminary study to examine whether
expression patterns of putative autism genes in scalp hair
follicles could discriminate between autism and control sam-
ples. The sample cohort is shown in Table 1. We selected
genes from candidates for autism susceptibility and included
FABP4, due to the genetic overlap between schizophrenia and
autism (33). The remaining genes were FABP7 (9), NHE6 (34),
NHE9 (34), A2BP1 (35), CADPS2 (36), AH1 (35), CNTNAP2
(35), and SLC25A12 (35). Of the nine genes, only CADPS2
(o = .0401) and CNTNAP2 (p = .0212) showed significantly
decreased expression in autism-derived samples compared
with control follicles (Figure S7 in Supplement 1). It should be
noted that the average age of autism subjects was signifi-
cantly lower than that of control subjects (Table 1) and that
CADPS2 levels showed a positive correlation with age in
autism and control + autism groups (Figure S8 in Supplement 1).
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Therefore, we can only safely nominate CNTNAP2 level as a
potentially valid marker for autism in this study (Figure S9 in
Supplement 1). Approximately half of the examined patients
were medicated. However, these patients were not outliers in
terms of CNTNAP2 expression in hair follicles; that is, they fell
within the mean = 2SD (detailed data not shown).

DISCUSSION

We examined and attempted to validate expression levels of
schizophrenia and autism candidate genes using scalp hair
follicles as a surrogate. source of disease markers. Of the
protein-coding genes tested that are putative schizophrenia
genes, FABP4 was confirmed to be downregulated in disease
samples in our two-stage analyses: Our low rate of replication
could be due to two main factors. First, the current sample
size is insufficient, which may represent one of the limitations
in this study. Another potential reason might be that stable
detection of  expression levels is dependent on where a
particular gene is expressed in the hair follicle. For instance,
FABP4 is expressed in more central portions (IRS and cortex)
of the hair follicle and the integrity of these areas may be well
maintained during the  plucking - process, leading to more
consistent results.

FABP4, also known as adipocyte-specific fatty acid-binding
protein, belongs to the fatty acid-binding protein super family,
whose members have molecular masses of approximately
15,000. FABPs are highly conserved cytoplasmic proteins that
bind long-chain fatty acids and other hydrophobic ligands. It is
thought that FABPs are active in fatty acid uptake, transport,
and metabolism. In the periphery, FABP4 is highly expressed
in adipose tissue and moderately expressed in macrophages,
endothelial cells, and bone marrow (37). The protein has been
intensively studied in terms of systemic insulin sensitivity and
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Figure 4. Establishment of iPSCs
and iPSC-derived neurospheres
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lipid and glucose metabolism, both of which correlate with
inflammatory mechanisms (21). Since the results showing
downregulation of FABP4 in scalp hair follicles from schizo-
phrenia subjects are robust against confounding factors,
including those related to metabolic state, our findings are
unlikely to represent either metabolic or inflammatory con-
ditions. In addition, our patients had been treated with second-
generation antipsychotics, including olanzapine, which often
induce metabolic syndrome, but FABP4 levels in hair follicles
were independent of drug dose and duration of illness.
Conformingly, there was no significant correlation between
serum FABP4 and FABP4 transcript levels in hair follicles.
Therefore, elevated FABP4 expression in hair follicles may
point toward a pathophysiological step in schizophrenia.

In our protocol, all cells in neurospheres expressed the neural
markers Nestin, or 3-tubulin, suggesting that our neurospheres
consist almost entirely of neural stem or progenitor cells (38). The
fact that FABP4 is expressed in neurospheres may suggest a
potential role in neuronal stem cell maintenance or neuronal
differentiation or both processes. Although iPSC-derived neuro-
spheres showed no significant differences in FABP4 expression
levels between control and schizophrenia cohorts, before a
conclusion can be made, it would be necessary to examine a
much larger cohort. According to the Human Protein Atlas
database (Knut and Alice Wallenberg Foundation, Stockholm,
Sweden; hitp//www.proteinatias.org/), FABP4 transcripts are

8 Biological Psychiatry £g8, 2014; L:EI—El www.sobp.org/journal

from controls and schizophrenia
patients with a 22g11.2 deletion
(also see ref. 31). {A) Demographic
data and 1.D. information for samples
are shown. (B) CGH array analysis of

chromosome 22 using iPSCs
showed that all the IPSC lines
derived from the patients carried a
2.6 Mb hemizygous deletion at chro-
mosome 22q11.2. (C) Alkaline phos-
phatase (AP) staining of iPSCs from
controls (WD39, 201B7, YA9 and
KA23). AP activity was detected
using an Alkaline Phosphatase
Staining kit (Miltenyi Biotec, Bergisch
Gladbach, Germany). {D) Those from
patients with a 22q11.2 deletion
(SA001-1D2, SA001-3B1, KO001-19
and KO001-25). All the iPSC clones
were AP-positive showing the plur-
ipotency. Scale bars: phase contrast
and AP staining, 400 pm; neuro-
spheres, 150 pum. iPSC, induced
pluripotent stem cells.

expressed in neuronal cells (35%) and glial and endothelial cells
(65%) of the adult cerebral cortex.

