nary criteria.® ® However, the values observed in the other studies
are not the same as those in the present study because we analyzed
the interpretation both visually and statistically. Recent studies
have shown that the diagnostic capability of visual analysis of
"8 P-FDG-PET increases when the raters interpret the images in
combination with 3D stereotactic surface projections.'*'® These
kinds of visual-statistical methods seem to be a standard approach
in clinical settings.

To increase the concordance rate and diagnostic capability, we
need to overcome some problems. We had to degrade the image
quality according to the PET with the lowest quality among the 23
facilities of F-ADNL'! Therefore, the quality of the images may be
improved in the future. In addition to the image quality, develop-
ment of new methods or new approaches to image interpretation
may contribute to increasing the concordance.

This study showed a relationship between combined visual-
statistical interpretation and automated quantitative assessment
regarding the characteristic AD pattern in brain '*F-FDG-PET.
Significant association was observed between the quantitative in-
dex (FDG-PET score) and the number of raters who interpreted
the scans accordingly. This correlation may have been something

> How-

expected from reports on similar/automated analysis.
ever, this association was observed in a large-scale multicenter
study by using various camera models on a wide spectrum of
subjects in the present study.

From the standpoint of detecting the AD pattern, cases evalu-
ated as having positive AD findings by complete agreement of all
3 raters tended to show a higher quantitative index than the cases
that fewer than 3 raters interpreted as having positive AD find-
ings. From the standpoint of ruling out the AD pattern, cases
evaluated as having negative AD findings by complete agreement
of all 3 raters also tended to show a lower quantitative index than
the cases that fewer than 3 raters interpreted as having negative
AD findings. Therefore, the results suggest that interpretation by
3 raters may be better than that by 2 or fewer raters. The results
also indicate that cases that only 1 rater interpreted as having
positive (or negative) AD findings presented a different quantita-
tive index from those that no raters interpreted as having positive
(or negative) findings. This outcome suggests that there are cases
in which the “minority opinion” may not be ignored.

Generally, the minority opinion is somewhat important when
a subtle but definite finding is evaluated. However, most of the
'SF-FDG-PET images for which the judgment did not agree
among the raters showed ambiguous findings. Ng et al® reported
that experienced raters scored higher accuracy than nonexperi-
enced raters in the interpretation of brain '*F-FDG-PET images
for the diagnosis of AD.® Such subtle findings in brain '*F-FDG-
PET may be difficult to interpret. We need to analyze the differ-
ence in detail and develop new methods for interpretation or new
diagnostic tools.

When the FDG-PET score of the cases judged as P1 in the
consensus read were examined, NC subjects with P1 interpreta-
tion showed lower FDG-PET scores than MCI and AD subjects.
This result is probably because many of the NC subjects with P1
interpretation presented with a very mild AD pattern that influ-
enced the FDG-PET score to only a small extent. Those cases,
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however, presented characteristic findings such as posterior cin-
gulate hypometabolism, which led to the P1 interpretation.

The criterion standard used in this study was the clinical diag-
nosis at enrollment. Although dementia with Lewy body cases
with the specific symptoms were excluded from enrollment in the
J-ADNI beforehand, differentiating Lewy body dementia from
AD is occasionally difficult in clinical settings.'® The typical Lewy
body dementia pattern of '®F-FDG-PET, evaluated as occipital
hypometabolism, is classified into P1+ by the criteria of Silver-
man et al." Some cases classified into P14, though limited in the
present study, seem to have the possibility of Lewy body demen-
tia. Moreover, the consensus read judged 16 of 107 cases of the NC
group to be the AD pattern (P1 and P1+), and 8 of 67 cases in the
AD group to be a non-AD pattern (N1 and P2). These disagree-
ments might be either caused by inappropriate clinical diagnosis
at enrollment or reflecting the limitation of FDG-PET as a diag-
nostic tool. While these diagnostic discrepancies are not critical in
the present study, which analyzed inter-rater concordance, com-
parison with other criterion standards such as long-term fol-
low-up or postmortem examination is important for this kind of
multicenter study in the future.

