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GAATCAAGAAGTTACTAAT-3" (siRNA-2). Transfec-
tion was performed using Lipofectamine RNAIMAX
(Invitrogen) in accordance with the manufacturer’s
instructions, and cells were processed 48 h after
transfection.

Immunocytochemistry and microscopy

HEK293-hSERT cells were grown on poly-D-lysine-
coated glass coverslips. Raphe neurons were plated onto
eight-well slide chambers coated with poly-D-lysine (BD
Biosciences) and cultured for 7 days in vitro [36]. Cells
were washed with PBS (-) and fixed with 2% parafor-
maldehyde in PBS (=), pH 74, for 15 min at room
temperature (RT). Cells were washed with PBS (-) and in-
cubated with ice cold 100% methanol for 10 min at ~20°C
to permeabilize them. Cells were washed with PBS (-) and
incubated with blocking solution (5% skimmed milk in
PBS (-)) at RT for 1 h followed by incubation with
primary antibody against SERT (1:400; C-20, Santa
Cruz Biotechnology, Inc), NSF (1:500; Cell Signaling
Technology, Inc), cadherin (1:50; Abcam Inc, Cambridge,
MA, USA) or serotonin (1:50; Gene Tex, Inc, Irvine, CA,
USA) diluted in 1% skimmed milk in PBS (-) for 2 h at
RT. Cells were washed in PBS (-) and incubated with the
appropriate fluorophore-conjugated secondary antibody
diluted in 1% skimmed milk in PBS for 60 min at RT.
After washing, the cells were mounted onto microscope
slides in 50% glycerol in PBS (-). Samples were imaged
on a fluorescence microscope (BX53; Olympus, Tokyo,
Japan) or a laser scanning confocal microscope (FluoView
FV1000; Olympus).

Fluorescence-based uptake assay

The fluorescence-based uptake assay employed a fluor-
escent substrate that mimics the biogenic amine neuro-
transmitters and is taken up by the cell through their
specific transporters, resulting in increased fluorescence
intensity [38]. The corresponding fluorescence-based
potencies (FL pICs, values) were determined in a similar
manner to the [*H]-neurotransmitter uptake protocols
[39]. HEK293-hSERT cells were plated in black, 96-well
optical bottom assay plates coated with poly-D-lysine
(#3882, Corning Life Sciences, Lowell, MA, USA) and
transfected with siRNAs as described above. Fluorescent
substrate uptake assays were performed using the Neuro-
transmitter Transporter Uptake Assay Kit (Molecular
Devices Co, Sunnyvale, CA, USA) in accordance with the
manufacturer’s instructions. Kinetic measurements of
relative fluorescence units (integrated over 0.5 ms) were
made using a cycle time of 5 min in a fluorescence micro-
plate reader (SpectraMax MS5; Molecular Devices Co).
Data were normalized to cell number using the 3-
(4,5-dimethylthiazol-2-y1)-2,5-diphenyl tetrazolium brom-
ide (MTT) assay described below. Non-specific uptake
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was determined in the presence of 10 pM fluoxetine, a
selective serotonin reuptake inhibitor.

MTT assay

Cell proliferation was measured with a MTT assay. Cells
were incubated with MTT solution at 37 °C for 6 h. Fol-
lowing removal of the solution, dimethyl sulfoxide was
added, and the amount of formazan formed was measured
spectrophotometrically at 550 nm using a microplate
reader (Bio-Rad, Hercules, CA, USA).

Biotinylation

Biotinylation experiments were performed using the Cell
Surface Protein Isolation Kit (Pierce, Rockford, IL, USA)
in accordance with the manufacturer’s instructions. The
cells were incubated with sulfo-NHS-SS-biotin solution
for 30 min at 4°C, and the biotinylation of membrane
proteins was stopped by adding quenching solution. The
cells were washed and lysed in lysis buffer containing 1x
complete protease inhibitor cocktail (Roche Applied
Science). Cell lysates were incubated with NeutrAvidin
Agarose beads for 1 h at RT. Beads were washed and bi-
otinylated proteins were eluted using SDS-PAGE sample
buffer. Analysis was performed on aliquots taken: (a)
prior to incubation with beads (as total lysate) and (b) of
the bead elute (as the biotinylated membrane fraction).
Then, immunoblot analysis was carried out as described
above. Analysis was performed on aliquots taken: (a)
prior to incubation with beads (as total lysate) and (b) of
the bead elute (as the biotinylated membrane fraction).
Then, Western blot analysis was carried out as described
above. For the biotinylated membrane fraction, after
Western blot analysis, the membrane was stained with
Coomassie Brilliant Blue (CBB) as a protein-loading
control.

Time-controlled transcardiac perfusion cross-linking and
immunoprecipitation

The time-controlled transcardiac perfusion cross-linking
(tcTPC) experiments were performed as described previ-
ously [40]. Mice were anesthetized and perfused with
saline at 25 ml/min for 2 min to purge the blood vessels.
The perfusate was switched to fixative solution (4% for-
maldehyde in PBS (-)) at 25 ml/min and cross-linking
was carried out for 6 min. After perfusion, brains were
rapidly removed from the skull, postfixed in tcTPC
reagent and immediately frozen by immersion in liquid
nitrogen. The perfusion and postfixing procedures were
completed within 15 min. Mouse brains were homoge-
nized on ice using a homogenizer (Iuchi, Osaka, Japan),
in 5 ml of homogenization buffer (50 mM NH,Cl, 40 mM
Tris—HCI, pH 8.0) supplemented with 1x complete prote-
ase inhibitor cocktail (Roche Applied Science) per brain.
The same amount of extraction buffer (20 mM NaCl,
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20 mM Tris-HCl, pH 8.0, 1% NP-40, 1% deoxycholate)
was added, followed by incubation at 4°C for 30 min with
rotation. Insoluble cellular debris was removed by centri-
fugation (3,000 rpm, 10 min), and the supernatants were
then used as a brain extract. Brain extracts were pre-
cleared with 30 pl of protein G-Sepharose (Thermo Fisher
Scientific, Inc, Waltham, MA, USA) for 1 h at 4°C. Cleared
lysates were first incubated with an anti-SERT antibody
(made by two of the authors, TT and SY) at 4°C for 3 h,
and then with 20 pl of protein G-Sepharose for 1 h at RT.
The complex-bound resin was washed five times with IP
buffer (25 mM Tris—HCl, 150 mM NaCl; pH 7.2). Immu-
noprecipitated complexes were boiled in 2x SDS-PAGE
sample buffer for 5 min to elute bound proteins. Western
blot analysis was carried out as described above.

Post-mortem brain tissues

The ethics committee of the Hamamatsu University
School of Medicine approved this study. The Autism
Tissue Program (Princeton, NJ, USA) [41], the National
Institute of Child Health and Human Development’s
Brain and Tissue Bank for Developmental Disorders
(Baltimore, MD, USA) [42] and the Harvard Brain Tissue
Resource Center (Belmont, MD, USA) [43] provided fro-
zen post-mortem brain tissues from dorsal raphe regions
(7 = 11 control and # = 7 autism).

