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Figure 4 NSF knockdown results in decreased uptake function

of SERT in HEK293-hSERT cells. Fluorescent substrate uptake

activity was significantly decreased in HEK293-hSERT cells transfected
with siRNAs targeting specific NSF sequences, siRNA-T (¢) and

SiRNA-2 (A), compared with negative control (o) (control vs siRNA-1

P <001, and control vs siRNA-2 P < 0001, one-way repeated measures
ANOVA with Tukey's post hoc test). Nonspecific uptake was determined
in the presence of 10 uM fluoxetine (m). Data are expressed as a
percentage of the control level. Each point corresponds to the

mean = standard deviation, n = 8. siRNA, small interfering RNA. J

patients were significantly lower than that in controls
(P=0.0011, Mann—-Whitney U test) (Figure 8B). More-
over, there was a significantly negative correlation between
NSF expression and ADI-R Domain A score, which quan-
tified impairment in social interaction, in individuals with
ASD (rs=0.131, P=0.0498, Spearman’s rank correlation
coefficient test) (Figure 8C). There were no significant
correlations between NSF expression levels and levels of
SLC6A4 and any other symptom profile or clinical vari-
ables (data not shown).

Discussion

In this study, NSF was identified as a novel SERT-
binding protein interacting with the N-terminal region
of SERT. NSF knockdown resulted in decreased mem-
brane expression of SERT and decreased uptake of sub-
strate. These results clearly show that NSE modulates
SERT membrane trafficking, which is consistent with its
uptake function. An immunoprecipitation assay using
mouse brain and immunocytochemistry of cultured
mouse raphe neurons clearly indicated that SERT-NSF
complexes were formed under physiological conditions
in vivo. In addition, a study of post-mortem brains re-
vealed that the SLC6A4 expression level was not affected
in subjects with autism, but the NSF expression level in
the raphe region tended to be decreased; however, this
potential trend is not statistically significant. In lympho-
cytes, the SLC6A4 expression level was also unchanged,
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but the NSF expression level was significantly decreased
in subjects with ASD and correlated with the severity of
clinical symptoms.

N-ethylmaleimide-sensitive factor functions and protein
binding

NSF is a homohexameric ATPase [61,62], which is an
essential component of the protein machinery respon-
sible for various membrane fusion events, including
intercisternal Golgi protein transport and the exocytosis
of synaptic vesicles [63]. NSF binds to soluble NSF
attachment protein—receptor (SNARE) complexes and
mediates the recycling of spent SNARE complexes for
subsequent rounds of membrane fusion [63,64]. While
this is a major function of NSF, it also interacts with
receptor proteins, such as AMPA, 2 adrenergic and
GABA4 receptors, and is thought to affect their trafficking
patterns or recycling [49-57]. Additionally, an interaction
between NSF and arrestin 1 regulates the expression
of vesicular glutamate transporter 1 and excitatory amino
acid transporter 5 in the photoreceptor synapse [58]. In
the present study, we found, for the first time, that NSF
binds the neurotransmitter transporter SERT and regu-
lates its function in the CNS.

Serotonin transporter forms complexes with N-
ethylmaleimide-sensitive factor in vivo

Several putative SERT-binding proteins have been repor-
ted [21-32]. However, almost all of these were identified
using the yeast two-hybrid system and little is known
regarding whether any of these proteins bind to SERT
and regulate its function in the mammalian brain. Also,
little is known about the involvement of these proteins
in autism [65,66]. Therefore, in this study, we used a
pull-down system together with mouse brain tissue to
identify novel SERT-binding proteins. Moreover, we used
the t¢TPC method, which is an innovative tool for study-
ing proteins in living tissues [40]. This method enabled
us to preserve protein—protein interactions occurring
under physiological conditions. This cross-linking also
preserves membrane protein assemblies, which are
degraded by solubilizing detergents. For instance,
whereas most detergents cause rapid disintegration of
the y-secretase complex, three of four known components
of the complex were purified and identified from harsh
detergents and a high salt concentration by tcTPC [40].
Because NSF was not co-immunoprecipitated: with SERT
from non-tcTPC-treated brains (Figure 6A), it is likely
that SERT-NSF complexes are sensitive to solubilizing
detergents. The discovery of complexes including NSF
and SERT, which form in the mammalian brain under
physiological conditions, in the present study, is important
from the viewpoint of their potential involvement in the
pathophysiology of disorders such as autism. It is not yet
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(See figure on previous page.)

