25kDa (SNAP25) were compared in the postmortem brains of
individuals with autism and healthy controls. We performed
qPCR analysis using the TagMan method in ABI PRISM
7900HT SDS software. We used GAPDH as the endogenous
reference. The Ct values of the target gene were normalized
(ACt) to that of GAPDH. Any alteration in gene expression in
the autism group was analyzed by relative quantification
(AACt) against the control group. We determined the fold
change in gene expression between the autism and control
groups by calculating 244,

Statistical analysis

We examined the difference in age, postmortem interval
(PMI) and gene expression between the autism and control
groups using a t test, and the x? test was used to examine the
difference in sex distribution between the 2 groups. Any cor-
relation between the expression of ZNF804A and SNAP25
was examined using the Pearson correlation coefficient.

Results
Genetic association study

Power analysis showed that the overall sample size of
841 families provides 91% power to detect an odds ratio of
1.5 for an allele frequency of 0.1 at an o, of 0.05.

In the family-based association test (Table 1), rs7603001 lo-
cated in intron 2 of ZNF804A was nominally associated with
autism (z score for risk allele A = 2.362, p = 0.018). When indi-
viduals with autism were categorized based on verbal abil-
ities, a stronger association of this SNP was found in the Lvrb
families (z score for risk allele A = 2.657, p = 0.008), whereas
no association was observed in the Hvrb families (z score =0,
p > 0.99; data not shown). The A allele of rs7603001 was over-
transmitted to the individuals with autism (transmission 53%
in all families v. 54% in Lvib families). The genetic associa-
tion, however, did not withstand multiple testing correction.
None of the other SNPs showed any significant association
with autism. Genotypic distribution of SNPs were in Hardy-
Weinberg equilibrium.

Three LD blocks were identified in ZNF804A (Table 2; Ap-
pendix, Fig. S1B). The haplotype ACTCATC in the second
LD block (rs1038197, rs13026742, rs1987025, rs17509608,

Table 3: Copy number variation at ZNF804A locus

rs7603001, rs1344706, rs7593816) showed a significant as-
sociation with autism in the Lvrb families (z score = 3.103,
p = 0.004). This haplotype includes the risk allele A of
1s7603001. The association remained significant (p = 0.047)
following multiple testing correction by permutation analysis
(100 000 permutations). Interestingly, the haplotype ACTC-
GTC that includes the protective G allele of rs7603001
showed a tendency toward association with autism in the
Lvrb families (z score = -1.907, p = 0.05).

Taken together, the A allele of rs7603001 may be con-
sidered as a risk allele and the G allele as a protective allele of
autism in individuals with verbal defects.

Copy number variation at the ZNF804A locus

We observed CNV at the ZNF804A locus in the same DNA
samples that we used in our genetic association study
(Table 3): copy number gain (3 copies) in 6 samples and copy
number loss (1 copy) in 2 samples. One of the CNVs (gain)

Table 2: Haplotype association analysis of ZNF804A with autism in
the low verbal subgroup :

Block; haplotype Frequency p value
Block 1 (SNPs 01-04)
GCTT 0.377 0.09
AGCT 0.317 0.57
ACCT 0.16 0.06
ACTG 0.135 0.09
Block 2 (SNPs 06-12)
GTACATC 0.234 0.08
ACTCGGT 0.193 0.69
ACTCGGC 0.178 0.13
ACTCGTC 0.143 0.05
ATTTATC 0.104 0.57
ATTCATC 0.073 0.54
ACTCATC 0.057 0.004
Block 3 (SNPs 14,15)
AC 0.531 0.73
GC 0.292 0.07
AT 0.177 0.08

SNP = single nucleotide polymorphism; ZNF804A = zinc finger protein B04A.

Sample ID* Sex Age, yr Affection status CNV Gain/loss De novo/inherited Lvrb/Hvrb
AU0154302 Male 14 Autism 3 Gain De novo Lvrb
AU023803 Male 8 Autism 3 Gain De novo Lvrb
AU077304 Male 16 Autism 3 Gain De novo Lvrb
AU0871302 Male 7 Autism 1 Loss De novo Hvrb
AU1092302 Male 3 Autism 3 Gain Inherited Lvrb
AU1466302 Male 10 Autism 1 Loss De novo Lvrb
AU1650305 Male 7 Autism 3 Gain De novo Lvrb
AU1655301 Male 16 Autism 3 Gain De novo Lvrb

CNV = copy number variation; Hvrb = autistic, healthy; Lvrb: autistic, low verbal; ZNF804A = zingc finger protein 804A.

*Autism Genetic Resource Exchange (AGRE) identifier.
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was inherited from the mother, whereas the other CNVs
were caused by de novo events. All the CNVs were observed
in boys with autism (age 7-16 yr); all but 1 of them belonged
to the Lvrb category. We also observed CNVs in 7 maternal
samples (gain in 6 and loss in 1 sample) and in 2 paternal
samples (gain in 1 and loss in 1 sample).