Lymphocyte samples

The participants in this study were 30 male subjects with
autism spectrum disorder (ASD) and 30 healthy male
controls. All participants were Japanese. They were born
and lived in restricted areas of central Japan, including
Aichi, Gifu and Shizuoka prefectures. Based on inter-
views and available information, including hospital re-
cords, diagnoses of ASD were made by an experienced
child psychiatrist (TS) based on the DSM-IV-TR criteria.
The Autism Diagnostic Interview-Revised (ADI-R) [44]
was also conducted by two of the authors (KJT and KM),
both of whom have established reliability for diagnosing
autism with the Japanese version of the ADI-R. The
ADI-R is a semi-structured interview conducted with a
parent, usually the mother, and is used to confirm the
diagnosis and also to evaluate the core symptoms of
ASD. The ADI-R domain A score quantifies impairment
in social interaction, the domain BV score quantifies
impairment in communication, and the domain C score
quantifies restricted, repetitive and stereotyped patterns
of behavior and interests. The ADI-R domain D corre-
sponds to the age of onset criterion for autistic disorder.
The manual for the Wechsler Intelligence Scale for
Children, Third Edition [45], was used to evaluate the
intelligence quotient (IQ) of all the participants. Co-
morbid psychiatric illnesses were excluded by means of
the Structured Clinical Interview for DSM-IV (SCID).
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Participants were excluded from the study if they had
any symptoms of inflammation, a diagnosis of fragile X
syndrome, epileptic seizures, obsessive-compulsive dis-
order, affective disorders or any additional psychiatric or
neurological diagnoses. None of the participants had
ever received psychoactive medications before this study.
Healthy control subjects were recruited locally by adver-
tisement. All control subjects underwent a comprehen-
sive assessment of their medical history to eliminate
individuals with any neurological or other medical disor-
ders. SCIDs were also conducted to identify any personal
or family history of past or present mental illness. None
of the comparison subjects initially recruited was found
to fulfill any of these exclusion criteria.

This study was approved by the ethics committee of
the Hamamatsu University School of Medicine. All
participants as well as their guardians were given a com-
plete description of the study, and provided written infor-
med consent before enrollment. Whole-blood samples
were collected by venipuncture from all participants. Lym-
phocytes were isolated from blood samples by means of
the Ficoll-Paque gradient method (purity 80%) within 2 h
after sampling.

Quantitative real-time reverse-transcription-polymerase
chain reaction

Total RNA was isolated from the dorsal raphe regions of
post-mortem brains and lymphocytes using TRIZOL
reagent (Invitrogen). The RNA samples were further
purified using the RNeasy Micro Kit (QIAGEN, Hilden,
Germany). First-strand ¢cDNA was synthesized from the
RNA samples using the SuperScript III First-Strand
Synthesis System (Invitrogen). Quantitative real-time
reverse-transcription polymerase chain reaction (qQRT-PCR)
analysis was performed using the TagMan method in the
ABI StepOnePlus TM Real-Time PCR System (Applied
Biosystems, Foster City, CA, USA). TagMan assay IDs of
the genes are as follows: SLC644, Hs00984349_m1 and NSE,
Hs00938040_m1l. Actin, beta (ACTB; Hs99999903_ml)
was used as the endogenous reference. Relative quantifica-
tion of NSF and SERT expression levels in post-mortem
brains was performed using the delta-delta Cy method
[46], with the constitutively expressed gene ACTB as an
internal control. Standard curves were constructed for
NSE, SERT and ACTB primers to validate the application
of the delta-delta Ct method. Relative quantification of
NSF and SERT expression levels in lymphocytes was per-
formed using the relative standard curve method, with the
constitutively expressed gene ACTB as an internal control.

Statistical analysis

The data were analyzed using a two-tailed unpaired z-test
after it had been confirmed that there were no statistically
significant differences in variance as assessed by the F test.
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One-way analysis of variance (ANOVA) followed by
Tukey’s correction was used for multiple comparisons.
One-way repeated-measures ANOVA with Tukeys post
hoc test was used for analysis of data from the uptake
assay. The Mann—Whitney U test was used to evaluate
differences in age, post-mortem interval (PMI) and 1Qs
between the autism and control groups, and gene expres-
sion levels in the post-mortem brains and lympho-
cytes between these groups. Fisher’s exact test was
used to evaluate differences in race and gender be-
tween the autism and control groups. Evaluation of
the relationships between NSF expression level and
clinical variables and symptom profiles was performed
using Spearman’s rank correlation coefficient. P values
of less than 0.05 were considered to indicate statistical
significance. All statistical analyses were performed using
statistical analysis software (SPSS, version 12.0 ], IBM,
Armonk, NY, USA).

Results

Identification of N-ethylmaleimide-sensitive factor as a
novel serotonin transporter-binding protein

To identify novel binding proteins for SERT, we con-
ducted pull-down experiments using GST-N-SERT or
GST-C-SERT with and without (as a negative control)
mouse brain lysates. After SDS-PAGE and silver staining
of the gels, at least ten specific bands were observed in
the lane containing proteins eluted from GST-N-SERT
beads incubated with brain lysates, and at least three
bands were observed in the lane containing proteins
eluted from GST-C-SERT beads incubated with brain

Page 6 of 18

lysates (Figure 1A). The protein bands were excised from
the gel and subjected to in-gel trypsin digestion. The
tryptic peptide mixtures were analyzed by mass spec-
trometry. Excluding proteins that bound to both termini
of SERT, we identified seven N-terminal-specific binding
proteins, but no C-terminal-specific binding proteins
(Table 1). One of the N-terminal specific bands, migrating
at around 70 kDa, N-4 (Figure 1A), was identified as NSF,
which regulates membrane fusion events [47,48], based on
24 independent MS spectra (Figure 1B and Table 1). We
focused on the interaction between NSF and SERT in the
present study for the following reasons. First, we identified
NSF as having the highest reliability score (Table 1).
Second, NSF interacts with neurotransmitter receptors,
such as AMPA, B2 adrenergic and GABA, receptors, and
it regulates the membrane trafficking and synaptic
stabilization of these receptors [49-57]. Finally, in the
photoreceptor synapse, the NSF and Arrestin 1 inter-
action regulates expression of vesicular glutamate
transporter 1 and excitatory amino acid transporter 5
in the photoreceptor synapse [58]. These findings suggest
that NSF may interact with neurotransmitter trans-
porters and regulates these functions in the central
nervous system (CNS). To verify the interaction of
NSF with SERT, we conducted Western blot analysis.
GST, GST-N-SERT and GST-C-SERT were incubated
with mouse brain extracts. As shown in Figure 1C,
NSF bound the N-terminal region of SERT specifically. In
support of previous studies, N-terminal-specific binding
of syntaxin-1A was confirmed [21-23] (Additional file 1:
Figure S1).

