慢性疼痛は痛みだけでなく不眠や食 欲低下、抑うつ症状などActivities of D aily Living (ADL)や健康関連Quality of Life (QOL)の低下を招き、筋骨格系の 廃用性変化と相まって介護を必要とす る慢性疼痛患者が少なくない。そこで、 慢性疼痛患者の介護負担を定量化し、 介護者の精神的健康を害するような慢 性疼痛患者の特徴を探索した。

B. 研究方法

慢性疼痛を主訴に当科を受診した患者46人とその患者の受診に同伴した介護者46人を対象にした。介護負担はZari t介護負担尺度日本語版を用いて評価し、その値から既知の変換式を用いて抑うつ尺度GDS-15を計算し、GDS-15≧8を抑うつ症状ありと評価した。介護者の抑うつ気分(D)の有無によって介護者とその患者を2群に分類した。

疼痛患者には、0-10までの11段階数的疼痛評価尺度(numerical rating scale: NRS)、簡易疼痛質問票(brief pain inventory: BPI日本語版)、不安・抑うつ(hospital anxiety and depression scale: HADS日本語版)、疼痛行動障害尺度(pain disability assessment scale: PDAS)、疼痛破局化思考質問票(pain catastrophizing scale: PCS日本語版)、健康関連QOL(EQ-5D)、健康関連倫理観(Newest Vital Sign日本語版)を評価した。2群の比較は

Mann-Whitneyテストを用いて行い、p<0. 05を統計学的有意差とした。本研究は本 学の倫理承認を受けて実施した。

(倫理面への配慮)

調査内容は東京大学医学部附属病院倫理委員会の承認を得た。

C. 研究結果

Zarit介護負担尺度から21人の介護者 が抑うつ状態と判断された。抑うつ症状 (D) の有無によって患者および介護者 を2群に分けて比較した。介護者のZarit 総得点: D+ 35.7+/-17.7, D- 8.7+/-7.5 (p <0.001); 介護者の抑うつ(GDS-15換算): D+ 27.6+/-14.3, D- 3.8+/-3.2 (p<0.001); 患者の年齢: D+ 63.1+/-17.5, D- 67.0+/-16.4 (p=0.27);痛みの強さ(最大): D+ 7.5+/-2.6, D- 7.0+/-2.1 (p=0.36); 痛みの 強さ(平均): D+6.8+/-1.9, D-5.8+/-2. 1 (p=0.1); ADL尺度 (Brief Pain Inventor y日本語版): D+ 51.3+/-16.3, D- 31.8+/ -10.7 (p=0.004); 疼痛性行動障害尺度 (P DAS) : D+ 32.9+/-14.9, D- 19.5+/-16.5 (p=0.009); 不安 (HAD) : D+ 7.2+/-5.0, D- 8.7+/-4.0 (p=0.34), 抑うつ (HAD) : D+ 7.4+/-4.2, D- 7.1+/-4.3 (p=0.81); 痛 みの破局的思考 総得点: D+ 35.9+/-11. 7, D- 32.5+/-12.4 (p=0.41), 反獨:D+ 14. 8+/-3.4, D- 12.3+/-5.6 (p=0.094), 拡大 視: D+ 15.0+/-3.4, D- 13.8+/-4.5 (p=0.4 3), 無力感: D+ 8.1+/-3.1, D- 6.9+/-3.5

(p=0.25)、健康関連倫理観(Newest Vita 1 Sign): D+ 1.9+/-2.2, D- 1.9+/-1.9 (p= 0.87); 健康関連QOL(EQ-5D): D+ 0. 45+/-0.18, D- 0.63+/-0.19 (p=0.011)であった。

D. 考察

介護者の抑うつの有無に慢性疼痛患者の痛みの強さは関連がなかった。また、患者の情動的な問題である不安、抑うつは軽度~中等度の異常を示したが、患者の抑うつには関連しなかった。患者の健康関連倫理観(health literacy)は不適切な受診行動や服薬行動に直結するが、介護者の抑うつのありとなしの両群で差はなく、いずれの群でも患者の健康関連倫理観は低かった。