ZNF804A silencing

Figure 1A shows a significant difference in the expression of
ZNF804A between the cells electroporated with ZNF804A-
specific siRNA and the negative control (p = 0.003). In gPCR,
the expression of ZNF804A was knocked down by 77%.
ZNF804A silencing was confirmed by Western blot (Fig. 1B).

In the ZNF804A-knockdown SH-SY5Y cells, the expres-
sion of SNAP25 was significantly reduced compared with
the negative controls (p = 0.009; Fig. 1C). This was con-
firmed by Western blot (Fig. 1B). We also found a signifi-
cant positive correlation between the expression of
ZNF804A and SNAP25 (Pearson r = 0.713, p = 0.006; Fig. 1D).

There was no significant alteration in the expression of
other genes (data not shown).

Gene expression in postmortem brain

We obtained postmortem brain samples from the ACG (8 au-
tism, 13 control), MC (7 autism, 8 control) and thalamus
(8 autism, 9 control). Demographic characteristics of the indi-
viduals from whom the samples were obtained are described
in Table 4.

There was no significant difference in age, postmortem in-
terval and sex distribution between the control and autism
groups (see the Appendix, Table S2). The expression of
ZNF804A (fold-change 244t = (0.277, p = 0.009) and SNAP25
(244Ct = 0.258, p = 0.009) were significantly reduced in the
ACG of individuals with autism compared with controls
(Fig. 2A and B). We also found a strong positive correlation
between the expression of ZNF804A and SNAP25 in the ACG
(Pearson r = 0.837, p < 0.001; Fig. 2C). In the MC and thala-
mus, the expression of ZNF804A or SNAP25 did not differ
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Fig. 1: Zinc finger protein 804A (ZNF804A) silencing in SH-SY5Y cells. (A) ZNF804A expression was knocked down by 77% (p = 0.003) in the
SH-SY5Y cells electroporated with ZNF804A-specific small interfering RNA (siRNA) compared with the negative controls. (B) Comparison of
the expression of ZNF804A and SNAP25 between ZNF804A-silenced SH-SY5Y cells and negative control siRNA-transfected SH-SY5Y cells
in Western blot. The expression of SNAP25 was downregulated in ZNF804A-silenced cells. GAPDH was used as the loading control. (C)
SNAP25 expression was significantly lower in the ZNF804A-silenced cells compared with the negative controls (p = 0.009). (D) Positive corre-
lation between the expression of ZNF804A and SNAP25 in SH-SY5Y cells (Pearson r = 0.713; p = 0.006).
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significantly between the control and autism groups (data
not shown).

Discussion

We suggest that ZNF804A could be a risk gene mediating the
intermediate phenotypes related to verbal skills in individ-
uals with autism. In a GWAS of autism, Anney and col-
leagues (supplementary data)” reported nominal association
of several ZNF804A SNPs (rs17508877, rs1038197, rs7585738,

Table 4 Postmortem brain tissué yinf,ormation

16730122, rs10199843) with the Lvrb subset of individuals
with autism. To our knowledge, the present study is the first
to confirm the association of ZNF804A with a subgroup of in-
dividuals with autism characterized by verbal deficits.

The SNP rs7603001, which showed nominal association
with autism in all families and in the subset of Lvrb families,
is located in intron 2 of ZNF804A. Even though this SNP may
not have a functional significance, putative regulatory regions
have been predicted (FastSNP; http://fastsnp.ibms.sinica
.edu.tw/pages/inputSNPListAnalysis.jsp) for the SNPs

Race Cause of death

Sample ID* Diagnosis Age, yr Sex PMI, h Brain regiont
818 Control 27 M 10 White Multiple injuries ACG

1065 Control 15 M 12 White Multiple injuries ACG, THL
1297 Control 15 M 16 African American Multiple injuries ACG, MC, THL
1407 Control 9 F 20 African American Asthma ACG, MC, THL
1541 Control 20 F 19 White Head injuries ACG, MC, THL
1649 Control 20 M 22 Hispanic Multiple injuries ACG, MC, THL
1708 Control 8 F 20 African American Asphyxia, multiple injuries ACG, MC, THL
1790 Control 13 M 18 White Multiple injuries ACG

1793 Control 11 M 19 African American Drowning ACG, MC, THL
1860 Control 8 M 5 White Cardiac arrhythmia ACG

4543 Control 28 M 13 White Multiple injuries ACG, MC, THL
4638 Control 15 F 5 White Chest injuries ACG

4722 Control 14 M 16 White Multiple injuries ACG, MC, THL
797 Autism 9 M 13 White Drowning ACG, THL
1638 Autism 20 F 50 White Seizure ACG, MC, THL
4231 Autism 8 M 12 African American Drowning ACG, MC, THL
4721 Autism 8 M 16 African American Drowning ACG, MC, THL
4899 Autism 14 M 9 White Drowning ACG, MC, THL
5000 Autism 27 M 8.3 NA NA ACG, MC, THL
6294 Autism 16 M NA NA NA ACG, MC, THL
6640 Autism 29 F 17.83 NA NA ACG, MC, THL

ACG = anterior cingulate gyrus; F = female; M = male; MC = motor cortex; NA = not available; PMI = postmortem interval; THL = thalamus.