The FDG-PET score of 1.0, by definition, is proposed as an
optimum threshold for the differential diagnosis of AD from
healthy subjects.” Because the present study deals with compari-
son of combined visual-statistical human interpretation with au-
tomated quantitative analysis, we derived a cutoff level of 0.67
based on discrimination of the P1 from the N1 pattern. This dis-
crepancy may be explained by the difference in the target of dis-
crimination as well as in the profile of subjects, and the lower
cutoff would be consistent with a higher sensitivity for visually
detecting the AD pattern than for clinically identifying the diag-
nosis of AD, for which the 1.0 cutoff is designed. In addition, one
of the essential factors for this discrepancy seems to be that deci-
sions by visual-statistical interpretation are not completely con-
sistent with the actual clinical diagnosis. Because the diagnostic
capability of '*F-FDG-PET is not the subject of the present study,
further studies are needed to elucidate the discrepancy.

CONCLUSIONS

Inter-rater agreement was moderate to substantial regarding the
combined visual-statistical human interpretation of the charac-
teristic AD pattern in '®F-FDG-PET. In addition, a significant
relationship between human interpretation and automated quan-
titative assessment was found. The human rating as an AD or
normal pattern was best predicted by the FDG-PET score when
using a cutoff of 0.67.
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Abstract

Objective To determine the optimal accumulation time for
three-dimensional positron emission tomography (3D-PET)
with '®F-2-fluoro-2-deoxy-p-glucose (‘*F-FDG) to detect the
brain uptake pattern typical of Alzheimer’s disease (AD).
Methods Patients with mild AD or amnestic mild cogni-
tive impairment (MCI) and normal control subjects were
recruited in the Japanese Alzheimer’s disease neuroimag-
ing initiative and examined with a PET scan during the
30-60 min after FDG injection. Three independent blinded
experts interpreted the 30- to 60-min sum images, and
images of patients with AD and MCI presenting AD pat-
terns and normal subjects presenting normal patterns were
used in the analysis. Early-scan (ES) and late-scan (LS)
images were obtained from the data acquired at 30-35 min
and 55-60 min after the injection, respectively. Separate
target regions of interest (ROI) for ES and LS were defined
as areas of significant reductions in the posterior cingulate
and parietotemporal lobe in both hemispheres from the
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results of an initial cohort with 21 patients (AD 16, MCI 5)
and 19 controls. A subsequent sample of 36 (AD 9, MCI
27) patients and 38 controls were used to compare the
diagnostic capability of ES and LS using Z scores within
the target ROI in individual statistical parametric mapping
analysis.

Results Compared to LS, ES showed lower activity in the
frontal lobes and higher activity in the venous sinus than
LS; however, the diagnostic capability of ES and LS did
not significantly differ (sensitivity 0.97 and 0.97, specific-
ity 0.82 and 0.84, area under the receiver-operating char-
acteristic curve 0.96 and 0.97, respectively).

Conclusions For a qualitative diagnosis of the AD pattern
in 3D FDG-PET, results of ES were equivalent to those of
LS. ES may be an option to shorten the entire PET pro-
cedure time, particularly in diagnosing early stages of AD.
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Accumulation time - PET - 3D

K. Ito - T. Kato

Department of Brain Sciences and Molecular Imaging,
National Institute for Longevity Sciences, National Center
for Geriatrics and Gerontology, Obu, Japan

K. Ishii
Positron Medical Center, Tokyo Metropolitan Institute
of Gerontology, Tokyo, Japan

T. Iwatsubo

Department of Neuropathology and Neuroscience,
Graduate School of Pharmaceutical Sciences,