Figure 5 NSF knockdown results in decreased SERT expression at the plasma membrane in HEK293-hSERT cells. (A) Biotinylation
experiments in HEK293-hSERT cells transfected with siRNA-2 targeting a specific NSF sequence or negative control. Transfected cells were
incubated with sulfo-NHS-SS-biotin, and labeled proteins were analyzed by immunoblotting using anti-SERT antibodies. (B) Quantitation of relative
band densities for SERT was performed by scanning densitometry. Data are expressed as the means = standard deviation, n =6 to 9. ***P <0001 vs
negative control (two-tailed unpaired t-test). (C) Double immunocytochemical staining for SERT (green) and NSF (red) in HEK293-hSERT cells transfected
with control siRNA (upper panels) and siRNA for NSF (siRNA-2, lower panels). Scale bar: 10 um. Results are representative of three independent
experiments. NSF, N-ethylmaleimide-sensitive factor; SERT, serotonin transporter; siRNA, small interfering RNA.

clear whether NSF binds SERT directly or indirectly. In
addition, the band for the SERT-NSF complex was
smeared, suggesting that multiple types of SERT-NSF
complexes exist. It is possible that SERT interacts with
NSF through other proteins. Indeed, it is possible that
GABA, receptors interact with NSF via GABA 4 receptor-
associated protein, and regulate its intracellular distribu-
tion and recycling [56,67]. Detailed analyses of these
SERT-NSF complexes are needed.

Serotonin transporter and N-ethylmaleimide-sensitive
factor expressions in autism

Recently, Nakamura and colleagues reported that the
levels of SERT based on its radioligand binding were
significantly lower throughout the brain in autistic indi-
viduals compared with controls [17]. On the other hand,
Azmitia and colleagues reported increased immunoreac-
tivity to a SERT antibody of serotonin axons in the post-
mortem cortex of autism patients [18]. Our results show
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Figure 6 NSF interacts with SERT in vivo. (A) Interaction of SERT with NSF in ‘mouse brain: Immunoblotkof'total'proteins from non-tcTPC- and
tcTPC-treated mouse brains (as input, lanes 1 and 2, respectively). Proteins from non-tcTPC- or tcTPC-treated mouse brains were immunoprecipitated
with SERT antibodies (lane 3 and 4), and the resulting immunoblot was probed for NSF. In immunoprecipitated samples using tcTPC-treated mouse
brains, SERT-NSF complexes and free NSF were identified (lane 4). Results are representative of three independent experiments. (B) NSF co-localizes
with SERT in primary cultures of mouse raphe nuclei neurons. Triple immunocytochemical staining for SERT (green), NSF (red) and 5-HT (blue) in
primary cultures of mouse raphe nuclei neurons. The third panel (merged) shows that NSF co-localizes with- SERT primary cultures of mouse raphe
nuclei neurons. These neurons are 5-HT-positive serotonergic neurons (as shown in the fourth panel). Scale bars: 10 um. Results are representative of
three independent experiments. 5-HT, 5-hydroxytryptamine; 1B, immunoblotting; IP, immunoprecipitation; MW, molecular weight; NSF, N-ethylmalei-
mide-sensitive factor; SERT, serotonin transporter; tcTPC, time-controlled transcardiac perfusion cross-linking.
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Table 2 Information for post-mortem brain tissues
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Sample ID Diagnosis Age (years) Gender Post-mortem interval (hours) Race Cause of death
1065 Control 15 M 12 Caucasian Multiple injuries
1297 Control 15 M 16 African-American Multiple injuries
1407 Control 9 F 20 African-American Asthma

1541 Control 20 F 19 Caucasian Head injuries

1708 Control 8 F 20 African-American Asphyxia, multiple injuries
1790 Control 14 M 18 Caucasian Multiple injuries
1793 Control 12 M 19 African-American Drowning

1860 Control 8 M 5 Caucasian Cardiac arthythmia
4543 Control 29 M 13 Caucasian Multiple injuries
4638 Control 15 F 5 Caucasian Chest injuries
4722 Control 14 M 16 Caucasian Multiple injuries
797 Autism 9 M 13 Caucasian Drowning

1638 Autism 20 F 50 Caucasian Seizure

4231 Autism 8 M 12 African-American Drowning

4721 Autism 8 M 16 African-American Drowning

4899 Autism 14 M 9 Caucasian Drowning

5000 Autism 27 M 83 NA NA

6294 Autism 16 M NA NA NA

F, female; M, male; NA, not available.

that, at least, SLC6A4 mRNA expression is normal in
the raphe region of post-mortem brains from subjects
with autism. Our findings and previous results lead us to
two suggestions. First, although the transcription of
SLC6A4 is normal in subjects with autism, the level of
SERT protein at the pre-synaptic membrane is decreased
because of an impairment of the trafficking system.
Second, SERT protein that is not delivered to the pre-
synaptic membrane accumulates in axon fibers in the
brains of subjects with autism. In lymphocytes, we found
that SLC6A4 expression was not changed in subjects
with ASD. In contrast with our finding, Hu et al. previ-
ously reported that there was a significant decrease in
the expression in the more severely affected twin for
autistic twin pairs studied using lymphoblastoid cell lines
[68]. This study used lymphoblastoid cell lines, not
lymphocytes, from only three sets of discordant twins,
and SLC6A4 expression was not compared with normal

controls [68]. These differences may be the cause of the
discrepancies between the present study and that report.