*Autism Tissue Program (ATP) identifier.
tBrain regions for which each sample was available.
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Fig. 2: Gene expression in postmortem brain. The expression of (A) zinc finger protein 804A (ZNF804A; p = 0.009) and (B) SNAP25 (p =
0.009) were significantly reduced in the anterior cingulate gyrus (ACG) of individuals with autism compared with healthy controls. (C) Positive

correlation between the expression of ZNF804A and SNAP25 in the ACG (Pearson r = 0.837; p < 0.001).
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included in the LD bin of rs7603001. The > LD value between
rs7603001, the SNP that was associated with autism in our
study, and the SNPs that were associated with autism in the
GWAS’ ranged between 0.25 and 0.28. The GWAS finding
was thus replicated at the gene level, not at the level of spe-
cific SNPs.

In addition to genetic association, CNVs (gain and loss),
mostly de novo, were observed at the ZNF804A locus of boys
with autism who had a verbal deficit. Griswold and col-
leagues® and Talkowski and colleagues® have also reported
CNVs at the ZNF804A locus in individuals with autism. Since
the penetrance of CNVs is variable, it is not possible to pre-
dict the effect of these CNVs in the pathogenesis of autism.
Copy number gain and loss were observed in autistic indi-
viduals, and similar CNVs were observed in unaffected par-
ents. Furthermore, similar CN'Vs have also been observed in
patients with other neuropsychiatric disorders,* suggesting
pleiotropic effects. Future studies to correlate specific CNVs
with detailed clinical characteristics and to assess their effects
on neurodevelopment are warranted.

Impaired linguistic/verbal ability is a key cognitive defect
in individuals with autism.**** Based on our results, we sug-
gest that ZNF804A could be a modulator of verbal traits in
individuals with autism. There is ample evidence of the in-
volvement of ZNF804A in the development of ToM,!® which
in turn, is closely intertwined with the development of lin-
guistic/verbal abilities from infancy.?>%

Genetic, neuropsychological and neuroimaging studies
have suggested that ZNF804A is involved in higher-order
cognitive processes such as ToM,® working memory® and
executive control of attention.® It has been found to play a
pivotal role in the maintenance of functional connectivity in
the brain.¥28 We observed a reduced expression of ZNF804A
in the ACG of individuals with autism compared with con-
trols. The ACG, a brain region vital for cognitive and behav-
ioural abilities, is involved in emotion formation and process-
ing, learning and memory.®# Downregulated expression of
ZNF804A could lead to adverse effects on the cognitive pro-
cesses associated with this gene.

Even though the previous studies on ZNF804A were fo-
cused on schizophrenia, overwhelming evidence suggests
that the risk variants of this gene may be involved in the
modulation of intermediate cognitive phenotypes associated
with the disorder rather than the disorder itself.0%52638 Adult-
onset schizophrenia and early-onset autism, despite being
2 clinically distinct, complex neurodevelopmental disorders,
share several deficits in cognitive functioning.*** A deficient
ToM has been identified as a potential contributor to the so-
cial cognitive dysfunction in individuals with schizophrenia
and autism,** and it could be a common factor mediating
ToM-related key intermediate phenotypes in people with
these disorders. Several studies have shown the association
of ZNF804A variants with cognitive dysfunction in individ-
uals with schizophrenia.*8 Interestingly, we observed a
stronger association of ZNF804A in individuals with an au-
tism subtype characterized by verbal deficits.

The protein sequence of ZNF804A shows a C2H2-type zinc-
finger domain at its N-terminal end, suggesting that it may

bind DNA and have a role in regulating gene expression.!®
ZNF804A has been found to modulate the expression of sev-
eral genes implicated in the pathogenesis of schizophrenia.’#

We examined the possible role of ZNF80A as a regulator of
the expression of genes previously reported to be associated
with verbal/linguistic abilities and/or social cognition. The
expression of SNAP25 was downregulated in ZNF804A-
silenced cells compared with control cells. Furthermore, the
expression of SNAP25 was significantly reduced in the ACG
of individuals with autism, and a strong positive correlation
was observed between the expression of ZNF804A and
SNAP25 in the ACG.

SNAP25 is a presynaptic plasma membrane protein that is
specifically and abundantly expressed in nerve cells. It par-
ticipates in synaptic vesicle exocytosis through the formation
of a soluble NSF attachment protein receptor complex® and
plays a pivotal role in modulating calcium homeostasis.™
SNAP25 is important for axonal growth and synaptic plasti-
city, 2 essential steps in the wiring of the central nervous
system.505? SNAP25 variants have been found to modulate
cognitive performances.?** SNAP25 is located in a chromo-
somal region (20p12-p11.2) with a previously suggested link-
age to intelligence.®® Moreover, polymorphisms in SNAP25
have been associated with hyperactivity in individuals with
autism.>® However, at present, there is no literature linking
ZNF804A and SNAP25.