Figure 1 Identification of NSF as a novel binding partner of SERT. (A) GST-N-SERT and GST-C-SERT were incubated with and without

1 MAGRTHQAAR CPTDELSLSN CAVVNEKDFQ SGOHVHVRTS PNHKYIFTLR
§1 THPSYVPGCI AFSLPORKWA GLSIGQDIEV ALYSFDKAKO CIGTHTIEID
101 FLOKKRIDSH PYDTDEMAAE FIQQFNNOAF SVGQOLVFSF NOKLFGLLVK
151 DIEAHDPSIL KGEPASGKRG KIEVGLVVGN SOVAFEKAEN SSLELIGKAX
201 TKENRGSTIN PD¥NFEKMG] GGLOKEFSDI FRRAFASRVF PPEIVEQUGC
251 KHVKGILLYG PPGCGKTLLA ROIGKMLNAR EPKVVNGPE! LNKYVGESEA
301 HIRKLFADAE EEQRRLGANS GLHIIIFDEL DAICKQRGSM AGSTGVHOTV
351 VHOLLSKIDG VEQULNNILVI GMTNRPDLID EALLRPGRLE VKHEIGLPDE
401 KGRLOILHIH TARMRGHOLL SADYDIKELA VETKNFSGAE LEGLVRAAGS
451 TAEHRHIKAS TKVEVDMEKA ESLQVIRGDF LASLENDIKP AFGTNQEDYA
501 SYINNGIIKW GDPVTRVLDD GELLVOQTKN SDRTPLVSVL LEGPPHSGKT
551 ALAAKIAEES RFPFIKICSP DKMIGFSETA KCGAMKKIFD DAYKSOLSCY
601 VVDDIERLLD YVPIGPRFSN LVLOALLVLL KKAPPQGRKL L1IGTTSRKD
651 VLOEMEMLNA FSTTIHVPNI ATGEQLLEAL ELLGNFKDKE RTTIAQQYKG
701 KKVWIGIKKL LHLIEMSL.OM DPEYRVRKFL ALMREEGASP LDFD

Cc

(as negative controls) the mouse brain extract. Bound proteins were detected by SDS-PAGE and silver staining. At least ten and three specific
bands were observed in the GST-N-SERT and GST-C-SERT lanes, respectively, compared with negative controls. (B) Analysis using Mascot identified
24 peptides (in red) that matched NSF from band N-4 (in red on (A)). (C) N-tail-specific binding of NSF to SERT was confirmed by Western blot
analysis. C-SERT, C-terminal domain of the serotonin transporter; GST, glutathione S-transferase; GST-C, GST-C-SERT; GST-N, GST-N-SERT; N-SERT,
N-terminal domain of the serotonin transporter; NSF, N-ethylmaleimide-sensitive factor; MW, molecular weight.
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Table 1 Identification of GST-N-SERT and GST-C-SERT pulled-down proteins from mouse brain extracts

Spot Gene name Protein name MW (Da) Number Sequence Score Accession N-terminal Cellular and
number coverage number  specific molecular events
N-1 Synj1 Synaptojanin 1 172,509 23 14% 785  Q8CHC4  x Endocytosis
N-2 Cand1 Cullin-associated NEDDS- 136,245 14 10% 526 Q67038 SCF complex assembly
dissociated protein 1
N-3 Aco2 Aconitate hydratase, 85410 14 19% 534 Q99KI0
mitochondrial
N-4 Nsf Vesicle-fusing ATPase (NSF) 82,561 24 27% 1,010 P46460
N-5 Atpévia V-type proton ATPase 68,283 13 21% 466  P50516 * Hydrolysis
catalytic subunit A
N-6 Crmp1 Dihydropyrimidinase-related 62,129 12 20% 441 p97427 B Axon guidance and
protein 1 cell migration
N-7 Cet2? T-complex protein 1 subunit beta 57,441 11 19% 202 P80314 Molecular chaperone
N-8 Fscnl Fascin 54,474 14 25% 174 Q61553 Actin filament binding
N-9 Enol Alpha-enolase 47,111 16 24% 703 P17182
N-10 Cnp 2' 3"cyclic-nucleotide 47,094 22 40% 341 P16330
3"phosphodiesterase
C1 Aco2 Aconitate hydratase, 85410 8 9% 287 Q99KI0
mitochondrial
C-2 Enol Alpha-enolase 47,111 8 20% 384 P17182
C-3 Cnp 2'3"cyclic-nucleotide 47,094 18 32% 225  P16330

3"-phosphodiesterase

C-SERT, C-terminal domain of the serotonin transporter; GST, glutathione S-transferase; MW, molecular weight; N-SERT, N-terminal domain of the

serotonin transporter.

Co-localization of serotonin transporter and N-
ethylmaleimide-sensitive factor in HEK293-hSERT cells
The subcellular localization of SERT and NSF was exam-
ined using immunofluorescence confocal microscopy.
NSF is expressed endogenously in HEK293 cells. We
established a stable human SERT-expressing cell line,
HEK293-hSERT, using HEK293 cells as described in the
Methods section. It was confirmed that SERT was trans-
ported to the plasma membrane in this cell line by
double staining using antibodies to SERT and cadherin,
a membrane marker (see Additional file 2: Figure S2).
"HEK293-hSERT cells were double labeled with antibodies
to NSF and SERT, and it was revealed that NSF co-localized
with SERT in the plasma membrane (Figure 2A,B,C) and
intracellular particles (Figure 2D,EF).

Effect of N-ethylmaleimide-sensitive factor knockdown on
serotonin transporter function and cellular localization

We used RNA interference to knock down endogen-
ous NSF expression. We confirmed that the efficacy of
siRNA transfection into HEK293-hSERT cells was >90%
(see Additional file 3: Figure S3). As shown in Figure 3A,B,
it was confirmed that both of the siRNAs (siRNA-1 and -2)
targeting NSF suppressed endogenous NSF protein levels
by approximately 60% (P <0.001, one-way ANOVA with
Tukey’s post hoc test, n=3 each). Importantly, whole-cell
SERT protein levels were not changed significantly by the
siRNAs targeting NSF (Fp14) = 1.057; P=0.374, one-way
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ANOVA, n =5 to 6 each) (Figure 3C,D). To investigate the
effect of NSF on SERT uptake function, we conducted a
fluorescence-based uptake assay in HEK293-hSERT cells.
As shown in Figure 4, both NSF siRNAs decreased fluores-
cence uptake (siRNA-1; P=0.005 and siRNA-2; P <0.001,
one-way repeated measures ANOVA with Tukey’s post hoc
test, n=8 each). Fluoxetine completely inhibited uptake
(Figure 4), including nonspecific uptake.