簡易疼痛質問票で評価した ADL が低いと、介護者が抑うつ症状を示した。
ADL 評価項目の中でも、特に歩行能力・日常の仕事・対人関係が、介護者が抑うつを示す患者では悪化していた。このことに加えて、患者の疼痛による行動の障害を評価する疼痛行動障害尺度でも介護者が抑うつ症状を示す患者では顕著に悪化しており、疼痛患者が社会参加に制約があるような活動性の低下があると介護者の身体的介護負担が増強し、介護者の心的負担感(抑うつ)に繋がる可能性がある。このような慢性疼痛患者の ADL および生活動作

の障害は、介護者が抑うつを示した慢 性疼痛患者の低い QOL (EQ-5D) とし ても示されており、痛みの強さとは無 関係に、疼痛のために ADL と QOL が 低下すると介護者の負担が増し抑うつ 的になることが考えられる。したがっ て、介護者に対する支援の方策として、 慢性疼痛患者に対してヘルパーを派遣 することや、介護ベッドや車いすの利 用、バリアフリーといった環境因子の 改善による介護の身体的負担の軽減の 必要性が示唆され、社会的支援や福祉 の充実は慢性疼痛患者だけでなく介護 者のためにも重要である。今回は調査 はしていないが、介護負担に関する因 子として、周囲に介護協力者の有無や 介護者の体力と年齢も関連している可 能性があり、今後の調査が必要である。

E. 結論

慢性疼痛患者を介護する者は、患者の身体活動の低下から介護者の身体的介護負担が増加し、その結果、介護者が抑うつ的になることが示された。慢性疼痛に対する社会福祉基盤の整備は、患者だけでなく患者の介護負担の軽減から、介護者の精神的健康の改善・維持に寄与できると考えられる。

F. 健康危険情報

なし

G. 研究発表

- 1. 論文発表
- 01) Kogure T, Sumitani M, Suka M, Ishikawa H, Odajima T, Igarashi A, Kusama M, Okamoto M, Sugimoto H, Kawahara K. Validity and reliability of the Japanese version of the Newest Vital Sign: a preliminary study. Plos One 2014; 9: e94582
- 02) 住谷昌彦, 松林嘉孝, 筑田博隆, 竹下克志, 山田芳嗣. 慢性腰痛に対する薬物療法はどのように行うか。Mondern Physician 2014; 34: 299-303
- 03) 住谷昌彦. 痛みの研究手法 遺伝 子解析. 痛みの診療キーポイント, 編集 川真田樹人. 文光堂p.18
- 04) 住谷昌彦. 頭部痛. 痛みのマネジメント,編集 花岡一雄,田中栄.日本 医師会雑誌 2014;143:s240-1
- 05) 住谷昌彦. ロコモティブシンドローム対策としての慢性疼痛治療. 大阪臨床整形外科医会報 2014; 40: 97-9
- H. 知的財産権の出願・登録状況 (予定を含む)
- 1. 特許取得なし
- 2. 実用新案登録なし
- 3. その他 なし

III. 研究成果の刊行に関する一覧表

書籍

著者氏名	論文タイトル名	書籍全体の	書籍名	出版社名	出版地	出版年	ページ
住谷昌彦.	痛みの研究手法 –	川真田樹	痛みの診療キ	文光堂	東京	2014	18
	遺伝子解析.	人.	ーポイント				
住谷昌彦.	頭部痛. 痛みのマ	花岡一雄,	 痛みのマネジ 	日本医師	東京	2014	240-1
	ネジメント	田中栄.	メント	会			

雑誌

発表者氏名	論文タイトル名	発表誌名	巻号	ページ	出版年
Nakamura M, Nishiwaki Y, Ushida T, Toyama Y.	Prevalence and characteristics of chronic musculoskeletal pain in Japan: a second survey of people with or without chronic pain.	J Orthop Sci	19(2)	6339-350	2014
Nakamura M, Nishiwaki Y, Sumitani M, Ushida T, Yamashita T, Konno S, Taguchi T, Toyama Y.	Investigation of chronic musculoskeletal pain (third report): with special reference to the importance of neuropathic pain and psychogenic pain.	J Orthop Sci	19(4)	667-675	2014