Limitations

A replication study in a larger cohort of verbally deficient indi-
viduals with autism from different racial backgrounds would
have been more informative. Further studies on the functional
implications of ZNF804A CNVs and on the nature of the inter-
action between ZNF804A and SNAP25 in the pathogenesis of
autism are warranted. The small number of postmortem brain
samples used is another limitation of our study.

Conclusion

We suggest that ZNF804A could have a pivotal role in medi-
ating the intermediate phenotypes associated with verbal
traits in individuals with autism. It could be a common factor
modulating the ToM-related intermediate phenotypes in in-
dividuals with schizophrenia and autism.
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Abstract

Background: Histone H3 methylation at lysine 9 (H3K9) is a conserved epigenetic signal, mediating heterochromatin
formation by trimethylation, and transcriptional silencing by dimethylation. Defective GLP (EhmtT) and G9a (Ehmt2)
histone lysine methyltransferases, involved in mono and dimethylation of H3K9, confer autistic phenotypes and
behavioral abnormalities in animal models. Moreover, EHMT1 loss of function results in Kleefstra syndrome, characterized
by severe intellectual disability, developmental delays and psychiatric disorders. We examined the possible role of
histone methyltransferases in the etiology of autism spectrum disorders (ASD) and suggest that rare functional variants
in these genes that regulate H3K9 methylation may be associated with ASD.

Methods: Since G9a-GLP-Wiz forms a heteromeric methyltransferase complex, all the protein-coding regions and
exon/intron boundaries of EHMT1, EHMT2 and WIZ were sequenced in Japanese ASD subjects. The detected variants
were prioritized based on novelty and functionality. The expression levels of these genes were tested in blood cells
and postmortem brain samples from ASD and control subjects. Expression of EHMTT and EHMT2 isoforms were
determined by digital PCR.

Resuits: We identified six nonsynonymous variants: three in EHMT1, two in EHMT2 and one in WIZ Two variants, the
EHMTT ankyrin repeat domain (Lys968Arg) and EHMT2 SET domain (Thro61lle) variants were present exclusively in cases,
but showed no statistically significant association with ASD. The EHMT2 transcript expression was significantly elevated in
the peripheral blood cells of ASD when compared with control samples; but not for EHMTT and WIZ. Gene expression
levels of EHMTI, EHMT2 and WIZ in Brodmann area (BA) 9, BA21, BA40 and the dorsal raphe nucleus (DoRN) regions
from postmortem brain samples showed no significant changes between ASD and control subjects. Nor did expression
levels of EHMTT and EHMTZ isoforms in the prefrontal cortex differ significantly between ASD and control groups.
Conclusions: We identified two novel rare missense variants in the EHMTT and EHMT2 genes of ASD patients. We
surmise that these variants alone may not be sufficient to exert a significant effect on ASD pathogenesis. The elevated
expression of EHMT2 in the peripheral blood cells may support the notion of a restrictive chromatin state in ASD, similar
to schizophrenia..
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Background

Autism spectrum disorders (ASD), characterized by de-
fects in social reciprocity, impairment in communication
and restricted and repetitive stereotyped behavioral
patterns, are the most prevalent childhood neurode-
velopmental disorders. They affect all racial, ethnic and
socioeconomic groups equally, with a worldwide preva-
lence of approximately 0.6% [1,2]. The genetic influences
in the etiology of ASD have been demonstrated in family
and twin studies [3,4], along with discoveries of common
and rare genetic variants and pronounced chromosomal
abnormalities [5]. Recently, de novo rare variants with a
large effect size were found to increase ASD susceptibility
[6,7]. However, generation of the ASD phenotype re-
quires interaction between environmental factors, and
inherited and de novo genetic variants [8]. Furthermore,
the pivotal role of epigenetic regulatory mechanisms in-
volved in the pathogenesis of Rett syndrome, fragile X
syndrome and the identification of ASD-associated gen-
etic defects in imprinted regions lends strength to the
hypothesis that epigenetic factors are causative in ASD
etiology [9].

Epigenetic mechanisms involving post translational
modification of histone lysine methylation influence nu-
merous biological processes, including transcription,
replication and chromosome maintenance, all of which
are tightly regulated by methyltransferases and demethy-
lases [10]. Among them, methylation of lysine 9 in his-
tone H3 (H3K9), marks a conserved epigenetic signal;
by heterochromatin formation through trimethylation
(H3K9me3) and transcriptional silencing through dimethy-
lation (H3K9me2) [11]. The formation of H3K9mel and
H3K9me2 are mediated by a Suv3%h subgroup of histone
methyl transferases, namely G9a/KMT1C and GLP/
KMT1D, both having Su(var)3-9-Enhancer of zeste-
Trithorax (SET) domain, through which they form homo-
meric and heteromeric complexes [12]. The G9a-GLP
heteromeric complex is known to interact with Wiz,
a multi-zinc finger-containing molecule, resulting in a
stable and dominant intracellular heteromeric methyl-
transferase complex [13].