Next, we conducted biotinylation experiments in
HEK293-hSERT cells using sulfo-NHS-SS-biotin. This
compound, which binds to lysine and arginine residues
in proteins, is cell impermeant and labels cell-surface pro-
teins. Cells transfected with the siRNA of NSF (siRNA-2)
or a negative control were incubated with sulfo-NHS-SS-
biotin, followed by isolation of labeled proteins with avidin
beads and analysis by Western blotting using anti-SERT
antibodies. For the biotinylated membrane fraction, after
Western blot analysis, the membrane was stained with CBB
as a protein-loading control (Additional file 4: Figure S4).
As shown in Figure 5A,B, the level of SERT protein at
the cell membrane was decreased by an average of
50% (t=5.399; df=16; P<0.001, two-tailed unpaired
t-test, n=9) following NSF knockdown, despite no
change in the total levels of SERT protein (f=-1.565;
df=10; P=0.149, two-tailed unpaired -test, # = 6). Finally,
we examined the distribution of SERT in HEK293-hSERT
cells when NSF was suppressed. In support of the re-
sults of the experiment using sulfo-NHS-SS-biotin, the
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Figure 2 NSF co-localizes with SERT in HEK293-hSERT cells. (A,B,C) Double immunocytochemical staining for SERT (green) and NSF (red) in
HEK293-hSERT cells. NSF co-localizes with SERT in the cell membrane (merged). (D,E,F) High-magnification views of the regions boxed in panels
(A), (B) and (C), respectively. Arrowheads indicate double-positive intracellular particles. Scale bar: 10 um. Results are representative of three
independent experiments. NSF, N-ethyimaleimide-sensitive factor; SERT, serotonin transporter.

membrane expression of SERT was decreased by NSF
knockdown in HEK293-hSERT cells (Figure 5C).

Association between serotonin transporter and
N-ethylmaleimide-sensitive factor in vivo

To determine the physiological significance of our findings
in vivo, we examined: (a) the interaction between SERT
and NSF in the mouse brain by immunoprecipitation and
Western blotting and (b) the cellular distributions of NSF
and SERT in cultured mouse raphe neurons by immuno-
cytochemistry and microscopy.

Schmitt-Ulms and colleagues have established a method
that covalently conserves protein interactions through
tcTPC [40]. This method enables the preservation of pro-
tein—protein interactions that occur under physiological
conditions. We investigated the interaction of SERT with
NSF in the mouse brain using this tcTPC method. First,
we examined the accuracy of the method. Total protein
from non-tcTPC- or tcTPC-treated mouse brains was an-
alyzed by immunoblotting, and we confirmed that SERT-
containing cross-linked complexes were retained by this
method (see Additional file 5: Figure S5A). Second, we
checked whether the complexes were precipitated by anti-
SERT antibodies and confirmed that SERT-containing
cross-linked complexes were precipitated in a dose-
dependent manner using this antibody (see Additional
file 5: Figure S5B). Then, finally, we investigated the
binding of SERT to NSF. As shown in Figure 6A, NSF co-
immunoprecipitated with SERT from tcTPC-treated
brain cells indicating that NSF interacts with SERT in

the mouse brain under physiological conditions. Next,
the cellular distributions of NSF and SERT in cultured
mouse raphe neurons were examined. About 10% of all
cultured cells were 5-HT-positive neurons in support of a
previous report (data not shown) [36]. NSF was ubiqui-
tously expressed in all cultured cells (data not shown). As
shown in Figure 6B, triple immunocytochemical staining
for SERT, NSF and 5-HT revealed that NSF co-localizes
with SERT in the cell body and fibers of cultured seroto-
nergic neurons.

SLC6A4 and N-ethylmaleimide-sensitive factor expression
in the raphe region of post-mortem brains from autism
patients

The demographic characteristics of subjects (seven with
autism and eleven control subjects) are described in
Tables 2 and 3. There were no significant differences in
age (P=1.000, Mann-Whitney U test), race (P=0.305,
Fisher’s exact test), gender (P = 0.596, Fisher’s exact test)
and PMI (P = 0.513, Mann—Whitney U test) between the
autism and control groups (Table 3). Although changes
in SERT function and expression have been implicated
in autism, mRNA expression of the SLC6A4 gene that
encodes SERT in the brains of autistic individuals
has never been reported. Therefore, first, we measured
SLC6A4 expression in the raphe region of post-mortem
brains from autistic individuals and controls using qRT-
PCR. SLC6A4 expression was normalized to the expres-
sion levels of an internal control (ACTB). As shown in
Figure 7A, there are wide individual differences in the
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Figure 3 Knockdown efficiency of NSF siRNAs and effect on expression level of SERT in HEK293-hSERT cells. Two siRNAs targeting
specific NSF sequences were transfected into HEK293-hSERT cells. (A) The expression levels of NSF and B-actin (as an internal control) were
assayed by immunoblot analysis. (B) Quantitation of relative band densities for NSF was performed by scanning densitometry. Data are expressed
as the means =+ standard deviation, n=3. **P <0.001 vs internal control (one-way ANOVA with Tukey's post hoc test). (C) The expression levels of
SERT and B-actin (as an internal control) were assayed by immunoblot analysis. (D) Quantitation of relative band densities for SERT was performed
by scanning densitometry. Data are expressed as the means + standard deviation, n=5 or 6. NSF, N-ethylmaleimide-sensitive factor; SERT,
serotonin transporter; siRNA, small interfering RNA.

expression level of SLC6A4 among the subjects, and the carry SERT [60]. Thus, we measured expressions of
level did not differ significantly between subjects with  these genes in lymphocytes from individuals with ASD
autism and controls (P =0.928, Mann—-Whitney U test). and age- and sex-matched controls by qRT-PCR. The
Then, we measured NSF expression in the same way. NSF~ demographic characteristics of the subjects (30 with
expression was normalized to the expression of ACTB. ASD and 30 control subjects) are described in Table 4.
We found that the NSF expression level in autism patients ~ There were no significant differences in age (P=0.928,
tended to be lower than that in controls; however, this Mann—Whitney U test) or 1Qs (verbal 1Q, P=0.098,
trend was not statistically significant (P=0.069, Mann—  Mann-Whitney U test; performance 1Q, P = 0.076, Mann—
Whitney U test) (Figure 7B). Whitney U test; full-scale 1Q, P = 0.554, Mann—Whitney U

test) between the ASD and control groups (Table 4). As
SLC6A4 and N-ethylmaleimide-sensitive factor expression in shown in Figure 8A, the expression level of SLC6A4 did
lymphocytes from patients with autism spectrum disorders not differ significantly between subjects with ASD and
NSF is expressed ubiquitously in all normal human controls (P =0.518, Mann—Whitney U test). On the other
tissues including lymphocytes [59]. Lymphocytes also  hand, we found that the NSF expression level in ASD
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Figure 4 NSF knockdown results in decreased uptake function
of SERT in HEK293-hSERT cells. Fluorescent substrate uptake
activity was significantly decreased in HEK293-hSERT cells transfected
with siRNAs targeting specific NSF sequences, SiRNA-1 (#) and
siRNA-2 (A), compared with negative control (o) (control vs siRNA-1
P <001, and control vs siRNA-2 P < 0001, one-way repeated measures
ANOVA with Tukey's post hoc test). Nonspecific uptake was determined
in the presence of 10 uM fluoxetine (m). Data are expressed as a
percentage of the control level. Each point corresponds to the

mean + standard deviation, n=8. siRNA, small interfering RNA.

patients were significantly lower than that in controls
(P=0.0011, Mann—Whitney U test) (Figure 8B). More-
over, there was a significantly negative correlation between
NSF expression and ADI-R Domain A score, which quan-
tified impairment in social interaction, in individuals with
ASD (r,=0.131, P=0.0498, Spearman’s rank correlation
coefficient test) (Figure 8C). There were no significant
correlations between NSF expression levels and levels of
SLC6A4 and any other symptom profile or clinical vari-
ables (data not shown).