We found that the NSF expression levels tended to de-
crease in the raphe region of post-mortem brains from
subjects with autism; however, this trend was not statisti-
cally significant (=11 control and # =7 autism). Further
studies with larger numbers of post-mortem brains are
needed to clarify NSF expression status in the brain of aut-
ism patients. In lymphocytes, we found, for the first time,
that NSF expression was significantly lower in subjects
with ASD and lower NSF expression correlated with the
severity of impairments in social interaction. Our findings
suggest that peripheral NSF mRNA levels may serve as a
reliable peripheral biological marker of ASD.

Sullivan et al. reported that the expression levels of a
number of biologically relevant genes are statistically
similar between lymphocytes and CNS tissues including
the brain, and suggested that the cautious and thoughtful

Table 3 Demographic data associated with raphe brain-tissue samples

Control (n=11) Autism (n=7) P value
Age (years) (range) 1445 (8-29) 14.57 (8-27) NS?
Race, n (%) Caucasian 7 (63.6), African-American 4 (364) Caucasian 3 (42.9), African-American 2 (286), NA 2 (286) NS°
Gender, n (%) Male 7 (63.6), Female 4 (36.4) Male 6 (85.7), Female 1 (14.3) NSP
Post-mortem interval (hours) (range) 14.82 (5~-20) 18.05 (8.3-50) NS?

2Derived from Mann-Whitney U test, ®Derived from Fisher's exact test.
NA, not available; NS, not significant.
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Figure 7 SLC6A4 and NSF expression in the raphe region of post-mortem brains. Comparison of SLC6A4 (A) and NSF (B) expression levels
in the raphe region of post-mortem brains from control and autistic subjects. The Mann-Whitney U test was used to compare gene expression
levels between autism and control groups. Data are presented as the means = standard error of the mean. n= 11 control and n=7 autism. NSF,
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use of lymphocytic gene expression may be a useful sur-
rogate for gene expression in the CNS when it has been
determined that the gene is expressed in both [69]. In
support of previous findings [59,60], the expressions of
SLC6A4 and NSF were detected in both tissues, and it is
likely that levels of SLC644 and NSF in the peripheral
lymphocytes may reflect the levels in post-mortem brains,
although further study is needed.

The serotonin transporter-N-ethylmaleimide-sensitive
factor binding and implications for pathophysiology in
autism

Sanyal and Krishnan reported a lethal mutation in the
Drosophila homolog of NSF [70]. Intriguingly, mutant
adult survivors show abnormal seizure-like paralytic
behavior [70]. Additionally, Matveeva and colleagues
reported that decreased production of NSF is associated
with epilepsy in rats [71]. Importantly, a high rate of co-

occurrence of autism and epilepsy has been described
[72-76]. Approximately 30% of children with autism
have epilepsy and 30% of children with epilepsy have
autism [77]. Interestingly, an abnormal status for SERT
has been reported in epileptic patients as follows. Auto-
radiography experiments have revealed that the temporal
neocortex surrounding the epileptic focus of patients
with mesial temporal lobe epilepsy presents diminished
SERT binding in all cortical layers [78]. A significant de-
crease was found in the SERT density in the platelet
membranes from epileptic patients having undergone an
epileptic seizure [79,80]. Additionally, it has been shown
that epileptic patients who had been treated with in-
hibitors of serotonin reuptake, such as fluoxetine and
citalopram, in addition to their ongoing antiepileptic
therapy displayed remarkable clinical improvements
[81,82]. This indirect evidence implies the relationship
between SERT and NSF in neurological disorders, such

Table 4 Demographic data associated with lymphocyte samples

Control (N=30)® Autism (N =30)° P value

Age (years) 111423 (6-16) 11.6+27 (7-16) NG?
ADI-R

Domain A score 20.0+53 (10-30)

Domain BY score 14.3 £4.0 (8-23)

Domain C score 85+34 (3-9)

Domain D score 3.1+ 1.1 (1-5)
WISC-III

Verbal 1Q 99.1+10.3 (77-120) 904 + 287 (44-153) NS?

Performance 1Q 97.0+10.2 (76-114) 89.8+229 (47-131) NS?

Full-scale 1Q 978+95 (82-115) 890+ 269 (42-140) NS?