Regulation of H3K9 methylation has a powerful im-
pact on neurological function and disease, as exemplified
in Kleefstra syndrome. This disease is characterized by
severe intellectual disability, developmental delay and
psychiatric disorders, and is the result of a 9q34 subtelo-
meric deletion and loss-of-function mutations in EHMTI
[14,15]. In Ehmtl heterozygous knockout mice, the typical
autistic-like features including reduced exploration, in-
creased anxiety, altered social behavior, deficits in fear ex-
tinction, and learning and object recognition (novel and
spatial) are observed [16,17]. Furthermore, the lack of post-
natal and neuron-specific GLP/G9a expression in mouse
models dysregulates neuronal transcriptional, resulting in
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behavioral abnormalities, such as impaired learning, motiv-
ation and environmental adaptation [18].

Therefore, the autistic-like features and behavioral ab-
normalities precipitated by defects in histone methyl-
transferases provide a powerful case for examining their
involvement in ASD pathogenesis. We put forward that
rare functional variants in these genes may be associated
with ASD. Since G9a-GLP-Wiz forms a stable and dom-
inant heteromeric methyltransferase complex in H3K9
methylation, we set out to resequence the EHMTI,
EHMT2 and WIZ genes coding for GLP, G9a and WIZ,
respectively, in Japanese ASD case and control samples.

Methods

Subjects

A cohort of 315 patients of Japanese descent, with aut-
ism (262 males and 53 females, mean age + SD =12.09 +
5.72 years), comprising 293 independent subjects and
affected siblings, were recruited for the resequencing
studies. The diagnosis of autism was made using the
Diagnostic and Statistical Manual, Fourth Edition, Text
Revision (DSM-IV-TR: American Psychiatric Association,
2000) criteria. The Autism Diagnostic Interview-Revised
(ADI-R) [19] was conducted by experienced child psy-
chiatrists who are licensed to use the Japanese version
of the ADI-R. Participants with comorbid psychiatric
illnesses were excluded by means of the Structured
Clinical Interview for DSM-IV (SCID) [20]. Control
subjects (n =1,140, 440 males and 700 females, mean
age+SD =44.10 £ 13.63 years) devoid of any past or
present psychiatric disorders were recruited from hos-
pital staff and company employees. Samples were also
collected from available parents of subjects who harbored
novel mutations, in order to determine whether these
mutations were de novo. All participants were provided
with, and received a full explanation of study protocols
and objectives, before giving informed, written con-
sent to participate in the study. For patients under
the age of 16 years, written informed consent was also
obtained from their parents. The study was approved
by the Ethics Committees of RIKEN and Hamamatsu
University School of Medicine, and conducted according
to the principles expressed in the Declaration of Helsinki.
DNA was extracted from whole blood according to a
standard protocol.

A subset of subjects, 52 ASD (43 males and 9 females,
mean age + SD =11.98 +2.43) and 32 normal controls
(26 males and 6 females, mean age + SD =12.31 +2.01),
was selected to analyze transcript expression levels in
peripheral blood cells from the cohort whose DNA was
resequenced for the candidate genes. Postmortem brain
tissues from ASD and age-matched control samples were
obtained from the National Institute of Child Health
and Human Development (NICHD) Brain and Tissue
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Bank, University of Maryland School of Medicine (http://
medschool.umaryland.edu/btbank/), for gene expression
analysis (Additional file 1: Table S1). Frozen tissue samples
from BAQ9 (ASD; n =10, control; n =10), BA21 (ASD;
n =14, control; n =14), BA40 (ASD; n =14, control; n =13)
and DoRN regions (ASD; n =8, control; n =8) were
used in this study. Total RNA from peripheral blood
cells and brain tissues was extracted using a miRNAeasy
Mini kit (QIAGEN GmbH, Hilden, Germany) and
single stranded cDNA was synthesized using a SuperScript
VILO cDNA synthesis kit (Life Technologies Co., Carlsbad,
CA, USA), according to the manufacturers’ instructions.

Resequencing and variant analysis

Protein-coding regions and exon/intron boundaries of
EHMT1, EHMT2 and WIZ were screened for variants in
ASD case samples by direct sequencing of PCR prod-
ucts, using the BigDye Terminator v3.1 cycle Sequencing
Kit (Applied Biosystems (ABI), Foster City, CA, USA),
and analyzed on an ABI3730 Genetic Analyzer (ABI),
using standard protocols. The primers used for amplifi-
cation and PCR conditions are listed in Additional file 2:
Table S2. The sequences were aligned to the respect-
ive reference sequences (EHMTI isoform 1: RefSeq
NM_024757.4, Isoform 2: RefSeq NM_001145527.1,
EHMT?2 isoform a: RefSeq NM_006709.3, isoform b:
RefSeq NM_25256.5, and WIZ: RefSeq NM_021241.2) and
variants were detected using Sequencher software (Gene
Codes Corporation, Ann Arbor, MI, USA). For the hetero-
zygous variant calls in Sequencher, the height of the sec-
ondary peak was set at 35% of the primary peak and all
variants were confirmed by bidirectional sequencing of
the sample.