Suzuki T, Kurazumi T, Toyonaga S, Masuda,Y, Morita Y, Masuda J Kosugi S, Katori N, Morisaki H.	Evaluation of noninvasive positive pressure ventilation to facilitate extubation from moderate positive end-expiratory pressure level after cardiac surgery: A prospective observational study.	Care	2	5	2014
Kosugi S, Shiotani M, Otsuka Y, Suzuki T, Katori N, Hashiguchi S, Morisaki H.	Long-term outcomes of percutaneous radiofrequen cy thermocoagulation of Gasserian ganglion for 2 nd - and multiple-division trigeminal neuralgia.	Pain Practice	15	223-228	2015
Kosugi S, Hashiguchi S, Nishimura D, Seki H, Suzuki T, Katori N, Morisaki H	Neurolysis targeting both the aorticorenal ganglia and lumbar sympathetic plexus for kidney tumor related pain	Pain Medicine	16	202-203	2015
Kogure T, Sumitani M, Suka M, Ishikawa H, Odajima T, Igarashi A, Kusama M, Okamoto M, Sugimoto H, Kawahara K.	Validity and reliability of the Japanese version of the Newest Vital Sign: a preliminary study.	Plos One	9	e94582	2014

住谷昌彦,松林嘉孝, 筑田博隆,竹下克志, 山田芳嗣.		Modern Physician	34	299-303	2014
住谷昌彦.	ロコモティブシンドロー ム対策としての慢性疼痛 治療.			97-9	2014

IV. 研究成果の刊行物・別刷

△ 基礎知識

団 痛みの研究手法─遺伝子解析

ポイント

DNA 中のある塩基の変化が人口の 1 %以上の頻度で起きていることを遺伝子多型と呼ぶ、遺伝子多型の中では一つの塩基が他の塩基に置換されている一塩基多型が最も研究されており、侵害応答や鎮痛薬感受性にかかわる一塩基多型が多数発見されている。

遺伝子研究の重要性

ヒト生体には22対の常染色体と1対の性染色 体があり、これら染色体は核内タンパク質である ヒストンや遺伝情報をコードするデオキシリボ核 酸(DNA)などで構成されている。DNAによっ てタンパク質を合成する情報を担っているのが遺 伝子であり、ヒトのゲノム中には約2.5万種類の 遺伝子がある。遺伝子の DNA 配列をもとに RNA が作られ、イントロン領域で切り出されエ クソン同士が結合されて mRNA が合成され、 mRNA が鋳型となってタンパク質が合成される。 このように、生体を構成するタンパク質の多くは ゲノム配列を鋳型として合成されており、遺伝子 はどのようなタンパク質をいつ、どこで、どれだ け、合成するかの情報を担っている。したがって、 国際ヒトゲノムプロジェクトによって完全公開さ れたヒトゲノム遺伝子配列によって疾患原因遺伝 子などの同定に繋がる. さらに、個人間の遺伝子 配列の相違を調査することによって、患者個々へ のオーダーメイド医療の実現が期待される。

2 遺伝子研究の手法

明らかな遺伝性のある疾患については、疾患に伴うタンパク質の異常やそれに起因する代謝産物の異常が同定できれば、その疾患の原因となる遺伝子を特定することが可能となる。ただし、このような手法は病気を有する家系や近親婚で生まれた患者がある程度の人数で必要である。

このような特殊な遺伝性疾患とは異なり、遺伝情報の決定的でない違いから疾患の発症しやすさや薬剤応答性を規定しているのが遺伝子多型である、遺伝子多型はある塩基の変化が人口中1%以

表1 遺伝子多型のメカニズム

置換 DNA 中の塩基が点突然変異によって他の塩 基に置き換わったもの

DNA のある部位に塩基が入り込むことを挿

挿入・欠失 入と呼び、ある領域の塩基配列が欠けてしまったことを欠失と呼ぶ、挿入・欠失の塩 基数は1塩基以上でありさまざまである

繰り返し配列の DNA 中には 1~数十塩基の単位である塩基 繰り返し回数の 配列が連続して繰り返されている部分がある. 違い この繰り返し配列の回数に個人差がある

1kb〜数 mb までの比較的大きな領域の塩 基配列が繰り返されていることがあり、こ の繰り返し配列の回数 (コピー数) に個人差 がある

上の頻度で存在しているものと定義されている. 遺伝子多型が起こる機序としては,① 置換,② 挿入・欠失,③ 繰り返し配列の繰り返し回数の

挿入・欠失,③ 繰り返し配列の繰り返し回数の違い,④ コピー数の違い(表1)がある。疾患の発症や薬剤応答性に関連する一塩基多型(single nucleotide polymorphisms:SNPs)の同定は,患者集団と正常集団で比較することによる一種のケースコントロール試験(アソシエーションスタディと呼ばれる)で行う。