Derived from Mann-Whitney U test; ®values are expressed as mean + standard deviation (range).
ADI-R, Autism Diagnostic Interview-Revised; IQ, intelligence quotient; NS, not significant; WISC-1lI, the third edition of the Wechsler Intelligence Scale for Children.
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Figure 8 SLC6A4 and NSF expression in lymphocytes. Comparison of SLC6A4 (A) and NSF (B) expression levels in lymphocytes from control
and ASD subjects. The Mann-Whitney U test was used to compare gene expression levels between autism and control groups. Data are
presented as the means =+ standard error of the mean. n =30 control and n = 30 autism. The NSF expression levels in ASD patients were significantly
lower than in controls (P=0.0011). (C) Correlation between lymphocyte NSF expression levels and Autism Diagnostic Interview-Revised (ADI-R) domain
A scores in autistic subjects. There was a negative correlation between lymphocyte NSF expression levels and ADI-R domain A scores (r;=0.131,
P=0.0498), n = 30 autism. ADI-R, autism diagnostic interview-revised; NSF, N-ethylmaleimide-sensitive factor.
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as autism. Further investigations of the status of SERT—
NSF binding in the brain of autism patients would be
useful for understanding the mechanisms that underlie
autism. In addition, an animal model, such as an NSF
conditional knockout mouse, would be a useful tool for
understanding the mechanisms that underlie ASD.

As mentioned above, NSF interacts with neurotrans-
mitter receptors such as AMPA, B2 adrenergic and
GABA, receptors, and regulates the membrane traffick-
ing and recycling of these receptors [49-57]. An abnor-
mal status of many of these receptors has been reported
in autism. Binding of GABAa5 and its radioligand was
significantly lower throughout the brains of participants
with ASDs compared with controls [83]. The mRNA levels
of AMPA receptor were significantly increased in the
post-mortem cerebellum of autistic individuals, while the
receptor density was slightly decreased in people with
autism [84]. It is possible that NSF may contribute to the
pathophysiology of autism through these known interac-
tions with relevant molecules.

Conclusions

This study showed that dysfunctional trafficking of SERT
mediated by NSF may be linked with the pathophy-
siology of autism. The identification of SERT-binding
proteins provides new opportunities not only to dissect
the accessory components involved in SERT function
and regulation, but also to elucidate the pathophysiology
of psychiatric disorders or developmental disorders, such
as autism. Future studies should examine the patho-
physiological implications of SERT-NSF interactions for
autism.

Additional files

Additional file 1: Figure S1. N-tail-specific binding of syntaxin-1A to
SERT was confirmed by Western blot analysis.

Additional file 2: Figure S2. SERT is transported to the plasma
membrane in HEK293-hSERT cells. (A, B) Double immunocytochemical
staining for SERT (green) and the membrane maker cadherin (red) in
HEK293-hSERT cells. (C) SERT was mainly co-localized with the membrane
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maker (cadherin) (merged). Scale bar: 10 pm. Results are representative of
three independent experiments.

Additional file 3: Figure S3. Transfection efficacy of siRNA in HEK293-
hSERT cells. We determined the proportion of siRNA-transfected HEK293-
hSERT cells using a commercially available fluor-oligo kit (TYE 563 DS,
Integrated DNA Technologies). The proportion of siRNA-transfected cells
was 90%. Upper panels show untreated cells and lower panels show red
fluorescent oligo-transfected cells. Left panels show phase-contrast
images and right panels show the images obtained by fluorescence
microscopy (excitation: 546 nm, emission: 590 nm). Scale bar: 50 pm.
Results are representative of three independent experiments.

Additional file 4: Figure S4. CBB staining of membranes from
biotinylated fractions. Biotinylation experiments in HEK293-hSERT cells
transfected with siRNA-2 targeting a specific NSF sequence or negative
control. Transfected cells were incubated with sulfo-NHS-SS-biotin.
After Western blot analysis, the membrane was stained with CBB as a
protein-loading control.

Additional file 5: Figure S5. Confirmation of tcTPC efficacy. (A)
Western blotting of total proteins from non-tcTPC- or tcTPC-treated
mouse brains (lanes 1 and 2, respectively) using anti-SERT antibodies.
Results are representative of three independent experiments. It was
confirmed that SERT-containing cross-linked complexes were retained by
the tcTPC method {lane 2). (B) Proteins from non-tcTPC- or tcTPC-treated
mouse brains were immunoprecipitated with rat immunoglobulin G (IgG)
as a negative control (lanes 1 and 5) and SERT antibodies (lanes 2 to 4
and 6 to 8), and the resulting Western blot was probed for SERT. In
immunoprecipitated samples using tcTPC-treated mouse brains,
SERT-containing cross-linked complexes were identified (lanes 6 to 8) in a
dose-dependent manner. Results are representative of three independent
experiments.
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Abstract Children with high-functioning pervasive developmental disorder (HFPDD)
often have motor coordination dysfunction. However, there is no assessment tool for
screening developmental coordination disorder (DCD) in Japan, which makes it diffi-
cult to evaluate the actual motor impairments of children with HFPDD. We evaluated
the motor coordination function of 54 school-age boys with HFPDD using the Japanese
version of the Developmental Coordination Disorder Questionnaire (DCDQ-J). We
subsequently assessed the relationship between DCDQ-J scores and the results of the
Japanese version of the Autism Diagnostic Interview-Revised (ADI-R) of 48 boys. The
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total and subscale DCDQ-J scores of the boys with HFPDD were significantly
lower than the population means in the same grade: 37.0 % were below 2
standard deviations for the total score, 38.9 % for control during movement,
26.0 % for fine motor/handwriting, and 37.0 % for general coordination.
Furthermore, the scores of Qualitative Abnormalities in Communication in the
ADI-R were negatively correlated with control during movement, fine motor/
handwriting, and total scores in the DCDQ-J. This study is the’first to show
Japanese children with HFPDD frequently exhibit considerably poor motor