Variants were prioritized based on whether they were,
(i) located in an important functional domain of the pro-
tein, (ii) deemed to be functional, such as a frame shift,
stop gain or nonsynonymous mutation, and (iii). novel,
that is not documented in the NCBI dbSNP database
(Build 137) (http://www.ncbi.nlm.nih.gov/SNP/), the 1000
Genomes Project (http://www.1000genomes.org/), the
Exome Variant Server of NHLBI GO Exome Sequencing
Project (ESP6500SI-V2) (http://evs.gs.washington.edu/
EVS/) or the Human Genetic Variation Database of
Japanese genetic variation consortium (http://www.
genome.med.kyoto-u.ac.jp/SnpDB). The potential func-
tional consequences of variants were evaluated in silico,
using PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/),
PROVEAN (http://provean.jcviorg/index.php) and SIFT
(http://siftjcvi.org/). In the control samples, we screened
only exons coding for functional domains of the candidate
genes (Figure 1 and Additional file 3: Figure S1 (A)).
Fisher’s exact test (two-tailed) was used to compare the dif-
ferences in allele counts between ASD and control sub-
jects, with statistical significance being defined as P <0.05.
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Gene expression analysis

Real-time quantitative RT-PCR analysis was conducted
using standard procedures, in an ABI7900HT Fast Real-
Time PCR System (ABI, Foster City, CA, USA). TagMan
probes and primers for EHMTI1, EHMT2 and WIZ and
GAPDH (internal control) were chosen from TagMan
Gene Expression Assays (ABI, Foster City, CA, USA)
(Figure 1 and Additional file 4: Table S3). All real-time
quantitative RT-PCR reactions were performed in tripli-
cate, based on the standard curve method. To check
for isoform-specific expressional changes between ASD
cases and controls (prefrontal cortex), digital PCR was
performed using standard procedures for EHMT1 (vari-
ant 1: NM_024757.4 and variant 2: NM_001145527.1)
and EHMT?2 (isoform a: NM_006709.3 and isoform b:
NM_025256.5) isoforms, using TagMan Gene Expres-
sion Assays in a QuantStudiol2K Flex Real-Time PCR
System (Life Technologies Co., Carlsbad, CA, USA)
(Figure 1 and Additional file 4: Table S3). Significant
changes in target gene expression levels between the
cases and controls were detected by Mann—Whitney
U-test (two-tailed) and P values of <0.05 were con-
sidered statistically significant.

Results

Resequencing and genetic association analyses
Resequencing of the coding regions and exon/intron
boundaries of the three genes, yielded several novel
and previously reported variants in the ASD cohort,
with varying minor allele frequencies (Additional file 5:
Table S4). Filtering of variants based on functionality
(nonsynonymous and. frameshift) and novelty, revealed
three nonsynonymous variants in EHMT1, two nonsy-
nonymous variants in EHMT2 and one nonsynonymous
variant in WIZ (Table 1). All variants showed low minor
allele frequencies (MAF <0.01) and were deemed to be
inherited from the parents, although this could not
be confirmed in cases bearing the EHMTI variant,
Lys968Arg, due to a lack of parental samples for testing
(Figure 2).

Since histone methylation is effected through the for-
mation of multimeric complexes of histone methyltrans-
ferases, which in turn are mediated by interaction of
functional domains, we focused our interests on these
regions. Results revealed that rare variants in the EHMT1
ankyrin repeat domain (Lys968Arg) and EHMT2 SET do-
main (Thr961lle) were present in ASD cases but not in
any of the 1,140 screened control subjects. Examining the
cases, we observed no variations in the functional domains
of WIZ The case—control comparison showed no statisti-
cally significant association of any identified variants with
ASD (Table 2). In addition, we also identified EHMT1 and
EHMT?2 variants that were present only in the control
population (Additional file 4: Table S4).
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Figure 1 Genomic structures of EHMT1, EHMT2 and WIZ genes screened in Japanese autism spectrum disorder (ASD) subjects, and
identified missense variants. Black boxes denote coding exons and white boxes denote non-coding exons.
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Table 1 Novel missense variants identified in EHMT1, EHMT2 and WIZ genes from autism spectrum disorders (ASD)

cases and controls

Gene Chromosome Exon  ¢DNA position Amino acid Protein Autism Control PolyPhen2 Provean SIFT
position change domain count  count*

EHMTT 9140611506, CT Exon3  c514C>T p.Pro172Ser - 2 - Possibly damaging  Neutral Damaging

EHMTT 9,140638415CT Exon6 c1,043C>T p.Ser348Leu - 2 - Possibly damaging  Deleterious Damaging

EHMT1 9,140707493AG Exon20 c2903A>G p.Lys968Arg ANK repeat 1 0 Possibly damaging  Neutral Tolerated

domain

EHMT2 631857330C-  Exon8 ¢913_915delGGA p.Glu30sdel - 1 - NA NA NA

EHMT2 631851617,GA  Exon22 c2,882C>T p.Thro6llle  SET domain 1 0 Possibly damaging  Neutral Tolerated

wiz 19,15535180,CT  Exon7  c2,039G>A p.Arg680His - 1 - Probably damaging Neutral Damaging

Legend: ' denotes that the corresponding variant was not examined in control samples because it was located outside of a functional domain; ANK, ankyrin

repeat domain; SET, Su(var)3-9-Enhancer of zeste-Trithorax domain.