■ 一塩基多型 (SNPs)

ヒト遺伝子多型の研究のなかで最も活発に行われているのが SNPs 研究である. SNP は一つの塩基が他の塩基に置換されている多型で、数百塩基に 1 箇所くらいの割合で存在しており、ヒトのゲノム中には約 1,000 万 SNPs がある. SNPs が遺伝子の翻訳領域にあれば合成するタンパク質が変化するが、非翻訳領域でもプロモーター領域など転写制御に関わる領域であればタンパク質の変化を引き起こす可能性がある(表 2,3)1.

4 遺伝子研究の限界と展開

RNAが、それと同じ配列あるいは非常に類似性の高い mRNA の分解を促進したり、翻訳を阻害することによってタンパク質の合成を阻害することが知られており、この現象を RNA 干渉と呼ぶ、 mRNA の特定の塩基が他の塩基へ変換されたり塩基の挿入・欠失が起こることによって合成されるアミノ酸の配列が変化しタンパク質の機能が変化する RNA 編集も知られる。さらに、 DNAのメチル化や脱メチル化など複数の修飾によって塩基配列情報自体には変化がなくても遺伝子発現のオン/オフが切り替わったりすることでタンパク質の発現量や機能に変化が生じ表現型が変化す

表 2 侵害刺激に対する反応性を規定する遺伝子多型

	遺伝子	侵害刺激	疼痛に対する 反応	wild	遺伝子型 hetero	homo
1181 / 1970中华	OPRM 1	圧痛・熱刺激	\	1	0.5~0.8	_
オピオイド受容体	OPRD 1	熱刺激	\	1	0.75	1
catechol — O — methyl transferase (モノアミン系神経伝達物質の代謝酵素)	COMT	圧痛・ 熱刺激など	↓(一部↑)	1	0.83~1.38	1.99
TOD 平穴(+ 4)	TRPV1	冷刺激	↓ ↓	1	1	0,63
TRP 受容体 family	TRPA 1	冷刺激	†	1	1.23	1.75
fatty acid amino hydrolase (内因性カンナビノイドの代謝酵素)	FAAH	冷刺激	1	1	1.12~1.52	1.27~1,44
GTP cyclohydrolase 1 (ドーバミン,セロトニン生成の律速段階となる酵素)	GCH1	圧刺激・ 熱刺激・ 慢性腰痛症	1	1	1.14~1.28	1.18~1.34
	1L1RN		1	<u></u>		4 = = -
interleukin-1	1L1A	慢性腰痛症	1		-	-
	1L1B		1	_		= -
	400				(文献 1) よ	り引用改変)

表 3 鎮痛薬反応性に関連する遺伝子多型

	遺伝子	発生頻度(%)	影響を受ける薬剤	SNPs が存在する場合に 必要な薬物量
			モルヒネ・M6G	
オピオイド受容体	OPRM 1	17.2	alfentanyl levomethedore	2
catechol-O-methyl transferase (モノアミン系神経伝達物質の代謝酵素)	COMT	46.2	モルヒネ	0.67
melanocortin-1 受容体 (内因性オピオイドの誘導体で脊髄レベルでの 痛みの伝達に関与)	MC1R	2~4.5	モルヒネ・M6G・ ペンタゾシン	0.67
チトクローム P450 (薬物代謝の酵素)	CYP2D6	0.1~20.7	コデイン・トラマドール	1.3~∞
P-glycoprotein (薬物の細胞膜透過性を規定)	ABCB1	47.6	モルヒネ	
UDP-グルクロン酸転移酵素 (オピオイドの代謝に関与)	UGT	-	各種オピオイド	$-\frac{1}{2}(1,1)$
G タンパク質活性型 内向き整流 K [†] チャネル (G タンパク質共役型受容体の細胞内シグナル伝達に関与)	GIRK		モルヒネ	

(文献 1) より引用改変)

るエピジェネティック制御も明らかになってきている。これらにより、これまで DNA から mRNA へ、そして mRNA からタンパク質と形質発現へと生命機能を調節する基本的原理 (セントラルドグマ) という概念は完全に覆されており、遺伝子自体の研究の限界とともに新しい遺伝的生命調節

機構の解明の必要性が認識されなければならない.