Discussion

In this study, NSF was identified as a novel SERT-
binding protein interacting with the N-terminal region
of SERT. NSF knockdown resulted in decreased mem-
brane expression of SERT and decreased uptake of sub-
strate. These results clearly show that NSF modulates
SERT membrane trafficking, which is consistent with its
uptake function. An immunoprecipitation assay using
mouse brain and immunocytochemistry of cultured
mouse raphe neurons clearly indicated that SERT-NSF
complexes were formed under physiological conditions
in vivo. In addition, a study of post-mortem brains re-
vealed that the SLC6A4 expression level was not affected
in subjects with autism, but the NSF expression level in
the raphe region tended to be decreased; however, this
potential trend is not statistically significant. In lympho-
cytes, the SLC6A4 expression level was also unchanged,
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but the NSF expression level was significantly decreased
in subjects with ASD and correlated with the severity of
clinical symptoms.

N-ethylmaleimide-sensitive factor functions and protein -
binding

NSF is a homohexameric ATPase [61,62], which is an
essential component of the protein machinery respon-
sible for various membrane fusion events, including
intercisternal Golgi protein transport and the exocytosis
of synaptic vesicles [63]. NSF binds to soluble NSF
attachment protein—receptor (SNARE) complexes and
mediates the recycling of spent SNARE complexes for
subsequent rounds of membrane fusion [63,64]. While
this is a major function of NSF, it also interacts with
receptor proteins, such as AMPA, B2 adrenergic and
GABA, receptors, and is thought to affect their trafficking
patterns or recycling [49-57]. Additionally, an interaction
between NSF and arrestin 1 regulates the expression
of vesicular glutamate transporter 1 and excitatory amino
acid transporter 5 in the photoreceptor synapse [58]. In
the present study, we found, for the first time, that NSF
binds the neurotransmitter transporter SERT and regu-
lates its function in the CNS.

Serotonin transporter forms complexes with N-
ethylmaleimide-sensitive factor in vivo

Several putative SERT-binding proteins have been repor-
ted [21-32]. However, almost all of these were identified
using the yeast two-hybrid system and little is known
regarding whether any of these proteins bind to SERT
and regulate its function in the mammalian brain. Also,
little is known about the involvement of these proteins
in autism [65,66]. Therefore, in this study, we used a
pull-down system together with mouse brain tissue to
identify novel SERT-binding proteins. Moreover, we used
the tcTPC method, which is an innovative tool for study-
ing proteins in living tissues [40]. This method enabled
us to preserve protein—protein interactions occurring
under physiological conditions. This cross-linking also
preserves membrane protein assemblies, which are
degraded by solubilizing detergents. For instance,
whereas most detergents cause rapid disintegration of
the y-secretase complex, three of four known components
of the complex were purified and identified from harsh
detergents and a high salt concentration by tcTPC [40].
Because NSF was not co-immunoprecipitated with SERT
from non-tcTPC-treated brains (Figure 6A), it is likely
that SERT-NSF complexes are sensitive to solubilizing
detergents. The discovery of complexes including NSF
and SERT, which form in the mammalian brain under
physiological conditions, in the present study, is important
from the viewpoint of their potential involvement in the
pathophysiology of disorders such as autism. It is not yet
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(See figure on previous page.)

Figure 5 NSF knockdown results in decreased SERT expression at the plasma membrane in HEK293-hSERT cells. (A) Biotinylation
experiments in HEK293-hSERT cells transfected with siRNA-2 targeting a specific NSF sequence or negative control. Transfected cells were
incubated with sulfo-NHS-5S-biotin, and labeled proteins were analyzed by immunoblotting using anti-SERT antibodies. (B) Quantitation of relative
band densities for SERT was performed by scanning densitometry. Data are expressed as the means + standard deviation, n=6 to 9. **P <0001 vs
negative control (two-tailed unpaired t-test). (C) Double immunocytochemical staining for SERT (green) and NSF (red) in HEK293-hSERT cells transfected
with control siRNA (upper panels) and siRNA for NSF (siRNA-2, lower panels). Scale bar: 10 pum. Results are representative of three independent
experiments. NSF, N-ethylmaleimide-sensitive factor; SERT, serotonin transporter; siRNA, small interfering RNA.

clear whether NSF binds SERT directly or indirectly. In
addition, the band for the SERT-NSF complex was
smeared, suggesting that multiple types of SERT-NSF
complexes exist. It is possible that SERT interacts with
NSF through other proteins. Indeed, it is possible that
GABA 4 receptors interact with NSF via GABA, receptor-
associated protein, and regulate its intracellular distribu-
tion and recycling [56,67]. Detailed analyses of these
SERT-NSF complexes are needed.

Serotonin transporter and N-ethylmaleimide-sensitive
factor expressions in autism

Recently, Nakamura and colleagues reported that the
levels of SERT based on its radioligand binding were
significantly lower throughout the brain in autistic indi-
viduals compared with controls [17]. On the other hand,
Azmitia and colleagues reported increased immunoreac-
tivity to a SERT antibody of serotonin axons in the post-
mortem cortex of autism patients [18). Our results show

IP: SERT
IB: NSF

SERT-NSF
complex

<€ NSF

NSF 5-HT |

| SERT | || SERT/NSF

)

i

Figure 6 NSF interacts with SERT in vivo. (A) Interaction of SERT with NSF in mouse brain. Immunoblot of total proteins from non-tcTPC- and
tcTPC-treated mouse brains (as input, lanes 1 and 2, respectively). Proteins from non-tcTPC- or tcTPC-treated mouse brains were immunoprecipitated
with SERT antibodies (lane 3 and 4), and the resulting immunoblot was probed for NSF. In immunoprecipitated samples using tcTPC-treated mouse
brains, SERT-NSF complexes and free NSF were identified (lane 4). Results are representative of three independent experiments. (B) NSF co-localizes
with SERT in primary cultures of mouse raphe nuclei neurons. Triple immunocytochemical staining for SERT (green), NSF (red) and 5-HT (blue) in
primary cultures of mouse raphe nuclei neurons. The third panel (merged) shows that NSF co-localizes with SERT primary cultures of mouse raphe
nuclei neurons. These neurons are 5-HT-positive serotonergic neurons (as shown in the fourth panel). Scale bars: 10 pm. Results are representative of
three independent experiments. 5-HT, 5-hydroxytryptamine; 1B, immunoblotting; IP, immunoprecipitation; MW, molecular weight; NSF, N-ethylmalei-
mide-sensitive factor; SERT, serotonin transporter; tcTPC, time-controlled transcardiac perfusion cross-linking.
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Table 2 Information for post-mortem brain tissues
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Sample ID Diagnosis Age (years) Gender Post-mortem interval (hours) Race Cause of death
1065 Control 15 M 12 Caucasian Multiple injuries
1297 Control 15 M 16 African-American Multiple injuries
1407 Control 9 F 20 African-American Asthma

1541 Control 20 F 19 Caucasian Head injuries

1708 Control 8 F 20 African-American Asphyxia, multiple injuries
1790 Control 14 M 18 Caucasian Multiple injuries
1793 Control 12 M 19 African-American Drowning