" coordination according to the DCDQ-J. The screening or assessment of motor

dysfunction in HFPDD using assessment tools such as the PCDQ could aid the
development of interventions for these underestimated problems in Japan.

Keywords High-functioning pervasive develbpinental disorder (HFPDD) -

Developmental coordination disorder (DCD) - Developmental coordination disorder
questionnaire (DCDQ) - Motor coordination dysfunction - Autism diagnostic interview-
revised (ADI-R) - Questionnaire

Introduction

Clinically, children with high-functioning pervasive developmental disorder
(HFPDD) often have motor coordination dysfunction, which is often referred
to as “clumsiness” (Sturm et ‘al. 2004). This motor coordination problem is
applicable to Developmental Coordination Disorder (DCD) in the Diagnostic
and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision
(DSM-IV-TR) (American Psychiatric Association 2000). From their meta-

~ analysis, Fournier et al. (2010) conclude motor coordination deficits are a

cardinal feature of autism spectrum disorders (ASD) including HFPDD.
However, there is currently no assessment tool to facilitate the screening of
DCD in Japan, which makes it difficult to evaluate the actual ‘motor impair-
ments of children with HFPDD. The Developmental Coordination Disorder
Questionnaire (DCDQ) is a parent-rated scale for screening for pediatric DCD
(Wilson et al. 2000, 2009). The DCDQ has already been translated into many
languages, and the European Academy for Childhood Disability (EACD) guide-

. line recommends it as the best-evaluated questionnaire (Blank et al. 2012). We

recently developed the Japanese version of the DCDQ (DCDQ-J) for Japanese
children and investigated its reliability and applicability as a screening tool for
DCD in Japanese children (Nakai et al. 2011). Green et al. (2009) investigated
the degree of movement skill impairments in children ASD using the .
Movement ‘Assessment Battery for Children (M-ABC) (Henderson and Sugden
1992) and DCDQ. They report the DCDQ performs moderately well as a tool
for screening possible motor difficulties in children with ASD. In the present
study, we investigated the degree of motor coordination dysfunction in Japanese
children with HFPDD using the DCDQ-J. We also assessed the relationships of
DCDQ scores with ASD symptoms and cognitive functions using the Autism
Diagnostic Interview-Revised (ADI-R) and Wechsler Intelligence Scale for

Children, 3rd edition (WISC-III). ' ‘
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Methods
Participants

The participants of this study were drawn from 176 school-age children who were
members of a nonprofit organization for families with-children with PDD. The partic-
ipants were diagnosed with PDD by child and adolescent psychiatrists onthe basis of the
DSM-IV-TR criteria. Questionnaires were sent to the parents. We collect responses from
104 respondents. The exclusion criteria were epilepsy, psychiatric disorders (e.g.,
depression, bipolar disorder, and schizophrenia), genetic and chromosomal disorders,
and hearing and visual impairments. Comorbid disorders were assessed by clinical
interview. We excluded 7 cases because of faulty answer, the cases of 16 girls, 14 cases

with mental retardation, and 13 cases missing results for the full-scale IQ of the Japanese

version of the WISC-III (Japanese WISC-III Publication Committee 1998). We ulti-
_mately enrolled 54 boys with HFPDD (1Q>70). The mean participant age was 11.5 years
(range: 6 years 10 months to 15 years 5 months). Thirty-six participants were elementary
school students: 5, 3, 8, 6, 6, and 8 in the 1st through 6th years, respectively. Eighteen
boys were junior high school students: 8, 6, and 4 in the 1st, 2nd, and 3rd years,
respectively. The mean full IQ was 106.6 (range: 72-146). Among the 54 participants,
15 took medications: 7 took risperidone, 4 took selective serotonin reuptake inhibitors
(SSRIs), 3 took methylphenidate, 3 took anti-epileptic drugs (carbamazepine: 2,
valproate: 1) as mood stabilizers, 1 took haloperidol, and 1 took alprazolam.
Forty-eight boys underwent ADI-R interviews performed by Japanese interviewers
who had undergone a 3-day ADI-R training workshop in the US (Lord et al. 1994).
They created a Japanese translation of the ADI-R and received permission from the
original author and publisher to use it after validating it on a Japanese sample (Tsuchiya

et al. 2013). According to the ADI-R scores, 39, 3, and 6 participants were diagnosed

with autistic disorder, Asperger disorder, and PDD not otherwise specified..