The University of Tokyo, Tokyo, Japan



Ann Nucl Med (2013) 27:452-459

453

Introduction

8E_2-fluoro-2-deoxy-p-glucose (FDG)-positron emission
tomography (PET) plays a major role in the early diagnosis
of Alzheimer’s disease (AD); glucose hypometabolism in
the posterior cingulate and parietotemporal lobe is reported
to be features of the typical AD pattern [1, 2]. For quan-
tification of glucose metabolic rate, the optimal accumu-
lation time for FDG-PET scan has historically been
considered to be 45-55 min after injection or later to allow
for phosphorylation of FDG within the brain tissue [3-5].
A number of studies have attempted to determine the
optimal accumulation time for detecting AD patterns using
two-dimensional (2D) PET scans for qualitative diagnos-
tic purposes. A comparison between scans obtained at
30-42 min and 60-72 min after injection revealed superi-
ority of the latter scan for AD detection [6]. Another study
compared scans obtained at 40-50 min and 60-63 min
after injection and indicated that the short, late scan was
equally capable of detecting AD [7]. Both studies suggest
that as accumulation time increased, BE FDG uptake
increased in the posterior cingulate and parietal cortices
(regions affected in AD) and decreased in the cerebellum,
providing higher signal-to-noise ratio (S/N) in the later
scans.

In recent years, three-dimensional (3D) BE.FDG-PET
has been used in large multicenter neuroimaging studies
such as the Alzheimer’s disease neuroimaging initiative
(ADNI) because of the high sensitivity, short scanning
time, and low radiation exposure of this technique. If
acquired in 3D, earlier scans may be equally effective for
qualitative diagnostic purposes because of the high sensi-
tivity of the technique. Increases in counts from a 3D scan
due to high sensitivity leads to decreased noise, which
might give a sufficient S/N and detection capability even if
the contrast between the hypometabolic region and the
normal area is smaller in an early scan (ES) than a late scan
(LS). However, the optimal accumulation time to detect
AD in 3D PET with '|F-FDG has not been investigated,
especially in multicenter studies. The aim of this study was
to determine the optimum accumulation time for 3D PET
with '®F-FDG by comparing AD detection sensitivity
between ES and LS using data from the Japanese ADNI
(J-ADNI).

Materials and methods
Subjects
As part of the J-ADNI study, subjects were recruited as

patients [clinical mild AD or amnestic MCI (mild cognitive
impairment)] or normal controls from 38 clinical sites;

Table 1 Characteristics of the subjects

Subjects for ROI Subjects for ROC analysis

determination
Patients Normal Patients Normal
with P1 controls with  with P1 controls with
pattern N1 pattern pattern N1 pattern
Gender, 10/11 10/9 23/13 25/13
n (F/M)
Age 740 £ 65 656+54 73.1 £6.1 662+ 34.0
(years)
MMSE 231 +£22 293 &% 1.1 249 +£23 2924 1.1
Education 124 £45 143 +£30 13.0 4+ 2.6 13.8%26
(years)
P1 AD pattern, NI normal pattern [1]
imaging was performed for these subjects during

30-60 min after injection of FDG at 24 participating
imaging facilities [8]. Three independent experts blinded to
the clinical information of the participants, except age, sex,
and findings of magnetic resonance imaging, visually
classified the FDG uptake pattern of the 30- to 60-min sum
images based on the criteria proposed by Silverman and
colleagues [1], and the results were subjected to a con-
sensus read. In the present study, PET images of patients
with AD and amnestic MCI that classified as an AD pattern
(P1 pattern) were used as affected images, whereas PET
images of normal subjects classified as normal pattern (N1
pattern) were used as unaffected images. Imaging results of
the first 21 patients and 19 controls were used to determine
regions of interest (ROI) for ES and LS, and imaging
results of the subsequent 36 patients and 38 controls were
evaluated for diagnostic capability using the pre-defined
ROI for ES and LS. The characteristics of the subjects are
shown in Table 1. The AD-to-MCI prevalence ratio varied
in the course of recruitment, and the mean mini mental
state examination (MMSE) score was higher in the test
subjects than in the subjects enrolled to determine the ROIL.
No adjustment was made for this variation, because the test
subjects were supposed to have more normal images than
the subjects whose images were used to determine the ROI,
making the diagnostic test more challenging.