1860 Control 8 M 5 Caucasian Cardiac arrhythmia
4543 Control 29 M 13 Caucasian Multiple injuries
4638 Control 15 F 5 Caucasian Chest injuries
4722 Control 14 M 16 Caucasian Multiple injuries
797 Autism 9 M 13 Caucasian Drowning

1638 Autism 20 F 50 Caucasian Seizure

4231 Autism 8 M 12 African-American Drowning

4721 Autism 8 M 16 African-American Drowning

4899 Autism 14 M 9 Caucasian Drowning

5000 Autism 27 M 83 NA NA

6294 Autism 16 M NA NA NA

F, female; M, male; NA, not available.

that, at least, SLC6A4 mRNA expression is normal in
the raphe region of post-mortem brains from subjects
with autism. Our findings and previous results lead us to
two suggestions. First, although the transcription of
SLC6A4 is normal in subjects with autism, the level of
SERT protein at the pre-synaptic membrane is decreased
because of an impairment of the trafficking system.
Second, SERT protein that is not delivered to the pre-
synaptic membrane accumulates in axon fibers in the
brains of subjects with autism. In lymphocytes, we found
that SLC6A4 expression was not changed in subjects
with ASD. In contrast with our finding, Hu et al. previ-
ously reported that there was a significant decrease in
the expression in the more severely affected twin for
autistic twin pairs studied using lymphoblastoid cell lines
[68]. This study used lymphoblastoid cell lines, not
lymphocytes, from only three sets of discordant twins,
and SLC6A4 expression was not compared with normal

controls [68]. These differences may be the cause of the
discrepancies between the present study and that report.

We found that the NSF expression levels tended to de-
crease in the raphe region of post-mortem brains from
subjects with autism; however, this trend was not statisti-
cally significant (= 11 control and » = 7 autism). Further
studies with larger numbers of post-mortem brains are
needed to clarify NSF expression status in the brain of aut-
ism patients. In lymphocytes, we found, for the first time,
that NSF expression was significantly lower in subjects
with ASD and lower NSF expression correlated with the
severity of impairments in social interaction. Our findings
suggest that peripheral NSF mRNA levels may serve as a
reliable peripheral biological marker of ASD.

Sullivan et al. reported that the expression levels of a
number of biologically relevant genes are statistically
similar between lymphocytes and CNS tissues including
the brain, and suggested that the cautious and thoughtful

Table 3 Demographic data associated with raphe brain-tissue samples

Control (n=11) Autism (n=7) P value
Age (years) (range) 1445 (8-29) 14.57 (8-27) NS?
Race, n (%) Caucasian 7 (63.6), African-American 4 (364) Caucasian 3 (42.9), African-American 2 (286), NA 2 (286) NS°
Gender, n (%) Male 7 (63.6), Female 4 (36.4) Male 6 (85.7), Female 1 (14.3) NSP
Post-mortem interval (hours) (range) 14.82 (5-20) 18.05 (8.3-50) NS

?Derived from Mann-Whitney U test, Derived from Fisher’s exact test.
NA, not available; NS, not significant.
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Figure 7 SLC6A4 and NSF expression in the raphe region of post-mortem brains. Comparison of SLC6A4 (A) and NSF (B) expression levels
in the raphe region of post-mortem brains from control and autistic subjects. The Mann-Whitney U test was used to compare gene expression
levels between autism and control groups. Data are presented as the means + standard error of the mean. n=11 control and n =7 autism. NSF,
N-ethylmaleimide-sensitive factor.

use of lymphocytic gene expression may be a useful sur-
rogate for gene expression in the CNS when it has been
determined that the gene is expressed in both [69]. In
support of previous findings [59,60], the expressions of
SLC6A4 and NSF were detected in both tissues, and it is
likely that levels of SLC6A4 and NSF in the peripheral
lymphocytes may reflect the levels in post-mortem brains,
although further study is needed.

The serotonin transporter-N-ethylmaleimide-sensitive
factor binding and implications for pathophysiology in
autism

Sanyal and Krishnan reported a lethal mutation in the
Drosophila homolog of NSF [70]. Intriguingly, mutant
adult survivors show abnormal seizure-like paralytic
behavior [70]. Additionally, Matveeva and colleagues
reported that decreased production of NSF is associated
with epilepsy in rats [71]. Importantly, a high rate of co-

occurrence of autism and epilepsy has been described
[72-76]. Approximately 30% of children with autism
have epilepsy and 30% of children with epilepsy have
autism [77]. Interestingly, an abnormal status for SERT
has been reported in epileptic patients as follows. Auto-
radiography experiments have revealed that the temporal
neocortex surrounding the epileptic focus of patients
with mesial temporal lobe epilepsy presents diminished
SERT binding in all cortical layers [78]. A significant de-
crease was found in the SERT density in the platelet
membranes from epileptic patients having undergone an
epileptic seizure [79,80]. Additionally, it has been shown
that epileptic patients who had been treated with in-
hibitors of serotonin reuptake, such as fluoxetine and
citalopram, in addition to their ongoing antiepileptic
therapy displayed remarkable clinical improvements
[81,82]. This indirect evidence implies the relationship
between SERT and NSF in neurological disorders, such

Table 4 Demographic data associated with lymphocyte samples

Control (N =30)° Autism (N =30)° P value

Age (years) 11.1+23 (6-16) 11.6+27 (7-16) NS?
ADI-R

Domain A score 20.0+53 (10-30)

Domain BV score 143 +40 (8-23)

Domain C score 85134 (3-9)

Domain D score 31+£1.1(1-5)
WISCHI

Verbal 1Q 99.1 +10.3 (77-120) 904 +28.7 (44-153) NS®

Performance 1Q 970+102 (76-114) 89.8+229 (47-131) NS*

Full-scale 1Q 97.8+95 (82-115) 89.0 + 269 (42-140) NS?

2Derived from Mann-Whitney U test; Pvalues are expressed as mean = standard

deviation (range).

ADI-R, Autism Diagnostic Interview-Revised; 1Q, intelligence quotient; NS, not significant; WISC-II, the third edition of the Wechsler Intelligence Scale for Children.
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Figure 8 SLC6A4 and NSF expression in lymphocytes. Comparison of SLC6A4 (A) and NSF (B) expression levels in lymphocytes from control
and ASD subjects. The Mann-Whitney U test was used to compare gene expression levels between autism and control groups. Data are
presented as the means =+ standard error of the mean. n = 30 control and n = 30 autism. The NSF expression levels in ASD patients were significantly
lower than in controls (P=0.0011). {C) Correlation between lymphocyte NSF expression levels and Autism Diagnostic Interview-Revised (ADI-R) domain
A scores in autistic subjects. There was a negative correlation between lymphocyte NSF expression levels and ADI-R domain A scores (r;=0.131,
P=0.0498), n = 30 autism. ADI-R, autism diagnostic interview-revised; NSF, N-ethylmaleimide-sensitive factor.
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as autism. Further investigations of the status of SERT~
NSF binding in the brain of autism patients would be
useful for understanding the mechanisms that underlie
autism. In addition, an animal model, such as an NSF
conditional knockout mouse, would be a useful tool for
understanding the mechanisms that underlie ASD.