Gene expression study

The EHMT2 transcript expression was significantly el-
evated in the peripheral blood cells of ASD when
compared with control samples (P =0.02) (Figure 3B).
But the EHMTI and WIZ levels were not signifi-
cantly different between the ASD and control groups
(Figure 3A, C). The gene expression analysis of
EHMTI, EHMT2 and WIZ in BA09, BA21, BA40 and
DoRN regions from postmortem samples, showed no
significant changes in expression levels between ASD and
control groups (Figure 4A, B, C). We further examined
the expression of EHMTI1 and EHMT?2 isoforms in the
prefrontal cortex (BA09) of ASD patients. The EHMTI
variant 1 (NM_024757.4) and EHMT2 isoform a
(NM_006709.3) were highly expressed compared to alter-
native isoforms. However, there was no significant differ-
ence in expression levels of these isoforms in the prefrontal

cortex, when the ASD cases were compared to controls
(Figure 4D).

Discussion

Disruption of histone lysine methylation plays an im-
portant role in the pathogenesis of neurological disor-
ders and cancer, as evidenced by the reports of genomic
aberrations in histone methyltransferases in these dis-
eases [10]. Since defective G9a and GLP histone lysine
methyltransferases, give rise to autistic phenotypes [21],
we searched for loss of function variants in the genes
involved in H3K9 methylation, concentrating on rare
mutations that show enrichment in ASD subjects. We
focused on the variants located in the functional do-
mains that are important in the formation of multimeric
enzyme complex, and we identified the EHMT1 ankyrin
repeat domain variant (Lys968Arg) and EHMT2 SET

EHMT1: Pro172Ser
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Figure 2 Pedigree structures of autism spectrum disorder (ASD) families harboring novel missense variants in EHMT1, EHMT2 and WiZ.
With the exception of Lys968Arg, none of the novel variants were de novo. For the Lys968Arg variant, genotype information of the father was
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Table 2 Comparison of genotype and allele frequencies of EHMT1 and EHMT2 missense variants between autism

spectrum disorder (ASD) cases and controls

Gene Variant Subject Genotype P-value Allele P-value MAF? (%)

EHMTIT c2903A> G A/A AG G/G A G G
Lys968Arg Autism 292 1 Q 0.14 ‘ 585 1 046 0170
(ANK repeat domain) Control 1,139 0 0 2278 0 0

EHMT2 c2882C>T v/ T T C T T
Throé1lle Autism 292 1 0 0.14 585 1 046 0.170
(SET domain) Control 1,139 0 0 2,278 0 0

2MAF: minor allele frequency. ANK, ankyrin repeat domain; SET, Su(var)3-9-Enhancer of zeste-Trithorax domain.

domain variant (Thr961Ile), which were present only in
ASD cases and not in 1,140 control subjects. Although
these two mutations were found exclusively in cases,
case—control comparisons found no statistically signifi-
cant association. Thus, our results did not support a role
for these rare variants in ASD. This is in keeping with in
silico analyses which predicted that the effects for both
the EHMT1 (Lys968Arg) and EHMT2 (Thr9611le) muta-
tions would to be ‘neutral’ and ‘tolerated’ by Provean
and SIFT, respectively, although PolyPhen2 predicted a
‘possibly damaging’ phenotype.

Since a large number of ‘loss of function’ variants are
present in healthy human genomes [22], we speculate
that the variants we identified may be private, owing
to their lack of ‘predicted functional defects; consistent
through the three algorithms. On the other hand, balanced
chromosomal abnormalities seen in ASD and related neu-
rodevelopmental disorders are reported to disrupt the
EHMT1I gene [23]. In addition, a de novo deletion and rare
inherited loss of function mutation in EHMT1 were ob-
served in a sporadic ASD trio sample [24] and in ASD
families [25], respectively. It is clear that to understand the
exact role of our identified variants, it will be necessary to
examine them using much larger sample sets and more
sophisticated functional assessments.

Interestingly, we observed an overexpression of the
EHMT?2 gene in peripheral blood cells from ASD patients

pointing towards a role of restricted chromatin state in
ASD pathogenesis. A recent study showed increased ex-
pression of the EHMT2 gene in lymphocytes and the
EHMTI gene in both postmortem parietal cortex and
lymphocyte samples, from patients with schizophrenia
[26]. The study also found that a diagnosis of schizo-
phrenia was a significant predictor for increased expres-
sion of histone methyltransferases. Therefore, the present
results are interesting, given the genetic overlap between
schizophrenia and ASD [27]. However, no significant
changes in the expression levels of EHMTI, EHMT2
or WIZ were observed in the postmortem brain samples
from BAO09, BA21, BA40 and DoRN region, between
ASD subjects and controls. Additionally, we detected no
differential expression of EHMT1 and EHMT?2 isoforms
in the prefrontal cortex (BA09) between the two subject
groups. The results suggest an absence of common vari-
ants in the regulatory genomic elements of these genes
associated with ASD.