To evaluate whether common genetic variants of FABP4
determine a predisposition to schizophrenia, we performed a
genetic association study using approximately 2000 schizo-
phrenia cases and 2000 age- and sex-matched control
subjects with six tag single nucleotide polymorphisms (Sup-
plementary Methods and Materials in Supplement 1). This
analysis found no significant allelic or genotypic association
(Table S4 in Supplement 1). The FABP4 gene is composed of
two haplotype blocks, based on Gabriel's confidence intervals
(39) (Figure S10 in Supplement 1). Haplotype analysis also
failed to reveal any significant signals. The exact reasons for
the different directional changes seen in hair follicles, serum,
postmortem brains, and neurospheres between control and
schizophrenia subjects remain unknown. All FABP family
genes contain a canonical TATA box, followed by a conserved
gene structure. The tissue-specific and developmental regu-
lation of FABP subtype expression, including that of FABP4, is
thought to be controlled by unidentified genomic regulatory
elements (6,40).

Mechanistically speaking, although not yet confirmed, the
FABP4 may be more central to schizophrenia pathophysiology
beyond being a mere biomarker for disease. This is based on
the following observations: 1) FABP4 is expressed in the early
neuronal lineage (a current finding); 2) other FABP genes are
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reported to be associated with schizophrenia (6,7,9,11); and
3) there is evidence linking polyunsaturated fatty acids
(endogenous ligands for FABPs) with schizophrenia etiology
(41) and brain development (42).

Regarding miRNA, we detected hsa-miR-4449 from a total of
1919 human mature miRNAs in this study. Although its expres-
sion in hair follicles was not significantly altered, expression did
show significant upregulation in postmortem brains (BA46) and a
trend of increase in iIPSCs from schizophrenia samples. Web-
based target predictions for hsa-miR-4449 hit 18 protein-coding
genes using TargetScan (Whitehead Institute for Biomedical
Research, Release 6.2) (Table S5 in Supplement 1) and 10
protein-coding genes using miRDB (Washington University School
of Medicine; http://mirdb.org/miRDB/) (Table S6 in Supplement 1).
Between the two programs, the following three genes over-
lapped: 1) HIC1; 2) RBM4; and 3) TOMMA40. Although the
predicted roles for these three genes in schizophrenia patho-
genesis are not known, hsa-miR-4449 would make an interest-
ing candidate in future studies, since this miRNA is expressed in
early human neurodevelopmental stages such as iPSCs and
iPSC-derived neurospheres.

In the analysis of autism-derived scalp hair follicles, we
found significant downregulation of CNTNAPZ2 in sufferers
compared with control subjects and that the results are not
affected by age. CNTNAP2, which encodes the contactin
associated protein-like 2, is one of the strongest autism
susceptibility genes with convergent evidence from several
independent studies (43).

In the case of schizophrenia, biomarkers are an essential
tool, particularly in the early phase of disease onset, such as
the prodromal phase or at-risk mental state (44). It would be
important to confirm whether FABP4 expression levels in scalp
hair follicles constitute a valid measure for discriminating
between those individuals in at-risk mental state who will
spontaneously recover and those who will need therapeutic
treatment. As a starting point, it is interesting that the
decreased FABP4 levels in schizophrenia-derived hair follicles
are not influenced by duration of illness.

In summary, our results provide an original concept for
identifying novel disease markers, with potential benefits for
the clinical practice of psychiatric medicine, as well as
possible applications to other brain disorders. The develop-
ment of methods that enable the analysis of a transcriptome
using hair follicles (~10 samples) would be highly desirable. At
the moment, approximately 40 ng of total RNA is extractable
from a single hair follicle, but this amount is not enough for
currently available ¢cDNA microarray analysis, a technique
which needs roughly 1 pg of total RNA.
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K= —BZTFOHMES TH S 70 E— 7 —FIHOLE
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0, FOBKEIZKADLALVETHAT S, —FHAH
FEOTELBIIBWTE, v b VvERET 2B,
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HWREEOBWELETHL LD =V - PFT VAR
y—NEE R ER L. 2 LT, HEEO T b=
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YHFSRO R OF MR R L, FRRAEIR & o B
e L 72" MBI AR 20 & (TXTHE ER:
18~26 1), BIU, M. FHOEEL @i
204 (3XCHM) ©Hb. ADI-R (Autism Diagnos-
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AT0ULTHB. HEFED S B, MHokEE Ko
HNRN T ET A, BELEMER (FIRRBEGERE
EONEREL SRS, BIU. AR L%
ZUBEOD B AL
Clinical Interview for Diagnostic and Statistical Manual
IV (SCID) 2#E L= = A A B L T DRKBEIZHEAT
TAHIEIZE P L