As mentioned above, NSF interacts with neurotrans-
mitter receptors such as AMPA, P2 adrenergic and
GABA, receptors, and regulates the membrane traffick-
ing and recycling of these receptors [49-57]. An abnor-
mal status of many of these receptors has been reported
in autism. Binding of GABAu5 and its radioligand was
significantly lower throughout the brains of participants
with ASDs compared with controls [83]. The mRNA levels
of AMPA receptor were significantly increased in the
post-mortem cerebellum of autistic individuals, while the
receptor density was slightly decreased in people with
autism [84]. It is possible that NSF may contribute to the
pathophysiology of autism through these known interac-
tions with relevant molecules.
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Conclusions

This study showed that dysfunctional trafficking of SERT
mediated by NSF may be linked with the pathophy-
siology of autism. The identification of SERT-binding
proteins provides new opportunities not only to dissect
the accessory components involved in SERT function
and regulation, but also to elucidate the pathophysiology
of psychiatric disorders or developmental disorders, such
as autism. Future studies should examine the patho-
physiological implications of SERT-NSF interactions for
autism.

Additional files

Additional file 1: Figure S1. N-tail-specific binding of syntaxin-1A to
SERT was confirmed by Western blot analysis.

Additional file 2: Figure S2. SERT is transported to the plasma
membrane in HEK293-hSERT cells. (A, B) Double immunocytochemical
staining for SERT (green) and the membrane maker cadherin (red) in
HEK293-hSERT cells. {C) SERT was mainly co-localized with the membrane
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maker (cadherin) (merged). Scale bar: 10 pm. Results are representative of
three independent experiments.

Additional file 3: Figure $3. Transfection efficacy of siRNA in HEK293-
hSERT cells. We determined the proportion of siRNA-transfected HEK293-
hSERT cells using a commercially available fluor-oligo kit (TYE 563 DS,
Integrated DNA Technologies). The proportion of siRNA-transfected cells
was 90%. Upper panels show untreated cells and lower panels show red
fluorescent oligo-transfected cells. Left panels show phase-contrast
images and right panels show the images obtained by fluorescence
microscopy (excitation: 546 nm, emission: 590 nm). Scale bar: 50 um.
Results are representative of three independent experiments.

Additional file 4: Figure S4. CBB staining of membranes from
biotinylated fractions. Biotinylation experiments in HEK293-hSERT cells
transfected with siRNA-2 targeting a specific NSF sequence or negative
control. Transfected cells were incubated with suifo-NHS-SS-biotin.
After Western blot analysis, the membrane was stained with CBB as a
protein-loading control.

Additional file 5: Figure S5. Confirmation of tcTPC efficacy. {A)
Western blotting of total proteins from non-tcTPC- or tcTPC-treated
mouse brains (lanes 1 and 2, respectively) using anti-SERT antibodies.
Results are representative of three independent experiments. It was
confirmed that SERT-containing cross-linked complexes were retained by
the tcTPC method (lane 2). (B) Proteins from non-tcTPC- or tcTPC-treated
mouse brains were immunoprecipitated with rat immunoglobulin G (IgG)
as a negative control (lanes 1 and 5) and SERT antibodies (lanes 2 to 4
and 6 to 8), and the resulting Western blot was probed for SERT. In
immunoprecipitated samples using tcTPC-treated mouse brains,
SERT-containing cross-linked complexes were identified (lanes 6 to 8) in a
dose-dependent manner. Results are representative of three independent
experiments.
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Abstract Children with high-functioning pervasive developmental disorder (HFPDD)
often have motor coordination dysfunction. However, there is no assessment tool for
screening developmental coordination disorder (DCD) in Japan, which makes it diffi-
cult to evaluate the actual motor impairments of children with HFPDD. We evaluated
the motor coordination function of 54 school-age boys with HFPDD using the Japanese
version of the Developmental Coordination Disorder Questionnaire (DCDQ-J). We
subsequently assessed the relationship between DCDQ-J scores and the results of the
Japanese version of the Autism Diagnostic Intérview-Revised (ADI-R) of 48 boys. The
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total and subscale DCDQ-J scores of the boys with HFPDD were significantly
lower than the population means in the same grade: 37.0 % were below 2
standard deviations for the total score, 38.9 % for control during movement,
26.0 % for fine motor/handwriting, and 37.0 % for general coordination.
Furthermore, the scores of Qualitative Abnormalities in Communication in the
ADI-R were negatively correlated with control during miovement, fine motor/
handwriting, and total scores in the DCDQ-J. This study is the*first to show
Japanese children with HFPDD frequently exhibit considerably poor motor
coordination according to the DCDQ-J. The screening or .assessment of motor
dysfunction in HFPDD using assessment tools such as the DCDQ could aid the
development of interventions for these underestimated problems in Japan.

Keywords High-functioning pervasivé developmental disorder (HFPDD) -

Developmental coordination disorder (DCD) - Developmental coordination disorder
questionnaire (DCDQ) - Motor coordination dysfunction - Autism diagnostic interview-
revised (ADI-R) - Questionnaire

Introduction

Clinically, children with high-functioning pervasive developmental disorder
(HFPDD) often have motor coordination dysfunction, which is often referred
to as “clumsiness” (Sturm et al. 2004). This motor coordination problem is
applicable to Developmental Coordination Disorder (DCD) in the Diagnostic
and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision
(DSM-IV-TR) (American Psychiatric Association 2000). From their meta-

~ analysis, Fournier et al. (2010) conclude motor coordination deficits are a

cardinal feature of autism spectrum disorders (ASD) including HFPDD.
However, there is currently no assessment tool to facilitate the screening of
DCD in Japan, which makes it difficult to evaluate the actual ‘motor impair-
ments of children with HFPDD. The Developmental Coordination Disorder
Questionnaire (DCDQ) is a parent-rated scale for screening for pediatric DCD
(Wilson et al. 2000, 2009). The DCDQ has already been translated into many
languages, and the European Academy for Childhood Disability (EACD) guide-

. line recommends it as the best-evaluated questionnaire (Blank et al. 2012). We

recently developed the Japanese version of the DCDQ (DCDQ-J) for Japanese
children and investigated its reliability and applicability as a screening tool for
DCD in Japanese children (Nakai et al. 2011). Green et al. (2009) investigated
the degree of movement skill impairments in children ASD using the .
Movement Assessment Battery for Children (M-ABC) (Henderson and Sugden
1992) and DCDQ. They report the DCDQ performs moderately well as a tool
for screening possible motor difficulties in children with ASD. In the present
study, we investigated the degree of motor coordination dysfunction in Japanese
children with HFPDD using the DCDQ-J. We also assessed the relationships of
DCDQ scores with ASD symptoms and cognitive functions using the Autism
Diagnostic Interview-Revised (ADI-R) and Wechsler Intelligence Scale for

Children, 3rd edition (WISC-III). ' '
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Methods
Participants