PET procedures

In the present study, FDG-PET images were acquired
according to the standardized protocol of J-ADNI with 20
different PET scanners (7 Shimazu models, 5 GE models, 5
Siemens models, 2 Toshiba models, and 1 Philips model) at
24 imaging facilities. A 30-min dynamic emission scan,
consisting of six 5-min frames, was acquired, starting
30 min after intravenous injection of 185 MBq of '*F-FDG.
The subjects were instructed to fast for at least 4 h before

@ Springer



454

Ann Nucl Med (2013) 27:452-459

the scan and then asked to lie quietly in a dimly lit room
with their eyes open under minimal sensory stimulation.

The patient’s blood glucose level was measured before
E_FDG injection, and if it was greater than 180 mg/dL
(9.9 mmol/L), the scan was delayed until it fell below
180 mg/dL; if it did not fall below this level, the scan was
rescheduled. As a result, the glucose level before injection
was 94 £ 19 mg/dL.

Data were corrected for attenuation using a transmission
scan or X-ray computed tomography, and the images were
reconstructed with an iterative reconstruction algorithm
specifically determined for each type of scanner, which
provided spatial and axial resolution in the range of 6- to
8-mm FWHM.

Each dynamically acquired image was pre-processed by
the J-ADNI PET QC core at the Institute of Biomedical
Research and Innovation (Kobe, Japan). An automated
algorithm was used to correct for motion between six 5-min
emission frames before summation to construct one 30-min
emission image, followed by alignment onto a 160 X
160 x 96 matrix of 1.5-mm voxels parallel to the anterior
and posterior commissures. Frames presenting large intra-
frame motion were discarded as described elsewhere [9].
These images, together with their three-dimensional stereo-
tactic surface projection (3D-SSP) Z score images [10], were
assessed independently by 3 blinded experts who then dis-
cussed the findings and reached a consensus concerning
classification. The images were classified into 7 categories as
defined by Silverman et al., in which an AD pattern was
labeled as P1 and a normal pattern was labeled as N1. In the
present study, images of patients with AD and amnestic MCI
classified as P1 (affected: 33 of 36 ADs and 39 of 56 amnestic
MCIs) and those of normal subjects classified as N1 (unaf-
fected: 64 of 80) were used. Images with substantial motion
were removed; therefore, data from 57 P1 subjects (25 ADs
and 32 amnestic MCIs) and 57 N1 subjects were used for the
analysis.

The first (30-35 min) and last (55-60 min) frames of
the emission scan were extracted as ES and LS, respec-
tively, and were aligned into 160 x 160 x 96 matrix
images in the same way as described above.

Image comparison between ES and LS as well
as between patients and controls

Anatomical normalization and statistical processing of the
PET images were performed using statistical parametric
mapping version § software for Windows (SPM 8; Well-
come Trust Centre for Neuroimaging, University College
London, London, UK). The calculations and image matrix
manipulations were performed using MATLAB R2009b
(MathWorks Inc., Natick, MA, USA). All individual
PET images were transformed into a standard stereotactic

@ Springer

anatomical space. Further, all images were smoothed with
an isotropic 12-mm Gaussian kernel to increase S/N and
compensate for the differences in the gyral anatomy
between individuals. The uptake values in individual FDG
images were adjusted by proportional scaling to an arbi-
trary mean value of 5.0. Comparisons between results of
ES and LS for the affected and unaffected groups were
analyzed separately by paired 7 tests, and a family-wise
error (FWE) corrected threshold of p < 0.05 was applied to
indicate statistical significance. Comparisons between the
results for patients and controls for both ES and LS were
analyzed separately by unpaired 7 tests, and an uncorrected
threshold of p < 0.001 was applied.