This study was approved by the Ethics Committee of the Hamamatsu University
School of Medicine. Written informed consent was obtained from all parents of the
participants prior to participation.

DCDQ-J

The DCDAQ is a parent-rated questionnaire designed to screen for coordination disorders
in children aged 5-15 years. It comprises the following 15 items in 3 subscales: “control
during movement” (CDM, 6 sub-items), “fine motor/handwriting” (FM, 4 sub-items),
and “general coordination” (GC, 5 sub-items). Each item is scored on a 5-point scale
based on a comparison between the child and other children as follows: “not at all like
your child” (1 point), “a bit like your child” (2 points), “somewhat like your child” (3
points), “quite a bit like your child” (4 points), and “very much like your child” (5
points); higher scores indicate better coordination. We recently developed the DCDQ-J
and conducted a preliminary investigation of its reliability and psychometric properties
using relatively large population samples (Nakai et al. 2011). The results indicate the
DCDQ-J is a useful screening tool for DCD in Japan. In the present study, we used the
population mean scores of Japanese children at-each school level from preschool (i.e.,
5 years old) to the 3rd year of junior high school (i.e., 15 years old) (Nakai et al. 2011).
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Statistical Analysis

The differences between the mean scores of the boys with HFPDD and population
means of Japanese boys at each grade were compared using the Z statistic. The level of
significance was set at <0.05. Spearman rank correlation coefficients were calculated
to evaluate the correlations of DCDQ-J with and WISC-III and ADI-R scores, PASW
Statistics 18.0 (SPSS Inc.) was used for all statistical analyses. .

Results

Among all boys with HFPDD, 37.0 %, 38.9 %, 26.0 %, and 37.0 % had total, CDM,
FM, and GC scores below 2 standard deviations (SDs) of the population mean,
respectively (Table 1). The mean total DCDQ-J scores of the boys with HFPDD were
significantly lower than the mean scores of the test standardization population of
Japanese boys at the same school level (Figs. 1, 2, 3 and 4). However, the CDM and
FM subscale scores in the second year of elementary school and the FM subscale score
in the third year of junior high school were not significantly different between the boys
with HFPDD and the population mean. Our previous study revealed that in Japanese
children, the total, CDM, and FM scores increase linearly with increasing grade while
GC scores exhibit non-linear changes (Nakai et al. 2011). In contrast, in the present
study, the total, CDM, and FM scores of the boys with HFPDD remained low in all
grades, except FM scores in the third grade of junior high school (Fig. 3). None of the
DCDQ-J scores of the 15 boys who took medication differed significantly from those
of other boys without medication. ‘

The correlations of the subscale and total DCDQ-J scores with Verbal 1Q (VIQ; n=
50), Performance 1Q (PIQ; n=50), and Full-scale IQ (FIQ; n=54) in the WISC-III as
well as the ADI-R domain scores (n=48) are shown in Table 2. However, no correla-
tions were found between the subscale and total DCDQ-J scores with VIQ or FIQ in the
WISC-III. However, the PIQ score of the WISC-III was moderately correlated with the
FM score in the DCDQ-J (»=0.30, P=0.034). Furthermore, the score of Qualitative
Abnormalities in Communication in the ADI-R was moderately negatively

Table 1 Number (percentage) of participants with total and DCDQ-J subscalc scores according to SD

-3sD* -3-2S8D  -2—-15SD  -15—1SD  -1-1SD 1SD+

CDM®  4(74%) 17315%)  7(13.0%) 8(148%) 17G15%)  1(1.9%)
FM® 119%)  13Q41%)  9(167 %) 6(111%) 23@26%) 237%)
Kelos 0(00%)  2037.0%) 13Q41%) 6(1.1%)  14(259%) 1(19%)
Total® 2(3.7%) 18(333%)  14(259%)  5(93 %) 14(259%)  1(1.9%)

® Standard deviation

® Control during movement
¢ Fine motor/handwriting

4 General coordination

¢ Total score
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Fig. 1 Mean total DCDQ-J score at cach school level. Values represent mean (SD) (¥* P<0.01, * 0.05>
P>0.01)

correlated with the CDM (»=-0.32, P=0.031), FM (»=—0.31, P=0.034), and
total scores (r=—0.35, P=0.016) in the DCDQ-J.