The participants of this study were drawn from 176 school-age children who were
members of a nonprofit organization for families with-children with PDD. The partic-
ipants were diagnosed with PDD by child and adolescent psychiatrists on the basis of the
DSM-IV-TR criteria. Questionnaires were sent to the parents. We collect responses from
104 respondents. The exclusion criteria were epilepsy, psychiatric disorders (e.g.,
depression, bipolar disorder, and schizophrenia), genetic and chromosomal disorders,
and hearing and visual impairments. Comorbid disorders were assessed by clinical
interview. We excluded 7 cases because of faulty answer, the cases of 16 girls, 14 cases
with mental retardation, and 13 cases missing results for the full-scale IQ of the Japanese’
version of the WISC-III (Japanese WISC-III Publication Commiittee 1998). We ulti-
_mately enrolled 54 boys with HFPDD (IQ>70). The mean participant age was 11.5 years
(range: 6 years 10 months to 15 years 5 months). Thirty-six participants were elementary
school students: 5, 3, 8, 6, 6, and 8 in the 1st through 6th years, respectively. Eighteen
boys were junior high school students: 8, 6, and 4 in the lst, 2nd, and 3rd years,
respectively. The mean full IQ was 106.6 (range: 72-146). Among the 54 participants,
15 took medications: 7 took risperidone, 4 took selective serotonin reuptake inhibitors
(SSRIs), 3 took methylphenidate, 3 took anti-epileptic drugs (carbamazepine: 2,
valproate: 1) as mood stabilizers, 1 took haloperidol, and 1 took alprazolam.
Forty-eight boys underwent ADI-R interviews performed by Japanese interviewers
who had undergone a 3-day ADI-R training workshop in the US (Lord et al. 1994).
They created a Japanese translation of the ADI-R and received permission from the
original author and publisher to use it after validating it on a Japanese sample (Tsuchiya
et al. 2013). According to the ADI-R scores, 39, 3, and 6 participants were diagnosed
with autistic disorder, Asperger disorder, and PDD not otherwise specified.
This study was approved by the Ethics Committee of the Hamamatsu University
Schiool of Medicine. Written informed consent was obtained from all parents of the
participants prior to participation.

DCDQ-J

The DCDQ is a parent-rated questionnaire designed to screen for coordination disorders
in children aged 5-15 years. It comprises the following 15 items in 3 subscales: ‘“‘control
during movement” (CDM, 6 sub-items), “fine motor/handwriting” (FM, 4 sub-items),
and “general coordination” (GC, 5 sub-items). Each item is scored on a 5-point scale
based on a comparison between the child and other children as follows: “not at all like
your child” (1 point), “a bit like your child” (2 points), “somewhat like your child” (3
points), “quite a bit like your child” (4 points), and “very much like your child” (5
points); higher scores indicate better coordination. We recently developed the DCDQ-J
and conducted a preliminary investigation of its reliability and psychometric properties
using relatively large population samples (Nakai et al. 2011). The results indicate the
DCDQ-J is a useful screening tool for DCD in Japan. In the present study, we used the
population mean scores of Japanese children at-each school level from preschool (i.e.,
5 years old) to the 3rd year of junior high school (i.e., 15 years old) (Nakai et al. 2011).
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Statistical Analysis

The differences between the mean scores of the boys with HFPDD and population
means of Japanese boys at each grade were compared using the Z statistic. The level of
significance was set at P<0.05. Spearman rank correlation coefficients were calculated
to evaluate the correlations of DCDQ-J with and WISC-III and ADI-R scores, PASW
Statistics 18.0 (SPSS Inc.) was used for all statistical analyses.

Results

Among all boys with HFPDD, 37.0 %, 38.9 %, 26.0 %, and 37.0 % had total, CDM,
FM, and GC scores below 2 standard deviations (SDs) of the population mean,
respectively (Table 1). The mean total DCDQ-J scores of the boys with HFPDD were
significantly lower than the mean scores of the test standardization population of
Japanese boys at the same school level (Figs. 1, 2, 3 and 4). However, the CDM and
FM subscale scores in the second year of elementary school and the FM subscale score
in the third year of junior high school were not significantly different between the boys
with HFPDD and the population mean. Our previous study revealed that in Japanese
children, the total, CDM, and FM scores increase linearly with increasing grade while
GC scores exhibit non-linear changes (Nakai et al. 2011). In contrast, in the present
study, the total, CDM, and FM scores of the boys with HFPDD remained low in all
grades, except FM scores in the third grade of junior high school (Fig. 3). None of the
DCDQ-J scores of the 15 boys who took medication differed significantly from those
of other boys without medication. ‘

The correlations of the subscale and total DCDQ-J scores with Verbal 1Q (VIQ; n=
50), Performance IQ (PIQ; n=50), and Full-scale 1Q (FIQ; n=54) in the WISC-III as
well as the ADI-R domain scores (n=48) are shown in Table 2. However, no correla-
tions were found between the subscale and total DCDQ-J scores with VIQ or FIQ in the
WISC-III. However, the PIQ score of the WISC-IIT was moderately correlated with the
FM score in the DCDQ-J (#=0.30, P=0.034). Furthermore, the score of Qualitative
Abnormalities in Communication in the ADI-R was moderately negatively

Table 1 Number (pcrcentage) of participants with total and DCDQ-J subscalc scores according to SD

-3 SD* -3--2 8D -2—1.5SD -1.5—1SD -1-1 58D 18D+

CDM®  4(74%) 170315%)  7(13.0%) 8(148%) 17(315%)  1(1.9%)
FM® 1(1.9%) 13Q41%)  9(167%) 6(1L.1%) 23(426%) 2(37%)
- Ge? 000%)  200370%)  13(241%) 6(11%  14(259%) 1(1.9%)
Total® 237%)  18(333%)  14(259%)  5(93%) 14259%)  1(19%)

# Standard deviation

® Control during movement
¢ Fine motor/handwriting

4 General coordination

¢ Total score
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(16.7) (10.0) (8.6) (10.8) (12.3) (12.3) (18.9) (9.2) (9.0)
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The values represent the mean (Standard Deviation) scores

Fig. 1 Mean total DCDQ-J score at cach school level. Values represent mean (SD) (** P<0.01, * 0.05>

P>0.01)

correlated with the CDM (»=-0.32, P=0.031), FM (r=-0.31, P=0.034), and
total scores (r=—0.35, P=0.016) in the DCDQ-J.

Discussion

-In this study, almost all subscale and the total DCDQ-J scores of Japanese boys with
HFPDD were significantly lower than the standard scores of boys at the same school
level. However,.the CDM and FM scores in the second year of elementary school and

30
25
20
15

10

**: 0.01>P
*: 0.05>P>0.01

i Standard Score
==gow HFPDD Score

First SecondThird Fourth Fifth Sixth First SecondThird
16.6 177 13.4 165 127 144 196 135 155
(5.6) (7.6) (4.0) (2.1) (5.6) (5.5) (8.2) (3.8) (6.2)

Elementary school Junior high school

The values represent the mean (Standard Deviation) scores
Fig. 2 Mean CDM DCDQ-J score at each school level. Values represent mean (SD) (** P<0.01, * 0.05>
P>0.01) )
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