ROI determination

Hypometabolic regions were extracted by comparison
between affected and unaffected images for each ES and
LS image separately, using the anatomical standardization
technique described above and analyzed with unpaired
t tests with an uncorrected threshold of p < 0.001. Out of
the voxels presenting significant hypometabolism, those
within the posterior cingulate gyrus, precuneus, and pari-
etotemporal lobe were selected in both ES and LS based on
previous studies which investigated the early detection of
AD and MCI [11-13]. ROI were extracted using Marsbar
(http://marsbar.sourceforge.net/).

Comparison of diagnostic capability between ES
and LS

For evaluating the diagnostic capability, Z score maps were
quantitatively analyzed using a free software, Easy Z score
Imaging System (eZIS; Fujifilm RI Pharma, Tokyo, Japan),
which works based on SPM algorithms. Regional glucose
metabolic values were obtained as the FDG uptake normalized
by the value for the cerebellum and for the whole brain. For
these 2 normalized metabolic maps, Z scores were calculated
for each voxel of each subject’s image using the 19 normal
control images as a normal database: Z score = [(normal
mean) — (individual value)/(normal standard deviation, SD)].
The sum of the Z scores in the ROI was calculated for the 2
Z score maps of the subjects. Receiver-operating characteristic
(ROC) analysis was performed, and the area under the ROC
curve (AUC) values and their standard errors (SE) were cal-
culated using JROCKIT 1.0.2 software (Department of Radi-
ology and Radiological Science, Johns Hopkins University,
Baltimore, Maryland, USA: http://www.rad.jhmi.edu/jeng/
javarad/roc/JROCFITi.html).

The jackknife method using LABMRMC software
(Department of Radiology, University of Chicago: http://metz-
roc.uchicago.edu/) was applied to compare AUCs for ES and
LS.
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Results
Group differences between ES and LS

Figure 1 shows the metabolic differences between ES and
LS. In both affected patients and unaffected controls, radio-
activity distribution in the venous sinus was significantly
grater in ES than in LS, and FDG uptake in both the frontal
lobes and parts of the parietal lobes was significantly higherin

NCES=>1LS

LS than in ES (P < 0.05 FWE corrected). Although differ-
ences were found in similar regions of affected and unaffected
images, regional differences were more pronounced in the
unaffected images (Fig. 1; Table 2).

Determination of ROI

Both ES and LS showed significant hypometabolism in the
posterior cingulate, both the parietotemporal lobes, the

NCLS>ES

PtES>LS

Fig. 1 Areas with significant differences in FDG distribution
between ES and LS. In both patients with AD patterns and the
normal controls with normal patterns, FDG distribution in the venous
sinus was significantly higher in ES, and FDG uptake in the bilateral

PtLS>ES

frontal lobes and part of the parietal lobes was significantly higher in
LS (p <0.05 FWE corrected). (ES early scan, LS late scan, NC
normal controls with normal pattern, Pt patients with AD pattern)

@ Springer
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medial frontal lobes, and the insular cortices in the affected ~ peak ¢ value for the right posterior cingulate gyrus was 9.05
patient group in comparison to the affected control group  for ES and 8.93 for LS. For both ES and LS, significantly
(p < 0.001 uncorrected, Fig. 2). As shown in Table 3, the  hypometabolic voxels were extracted from the posterior

Table 2 Regions with significant differences in FDG uptake between ES and LS

Scanning time Brain region Talairach coordinates t value Voxel extent
Side x ¥ VA
ES > LS Venous sinus L -3 —68 —25 19.57 21878
LS > ES Inferior frontal gyrus R 40 22 14 11.36 16383
Medial frontal lobe L —-16 57 2 7.89 309
Parietal lobe L ~23 —40 66 7.87 520
Precentral gyrus L =25 -23 63 7.54 681