文献

1) Lotsch J, et al : Current evidence for a modulation of nociception by human genetic polymorphisms. Pain 132 : 18-22, 2007

(住谷昌彦)

頭部痛

Cephalic pain

住谷昌彦

Masahiko Sumitani

頭部痛の治療開始時の注意点

頭部痛の発症機序と病態にはさまざまな ものが知られているが、薬物療法を主とする 治療戦略は疾患ごとに大きく異なる. した がって、頭部痛の治療は適切な診断が非常に 重要である.

薬物療法

1. 頭痛疾患

①片頭痛

頭部の片側性で持続痛を訴える. 閃輝暗点 や悪心・嘔吐を伴うことが多い.

【治療】

初期療法としては、アスピリンを1回500~1,500 mg(上限4,500 mg/日)を約6時間の間隔を空けて頓用する。または、アセトアミノフェン1回300~1,000 mg(上限4,000 mg/日)を4~6時間の間隔を空けて頓用する。あるいは、非ステロイド性抗炎症薬(NSAIDs)を頓用する。

制吐薬[ドンペリドン(1回10mg, 1日30mg を上限) やメトクロプラミド(1回5mg, 1日20mgを上限)] を併用すると,随伴症状の嘔気に対して有効なこともあるが,錐体外路症状の出現に注意する.

これらが無効な場合には、トリプタン製剤を使用する。スマトリプタン皮下注3mgが最も即効性があるが、リザトリプタン10mgとエレトリプタン80mgが最も鎮痛効果が強く忍容性が高い。トリプタン製剤は血管収縮作用があるため、虚血性心疾患や脳血管障害の患者には禁忌である。

トリプタン製剤で無効な場合には、ロメリ

ジン1回5mg定期内服やエルゴタミン1回 1mgを頓用する。ロメリジンはカルシウム 拮抗薬であり降圧薬との併用には注意を要 し、エルゴタミンも血管収縮作用があり心血 管系障害患者には禁忌である。

いずれが無効でもオピオイド鎮痛薬は使用しない.

1種類のトリプタン製剤が無効であれば専門医に紹介することを検討する. あるいは, 片頭痛に抑うつや不安などの心理的因子の合併がある場合には専門医に紹介する.

【予防】

チョコレートやアルコール, チーズ, ナッツ類, 柑橘類の摂取は片頭痛の誘発因子となり、これらの摂取中止や減量を指導する.

三環系抗うつ薬のアミトリプチリンは予防作用が期待でき、10mg就寝前から服用を開始し、数週間かけて50~70mg/日まで漸増する。アミトリプチリンは嘔気、眠気、便秘、尿閉などの副作用があり、高齢者ほど副作用が出現しやすいため注意を要する。

抗痙攣薬のバルプロ酸ナトリウム400~1,200 mg/日やトピラマート200~400 mg/日も予防作用が期待でき、症状や副作用(主として眠気)に応じて漸増していく。これら薬剤のなかでは、わが国ではバルプロ酸ナトリウムだけが片頭痛の予防薬として適用承認されている。

その他,降圧薬の β 遮断薬も片頭痛の予防 に有効であるが,調節が難しく専門医への紹 介を検討する.

②緊張型頭痛

頭部の両側面が発作的に締め付けられるよ

うな痛みが特徴である。片頭痛の発作前に肩 こりなどの前駆症状が出現することも多く,緊 張型頭痛として診療されている患者に片頭痛 が見落とされていることがあるので注意する.

緊張型頭痛に対する鎮痛薬としアセトアミノフェンやNSAIDs, バルプロ酸などの抗痙攣薬, 筋弛緩薬が有効である. 予防薬としてはアミトリプチリンやバルプロ酸が推奨される.

③群発頭痛

片側性で「目の奥を殴られたような」などの特徴的な表現を伴う激痛である.薬物療法では酸素吸引が特異的に有効であったり、降圧薬を予防に用いたりと治療が難しい.群発頭痛を疑った場合には、直ちに専門医に紹介する.