Discussion
-In this study, almost all subscale and the total DCDQ-J scores of Japanese boys with

HFPDD were significantly lower than the standard scores of boys at the same school
level. However,.the CDM and FM scores in the second year of elementary school and
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The values represent the mean (Standard Deviation) scores
Fig. 2 Mean CDM DCDQ-J score at cach school level. Values represent mean (SD) (** P<0.01, * 0.05>
P>0.01)
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the FM score in the third year of junior high school were not significantly different
between the HFPDD boys and population means, because the sample size might have
been too small.

Social and communication impairments are the core features of PDD. Criterion C of
DCD in the DSM-IV-TR specifies the disturbance does not meet the criteria for PDD
(American Psychiatric Association 2000). However, clumsiness in PDD is often
clinically recognized by parents or practitioners (Sturm et al. 2004). Movement prob-
lems are common in children with autism, Asperger syndrome, or PDD not otherwise
specified (Ghaziuddin and Butler 1998). Moreover, a recent meta-analysis
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20
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Fig. 4 Mean GC DCDQ-J score at each school level. Values represent mean (SD) (** P<0.01, * 0.05>
P>0.01)
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Table 2 Correlation between DCDQ-J scores, and WISC-III and ADI-R scores .

WISC-III : * ADIR

VIQ PIQ FIQ - Social interaction®  Communication® Stereotyped behavior®

ICDM 007 022 0.14 -0.06 -0.32" -0.27
°FM 004 030 0.19 -0.09 -0.31" : 0.03
GC -0.18 013  —0.03 -0.11 . . -0.25 -0.02
‘lotal  —0.02 023 - 0.1 -0.09 -0.35" -0.05
*0.05>P>0.01

# Qualitative abnormalities in reciprocal social interaction

® Qualitative abnormalities in communication

© Restricted, repetitive, and stereotyped patterns of behavior
4 Control during movement

¢ Fine Motor/handwriting

fGeneral coordination

& Total score

* demonstrates motor coordination deficits are a cardinal feature of ASD (Fournier et al.
2010). Indeed, the Australian scale for Asperger syndrome contains 2 items for
movement skills such as poor motor coordination, catching a ball, gait, and running
(Garnett and Attwood 1998). Furthermore, Gillberg’s Criteria for Asperger’s Disorder
also include motor clumsiness (Gillberg and Gillberg 1989). Children with HFPDD
frequently exhibit poor motor coordination from both clinical and scientific perspec-
tives. The present study is the first report using the DCDQ and showing Japanese
children with HFPDD frequently have motor coordination impairments. Furthermore,
the study provides some evidence supporting the validity of the DCDQ-J for use in
Japanese populations, because the results are corroborated by those in non-Japanese
populations.

Coordination dysfunction is likely to induce delayed motor development, clumsiness,
and poor posture. Children with coordination impairments also tend to exhibit delayed
~ acquisition of skills for performing daily living and school activities (Missiuna et al.
2006; Polatajko and Cantin 2005); therefore, such children tend to be less eager, pay less
attention to these activities, and tire more easily. However, such motor coordination
problems are likely to be mistakenly attributed to a lack of parental discipline or poor
motivation of the child. If parents and teachers continually use inappropriate approaches
to such problems, the child may develop emotional difficulties or self-distrust (Piek et al.
2006; Skinner and Piek 2001), which can strain their relationships with the child
(Stephanson and Chesson 2008; Rivard et al. 2007). Therefore, support provided to
children with HFPDD should include attention to coordination and motor problems in
an effort to deliver comprehensive treatment. In addition, the DSM-5 (American
Psychiatric Association 2013), which allows the co-occurtence of DCD and ASD, is
more clinically applicable in this aspect than the DSM-TV-TR.

The present results show fewer boys with HFPDD had FM difficulties than diffi-
culties in the other DCDQ-J subscales. These findings might be clinically attributable to
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the fact that the FM questions in the DCDQ-J are limited to inquiring if a child is able
or unable to write and use scissors. Meanwhile, the results of 2 meta-analyses suggest
motor coordination deficits such as gait and balance, arm motor function, movement
planning, and handwriting are more prevalent in children with PDD than normal
children (Fournier et al. 2010; Kushki et al. 2011). :