Fig. 2 Highlighted areas with significantly lower glucose metabo- gyrus, parietotemporal lobe, lateral frontal lobes, and medial frontal
lism in patients with AD pattern than in controls with normal pattern lobe were highlighted in both ES (a) and LS (b) (ES early scan,
(p < 0.001, uncorrected). Bilateral precuneus, posterior cingulate LS late scan)

Table 3 Hypometabolic regions in patients with AD pattern compared with those in normal controls with normal pattern

Scanning time Brain region Talairach coordinates t value Voxel extent
Side x y z

ES Posterior cingulate gyrus R 4 -32 34 9.05 4138
Parietotemporal lobe R 56 —46 31 5.86 2974
Middle frontal gyrus R 56 25 27 5.38 1721
Parietotemporal lobe L -36 —65 34 4.80 1375
Medial frontal gyrus L -2 49 6 4.45 681

LS Posterior cingulate gyrus R 2 -30 34 8.93 4243
Parietotemporal lobe R 56 —46 31 6.25 3089
Middle frontal gyrus R 56 24 27 5.59 1435
Parietotemporal lobe L —36 —63 36 4.71 1345
Medial frontal gyrus L -2 49 7 4.49 577

ES early scan, LS late scan

@ Springer
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Fig. 3 Target ROl in ES (a) and LS (b). In both ES and LS, bilateral
precuneus, posterior cingulate gyrus, parietotemporal lobe, lateral
frontal lobes, and medial frontal lobe were determined as target ROI

based on hypometabolic regions observed in patients with AD pattern
as compared with controls with normal pattern (ES early scan, LS late
scan)

(a) (b)
1 1 .
///
; 7
08| o8 /
/
/
/
0.6 0.6 /
04 f 0.4 _,/
|
|
02r —ES/ GLOB 02} - ~ES/CBL
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Fig. 4 ROC curves in ES and LS for the detection of AD patterns are
shown. ROC curves calculated by the sum of Z scores normalized
with that of global cerebral metabolism are shown in a. ROC curves
calculated by the sum of Z scores normalized with that of cerebellum
are shown in b. When normalized with Z scores of the whole brain,

cingulate gyrus, precuneus, or bilateral parietotemporal
lobes and were defined as ROI to be used in the analysis of
diagnostic capability (Fig. 3).

Comparison of diagnostic capability

Figure 4 shows the ROC curves for ES and LS regarding
the diagnostic capability of the sum of Z scores within the
ROI for the images showing FDG uptake normalized by
the whole brain (Fig. 4a) and by the cerebellum (Fig. 4b).
When normalized by the whole brain, the AUC for ES was
0.972 and that for LS was 0.969. When normalized by the
cerebellum, the AUC was 0.925 for both ES and LS. The

AUC of ES was 0.972 and AUC of LS was 0.969. When normalized
with Z scores of the cerebellum, AUC of both ES and LS was 0.925
(ES early scan, LS late scan, ROC receiver-operating characteristic,
AUC area under curve)

AUC:s for ES did not significantly differ from those for LS
(p =0.7676 when normalized by the whole brain,
p = 0.9931 when normalized by the cerebellum).

Discussion

To our knowledge, this is the first multicenter analysis
study to determine the optimal accumulation time for 3D-
PET with '®F-FDG by comparing the sensitivity for AD
pattern detection between ES and LS. First, we found no
significant differences in the AUCs of ES and LS. Second,
in both affected patients and unaffected controls, ES
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showed higher radioactivity in the venous sinus, whereas
LS showed higher FDG uptake in both the frontal lobes and
parts of the parietal lobes. ES and LS did not show sig-
nificant differences in the precuneus, posterior cingulate
gyrus, and parietotemporal lobes. These results suggest that
an accumulation time of 30 min is sufficient for a quali-
tative diagnosis of AD patterns using 3D PET-FDG ima-
ges. This result may be  applicable to the qualitative
diagnosis of hypometabolic: patterns in conditions other
than AD. Considering that PET department personnel as
well as from other healthcare staff are required to provide
special care to patients with dementia or other cognitive
disorders, reducing the total PET procedure time using ES
may reduce the burden on such patients and save the
resources of the PET facility.