④薬物の使用過多による頭痛(薬物乱用頭痛) 頭痛予防薬を主体とする薬物療法に加え て患者教育が重要であり、専門医への紹介が 望ましい

2. その他の頭部痛疾患

①三叉神経痛

顔面にトリガー部があり、顔面〜頭部にかけて数秒〜数十秒間程度の電撃痛が起こる。 テグレトールを1回50〜100mg、1日4回服用させるが副作用(眠気)に応じて増減する。 重篤な皮膚アレルギー症状や肝機能障害、白血球減少の可能性があるため定期的な皮膚症状の問診と血液検査が必要である。

第二選択薬はバクロフェンとラモトリギンが推奨されるが、テグレトールが無効な場合には非薬物療法(恒久的三叉神経節ブロックや三叉神経-血管減圧術など)の適応を検討するために専門医へ紹介する.

②帯状疱疹後神経痛

三叉神経や頸髄神経根の帯状疱疹後に頭部痛が遷延することがあり、アロディニア(触覚刺激によって痛みが誘発される)や痒みを伴うこともある.

第一選択薬は、三環系抗うつ薬のノルトリ プチリンないしはアミトリプチリンである. 嘔気、眠気、便秘、尿閉などの副作用があり、高齢者ほど副作用が出現しやすいため注意を要する。プレガバリンも第一選択薬であり、75mg就寝前から服用を開始、数週間かけて300~600mgまで漸増する。プレガバリンは副作用として眠気があるため、就寝前だけの服用や夕食後と就寝前の服用などによって忍容性を高めることも考慮する。

ノイロトロピン®も第一選択薬であり、1 日3錠を内服する. 副作用がほとんどなく忍 容性がきわめて高い。

第二選択薬は抗うつ薬のデュロキセチン(20mg朝食後から開始し40~60mg/日まで1~2週間で漸増する。デュロキセチンは服薬初期に倦怠感や嘔気が出現することがあるが次第に緩和していくので、あらかじめ説明することによって忍容性を高める)と抗不整脈薬のメキシレチン(200~300mg/日を服用させるが、開始前および定期的な心電図検査が必要)である。

第三選択薬はオピオイド鎮痛薬が推奨されるが、オピオイド鎮痛薬の使用に習熟していない場合には専門医への紹介を推奨する.

③副鼻腔炎

副鼻腔炎のなかには、好酸球性副鼻腔炎などのようなアスピリン喘息を伴う患者がいるため酸性NSAIDsの使用は禁忌である。したがって、安易に鎮痛薬を処方せず、副鼻腔炎の鑑別や適切な抗アレルギー薬による原疾患の治療のために、副鼻腔炎による頭部痛患者は耳鼻咽喉科専門医に紹介することが望ましい。

非薬物療法

いずれの頭痛疾患や神経障害性疼痛疾患に対しても、リラクゼーションや認知行動療法のような心理療法が一定の役割を果たす. 薬物療法に抵抗性で、ADLやQOLの低下が著しい症例では専門医に紹介し、心理療法の導入を検討する.

ORIGINAL ARTICLE

Prevalence and characteristics of chronic musculoskeletal pain in Japan: A second survey of people with or without chronic pain

Masaya Nakamura · Yuji Nishiwaki · Takahiro Ushida · Yoshiaki Toyama

Received: 7 April 2013/Accepted: 16 December 2013/Published online: 7 February 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract

Background An epidemiological survey conducted in Japan in fiscal year 2010 revealed a high prevalence of chronic musculoskeletal pain, low patient satisfaction with treatment, a high incidence of protracted treatment lasting a year or more, and reduced quality of life. To improve the current system for treating chronic musculoskeletal pain, it is important to identify risk factors, including patient characteristics, for developing chronic pain. Thus, we sought to determine the incidence of new chronic pain in the Japanese population, as well as the persistence rate, associated factors, and current state of treatment of chronic pain, by repeating a postal survey in a nationwide representative sample group first surveyed in 2010.

Methods Among 11,507 participants in the 2010 epidemiological survey, 1,717 reported chronic pain and 6,283 reported no chronic pain. A repeat questionnaire, mailed to subjects in these 2 groups in fiscal year 2011, received replies from 85 % of those who reported pain and 76 % of those without pain in 2010.