Although children with an IQ<70 are reported to have greater impairment in
movement skills than those with an 1Q>70, there was no correlation between the
subscale or total DCDQ-J scores with FIQ in the WISC-III in boys with HFPDD in the
present study. The moderate but significant correlation between PIQ in the WISC-III
and the FM score in the DCDQ-J is thought to be attributable to the fact that some
subtests in the WISC-III, such as Object Assembly, Mazes, and Picture Arrangement,
involve fine motor coordination or manipulation. Meanwhile, the levels of impairment
in CDM, FM, and total DCDQ-J scores were significantly correlated with the score of
Qualitative Abnormalities in Communication in the ADI-R. Dziuk et al. (2007) report
the level of impairment in praxis performance is significantly correlated with total the
Autism Diagnosis Observation Schedule-Generic (ADOS-G) score. They state this
suggests the impaired performance of skilled gestures may contribute to impaired
social interaction and communication in autism. Moreover, dyspraxia may be a core
feature of autism or a marker of the neurological deficits that underlie the broad features
of the disorder. Some authors state motor coordination is closely related to a child’s
cognitive and social development; this is because coordination increases a child’s
ability to explore and manipulate their environment, motivating them to participate in
social activities (Missiuna et al. 2006; Piek et al. 2006). The frequent coordination
dysfunction observed in children with PDD is believed to be due to impairments in
social function and coordination dysfunction caused by the observed coordination
dysfunction during development. Haswell et al. (2009) measured generalization pat-
terns as children leamed to control a novel tool. Their findings raise the possibility that
common problems exist in the brains of people with autism. In addition, they found the
brains of children with autism develop a stronger-than-normal association between self-
generated motor commands and proprioceptive feedback; furthermore, the greater the
reliance on proprioception, the greater the child’s social functioning and imitation
impairments. Moreover, a recent meta-analysis of structural brain imaging studies
revealed the total volume of the brain and volumes of specific regions such as the
cerebral hemispheres, caudate nucleus, and cerebellum are greater in people with
autism (Stanfield et al. 2008). The cerebellum is considered to play an important role
in the modulation of not only motor functions, but also linguistic, cognitive, and
empathic functions (Murdoch 2010; Vakalopoulos 2013). Abnormal movement-
related potentials in autism, which implicate basal ganglia, thalamus, and supplemen-
tary motor area involvement, are a likely source of motor dysfunction in autism
(Enticott et al. 2009). Thus, the abovementioned brain regions play crucial roles in
the development of motor coordination and social communication in PDD. However,
the present and previous results indicate not all patients with PDD suffer from motor
impairments and vice versa.’ Although the reasons for these differences -are not well
understood, our results help clarify the motor functions and possible heterogeneous
neuropathology of PDD in Japan. Indeed, several brain regions are reported to be
structurally abnormal in PDD (Fournier et al. 2010). Nevertheless, additional studies
are required to clarify the source(s) of motor impairments apparent in PDD.
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Limitations

This study has some limitations that should be mentioned. First, few boys with HFPDD
were analyzed. Although this study was limited to boys with HFPDD, a previous study
reports that girls with ASD also have considerable coordination problems very often
(Kopp et al. 2010). Thus, larger studies and comparative studies of boys and girls are
needed. Second, it is necessary to examine the factors influencing the motor function of
children with HFPDD, such as medication. In the present study, there was no signif-
- icant difference between children who took medication and those who did not.
However, risperidone (Aman et al. 2009), SSRIs (Loubinoux et al. 2005), and meth-
ylphenidate (Bart et al. 2013) are reported to have beneficial effects on motor functions.
Furthermore, carbamazepine (Braathen et al. 1997) and valproate (Farkas et al. 2010)
might be related to motor impairments in children with epilepsy. Third, it is also
necessary to examine the relationship between motor coordination and social impair-
ments in normal children. Finally, in the present study, the motor coordination of the
boys with HFPDD was only assessed by a questionnaire, i.e., the DCDQ-J, which does’
not involve neurological examinations.

However, Wilson et al. (2000) confirm the DCDQ is a valid clinical screening tool
for DCD; correlations between DCDQ scores, and M=ABC and Test of Visual-Motor
Integration scores support concurrent validity. Concordantly, the EACD (2012) states a
questionnaire may be useful as an initial diagnostic tool and that the DCDQ is currently
the best-evaluated questionnaire. Future studies should investigate the predictive valid-
ity of the DCDQ-J and develop a psychometrically sound and culturally appropriate
standardized international test (American Psychiatric Association 2013) in Japan. In
fact, we are currently developing the Japanese version of the M-ABC2 (Hirata et al.
2014).

Conclusion

This study is the first report indicating Japanese children with HFPDD frequently have
motor coordination impairments according to the Japanese version of the DCDQ. The
levels of impairment according to the CDM, FM, and total DCDQ-J scores are signif-
icantly correlated with the score of Qualitative Abnormalities in Communication in the
~ ADI-R. On the other hand, not all patients with PDD have motor coordination dysfunc-
tion. Therefore, additional studies are required to clarify the relationships among the
development of motor coordination, cognition, and socialization and between PDD and
DCD. Clinicians should consider the screening and assessment of movement impair-
- ments as part of the routine investigation for children with PDD. Screening for or
assessing motor dysfunctions in HFPDD using tools such as the DCDQ-J could lead
to the development of treatments and new pathophysiologic concepts.
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