Mutations in the chromatin remodeling enzymes have
been reported in psychiatric diseases, which disrupt the
chromatin regulation leading to altered neuronal func-
tion and behavioral abnormalities [28]. But in our study,
such a loss of function mutation was not observed.
Moreover, the identified mutations did not have a cogent
effect in ASD pathogenesis, either through functional
deficits or changes in expression levels. Therefore, it
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raphe nucleus) of autism spectrum disorder (ASD) cases and controls (CNT). (D) Isoform-specific expression analysis of EHMTT (variant 1:
NM_024757.4 and variant 2: NM_001145527.1) and EHMT2 (isoform a: NM_006709.3 and isoform b: NM_025256.5) in the prefrontal cortex (BA09)
of ASD cases and controls. )

can be concluded that the loss of function mutations
in histone methyltransferases may constitute a rare
event in ASD pathogenesis, which is supported by
the fact that H3K9 modifying enzymes have fewer re-
ported mutations, when compared to other chromatin
regulators [29].

Since EHMTZ2 overexpression correlates with the
increased H3K9me2 levels [30], it could result in the
repressed transcription of the genes/genetic network
relevant to ASD pathogenesis. However, the results from
expression analysis of peripheral blood cells should be
interpreted cautiously because peripheral blood chroma-
tin may not essentially provide information specific to a
brain region or neuronal phenotype [31]. Future studies
are warranted to profile the global H3K9 (mono and di)
methylation status in ASD brain to delineate the genetic
networks, which are dysregulated in ASD.
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Although the present study did not show statisti-
cally significant enrichment of variants in ASD, their
possible contribution to disease cannot be ruled out,
due to the relatively small sample size restricting the
statistical power of this study and also the absence of
identified patient-specific mutations in global data-
bases for the control population. From the available
three-dimensional structures, it would appear that both
mutations are located on the surface of the proteins
(Additional file 3: Figure S1 (B and C), implying a po-
tential role for the variants in complex formation. Re-
cent whole genome and exome sequencing studies have
clearly shown a heterogeneous genetic basis for ASD
and have identified a large number of candidate genes,
converging on functional pathways of neuronal signaling
and development, synapse function and chromatin regu-
lation [32]. It is also known that SETDBI1 and Suv39hl
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co-exist in the H3K9 methylation multimeric complex,
with interdependent functionality- [33]. Therefore, the
polygenic burden of ASD may mask the effects of single
rare variants, obscuring their individual contribution to
disease pathogenesis [34].

Conclusion

In summary, we identified two novel, rare missense vari-
ants in the EHMT1 and EHMT2 genes from ASD pa-
tients. We surmise that these variants alone may not be
sufficient to exert a significant effect on ASD pathogen-
esis and that a concerted interaction with additional gen-
etic or epigenetic effects may be needed to manifest the
disease phenotype. The elevated expression of EHMT2
observed in peripheral blood cells from ASD patients
may support the notion of a restrictive chromatin state
in ASD pathogenesis, similar to schizophrenia. Future
studies with larger sample sizes and sophisticated func-
tional assessments are warranted to define the precise
role of EHMTI1 and EHMT2 in ASD pathogenesis.
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Additional file 1: Table S1. Demographic details of autism spectrum
disorder (ASD) and control brain samples from the NICHD Brain and
Tissue Bank, University of Maryland School of Medicine (http//medschool.
umaryland.edu/btbank/).

Additional file 2: Table S2. PCR amplification primers and conditions.

Additional file 3: Figure S1. (A) Domain structure of EHMT1 (GLP)
and EHMT2 (G9a), indicating mutated and their conserved positions,
(B) three-dimensional structure of EHMT1 (GLP), and (C) three-dimensional
structure of EHMT2 (G9a). The structural data were obtained from Protein
Data Bank (http//www.rcsb.org/pdb/home/home.do) and visualized using
the UCSF Chimera package (http://www.cglucsf.edu/chimera/) for
determining the position of identified variants. The EHMT1/GLP complex
(PDB entry: 3B95) contains three peptide chains, where the A and B chains
are from GLP, and the P chain is a histone H3 N-terminal peptide. The B
chain (blue), P chain (green) and the variant (red) are shown in figure (B).
The mutation is located on the surface of the protein. The EHMT2/G9a
complex (PDB entry: 3K5K) contains two SET domains from G9a (A and
B chains). The A chain is shown here in (C) with ligands DXQ (7-[3-
(dimethylamino) propoxyl-6-methoxy-2- (4-methyl-1,4-diazepan-1-yl)-
N-(1-methylpiperidin-4-yl)quinazolin-4-amine) and S-adenosyl-L-homocysteine
marked in green and cyan, respectively. The variant position (red) is located
on the surface of the protein, away from substrate binding sites.

Additional file 4: Table $3. List of TagMan assay IDs used for gene
expression studies.

Additional file 5: Table S4. Novel and previously reported variants in

the ASD cohort and variants specific to the control population.
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