The current findings differ from those of previous
studies that compared early and late scans for 2D PET [6,
7]. This is attributed to the difference in the regional rate of
FDG accumulation during the types of PET. The previous
studies found that the relative FDG uptake in the posterior
cingulate gyrus, precuneus, and parietotemporal lobes,
which are the target regions in the detection of AD, was
higher in LS than in ES. In contrast, the present study
found no particular increase in these regions between ES
and LS. There are 3 major differences in the methods
between the current study and previous studies that can
explain this discrepancy. The first possible explanation
may be that 3D PET is more sensitivity than 2D PET.
However, the discrepancy was localized in the posterior
cingulate and parietotemporal lobes, and was not observed
in other cortical regions. The second explanation may
involve differences in the resting state during the accu-
mulation and scanning period between the previous studies
and this study by J-ADNI. The subjects were required to be
awake with their eyes open during the FDG accumulation
period in the current study but not in the previous studies.
This may have influenced consciousness during scanning
and modified the results. The posterior cingulate gyrus,
precuneus, and parietotemporal lobes are reported to be the
main components of the default-mode network, which is a
consistent brain activity of the passive resting state that
decreases on cognitive processing [14, 15]. The state of
open eyes influences the default-mode network, which may
lead to a decrease in neuronal activity in these areas.
Therefore, the difference in these areas between ES and LS
might diminish when the eyes are open as compared to
when they are closed. However, this hypothesis has not
been confirmed and requires further investigation. In future
multicenter studies, eye opening/closing during the FDG
accumulation period may be taken into account. The third
explanation may be the multicenter nature of the study
design. As the J-ADNI project is a multicenter study,
various kinds of PET scanners were included in the
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analysis. However, the scanning protocols were strictly
standardized, and the J-ADNI PET QC core determined the
details of data acquisition for each PET camera model to
minimize the camera-derived difference [9]. Furthermore,
the quality of all images was confirmed by the PET QC
core after they were acquired. Therefore, we do not think
that this factor was the cause of the above-mentioned
discrepancy.

The increase in FDG uptake from ES to LS in the frontal
lobes was similar to the results reported by Sakamoto and
colleagues [6]. Interestingly, the difference between ES
and LS in this region was more pronounced in normal
unaffected control subjects than in affected patients. This
suggests that the sensitivity differences of LS and ES may
be important in detecting frontal lobe hypometabolism,
which is observed in frontotemporal dementia and pro-
gressive supranuclear palsy. However, because these areas
were outside the ROI in this study, this finding did not
influence the detection of AD pattern.

The decrease in radioactivity in the venous sinus
observed by us was not reported in previous studies. In
early FDG-PET scans, a substantial amount of BEEDG
still exists in the pool of the venous sinus; the high sensi-
tivity of 3D scanning may have contributed to the detection
of "*F-FDG in the sinus area.

Despite the important findings of this study, a few
important limitations should be noted. There was a sig-
nificant difference in age between the patients and control
subjects in this study. During early recruitment for J-ADNI,
the normal controls were younger than the patients (the
subjects were not randomly sampled). Therefore, the more
prominent differences between ES and LS for normal
controls compared to patients may potentially be caused by
their younger age. However, this difference should not
influence the diagnostic value of ES for AD, because these
findings were observed outside the ROL. Lastly, we did not
examine the diagnostic performance of the full 30-min scan
because the focus of this study was a comparison between
ES and LS and a 30-min scan may be too long for a routine
clinical scan.

In conclusion, the present study provides evidence that
3D-PET ES may be sufficient to detect AD pattern. ES may
be used to shorten the entire PET procedure time to reduce
the burden on the patients and to save the resources of the
facility. However, the differences in the radioactivity
changes in the frontal lobes and venous sinus between ES
and LS should be considered.
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