PET (ZI3EHEBEH PET A ¥ v 7 (SHRI12000, Ha-
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o, Ml=¥—llidkat=r: b FVAR—F—~D
BIKMEOE W [11C] (+) MeN5652 % w7z FER 2
7 EDMBIIOWT, BEEECH B BIKERIE,
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NHDORA T & PET Bifg & OB %2 ME L7z,

ZNid, Structured
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S
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Fri o HRED 7 T8

R HPE TR E L R LT KBk E Az, SR
¥, Wi, ADNRICE DR TEr b= - b
VAR —=BEEIEKTFLTw/ (B4). Faux Pas
Test Tl L 7= [ BE O-L 0 FLEG O B & o BLE & 7R
b7 AR— Y — DT
LTwiz (B5). bbb HEERED, BWEEIC
B, KN E A, IR, P, N & ol
fcka b=y b UVAE—F—DHBEIKT LTV
HIERRHE L HBEEICHLT, |EAPALL m
WieBlrsxab=rnldThs i, b=
Y NG URR=F =W E NG, FEEEREOL &
O b UREOREICL > THIERZ ENLEEZS
NTWRM? BZELIRWIZBVTL, MEETHAH &
FEHMENTWAE, ZRWZ, OIS T SFRPMICB
Hrtubz=y - b U AR=F—DIETIE, SEEEREC
BOTEO b= YHNEERIELL T b 2 IR
T5EHEME NS, KWL T, Faux Pas Test Tilllsg
L7 EHPRED.LOMER OREORE L HIREII BT 5 &
Oh=y s FFUYAR=F—OTFIMHBE LTz D
OB & WIRE OBLEISOW T, BfTIFZEIC & b S0
ENTWwWBEEZIATHAL. 72k 21E, rCBF (regional
cerebral blood flow) % &% SPECT #f7:™ %>, 18F-de-
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hood Autism Rating Scale) % ADI-R ¢ a2 74L L7
HEMORE, COMRIBESLTWEEE2ONET
Fazd—3va YEEY FREOLRESLAHEHS
LTWwahAEHEINTHSE, ThonZ & HaPKEIE
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Bz RICHBHED 272 ) oL L TOIHEFEIR
Lo b VHRFOMBILDWTIE, kR b= - b
T Y AR—F — DT &k OREE & OF A
MRS LNz HEEOTREFRERD 128 LTl
HICHE DB SN DITEIA ST S, BRI, 178,
BB X ONREIAE S, RIS TN TRE T
BEREY, 120F72030n o0 ST %W?é
Z L RIFE DB BRI 2T RS
S EVBHITLND. EWEEROFLRLIOWT, HEH
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MAc%ofwnmé FEEE LD LR L.
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FLBREAT 5 B SR aER OBA 120 C A HOTTE
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ML WEYE 2> & 13 tumor necrosis factor-a (TNF-a).,
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FEUIF OISR § 2Pk E 0777 L o=, ?U?@“Xbm707®MM#mwancw7““
F R SE R I T 98 A & I sE B b B & O AR Bl e o ZOPET W%kt w b= ROWSE L F#kIZ NPO
TNF-a, IL-6, MCP-1 ®EIMA G S hTwa™, AT AR TV FOEOEELZDO AT ADI-R (Au-

tism Diagnostic Interview-Revised), ADOS {(Autism

Diagnostic Observation Schedule) THEHEAXRY +J
bhvbildIzu 7Y 7IIZERLE 32707 U 71k 2y (autism spectrum disorder : ASD) L #WrL. W
W DAY~ 25005 B IR ZE RO SIEH M TS LR ZT T L%, BEOEEREEEHTLH,
5. BATOI 7u 7 7oEEE1IoHE LT, & TR (TADPAZEDL) ZHT2H, 1Q A0 ki D
e, UM, EMTEMAIEML L, SRS JIUT TS L, RO B ENFII>WTHoEI L, &
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Control subject

Subject with ASD

M6 EENIIO5YTFOEALBETORM ~
(SU/LII\I K etal, 2013 J: IRV,

Corpus Callosum Anterior Cingulate Cortex
. 7 / =

Cerebellum Brainstem  Orbitofrontal Cortex Cerebellum Midlgrain Orbitofrontal Cortex

B 7 ENEI/oOJSUFPOEKE, BEMEE, #HEELETOEM
(Suzuki K et al, 2013" X 0 B1HD

B, B E B (T, 85 TRILMEETH o7 ML T (B8). S OIZHEBALKT, ASD o
ZHUZINA, ASD O L OBPIEH SN TV L5 PR e s 7’7)‘"%’/*1‘?5{5 (High-BP) & {R i
SO, IR A, SHERIRIANC & HEE B AR (Not-High~-BP) @ 2 #2501 B H VO BIRTER 2 HK

Wwou (B7). ZAUsOME Iz 51T 5 EHEm 3 L7z, ZVIIZ DWW T ADI-R IZ X Aol
Ty 7k, ASDECHMMEETY, HWIZHF®EIZIE (ADI-R Social Score), TEFEL DI ADFLEPED
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13, ASD B T/NEEIA S AM F THEEL TV 23
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