Results The incidence of new chronic pain was 11.1 %. Risk factors for developing chronic pain included working in a professional, managerial, or clerical/specialist

occupation, being female, having a BMI \geq 25; currently using alcohol or cigarettes; and having completed an education level of vocational school or higher. Persistent chronic pain was reported by 45.2 % of respondents. Those with severe (VAS score \geq 7) and constant lower-back pain lasting more than 5 years had the highest risk of the pain persisting. More than 80 % respondents with persistent chronic pain had a history of treatment, and while about 30 % were still receiving treatment at the time of the survey, the other 50 % had discontinued treatment despite the persistence of pain because of a low degree of satisfaction with treatment.

Discussion We identified risk factors related to the development of new chronic pain and the persistence of chronic pain. Countermeasures to prevent chronic pain could be especially important for the high-risk populations for understanding the pathology of chronic pain.

Introduction

The National Livelihood Survey found motor-organ pain in the form of low back pain, stiff shoulders, and arthralgia to be the most common symptoms [1] suffered by the Japanese public. However, we do not know enough about these symptoms, even at a basic level, to create effective strategies to counteract chronic pain in our country. The Survey Study on Chronic Musculoskeletal Pain, conducted in Japan in 2010, found that chronic musculoskeletal pain had a symptom prevalence of 15.4 % and that 42 % of people reporting chronic musculoskeletal pain had received treatment. The treatment period became protracted, lasting a year or more, in 70 % of those who were treated, and patient satisfaction with treatment was low. We also found that chronic musculoskeletal pain strongly impacted the

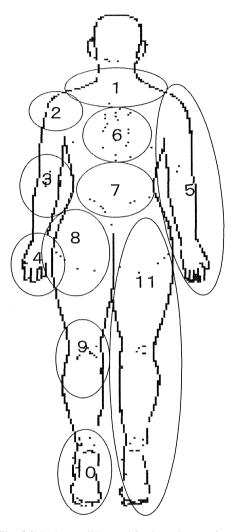
M. Nakamura (⊠) · Y. Toyama

Department of Orthopaedic Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan e-mail: masa@a8.keio.jp

Y. Nishiwaki

Department of Environmental and Occupational Health, School of Medicine, Toho University, Ota, Tokyo, Japan

T. Ushida


Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Aichi, Japan

sufferer's life through both a loss of social activity and a long-term increase in the degree of assistance needed in daily life and also strongly affected the lives of people around the one suffering pain in Japan [2]. This emphasizes the importance of identifying the characteristics and risk factors of patients whose pain becomes chronic, and establishing preventive measures. In the present study, we repeated a postal survey of a representative nationwide sample to examine the incidence of new chronic pain, the chronic pain persistence rate, factors associated with chronic pain, and the actual state of treatment for those with persistent, chronic pain in Japan.

Methods

The original survey group, a nationwide, randomly selected sample, was chosen in 2010 through the Mail-in Survey Panel maintained by the Nippon Research Center [2]. The Panel is based on a randomly selected addressbased sample with gender and age distributions similar to those in the national population census. To create a mailing address sample that reflected the demographic composition of the Japanese population, subjects were specified as being residents of Japan who were 18 or more years of age, and quotas were set for gender, age, and regional distribution to correspond to the population as a whole. The 2010 survey included 11,507 subjects, of which 1,770 reported chronic pain and the others reported no chronic pain. We mailed a repeat questionnaire to these 2 groups in 2011, and obtained replies from 1,460 of those who had reported chronic pain (reply rate 82.5 %) and 4,797 of those who did not have chronic pain (reply rate 76 %) at the time of the 2010 survey. Besides such basic information as gender, age, location of residence, and occupation, our questionnaire asked about the severity, location, and duration of chronic musculoskeletal pain, whether the pain was treated, and about the facility where treatment was received, the nature of the treatment, the treatment period and effectiveness, and the patient's degree of satisfaction. In both the 2010 and 2011 surveys, musculoskeletal pain was defined as pain associated with bone, muscle, joints, or nerves at each of 11 anatomical sites (neck, back, low back, shoulder, elbow, wrist/hand, arm, hip, knee, ankle/foot and leg) (Fig. 1), and chronic pain was also defined as pain experienced at least once in the past 30 days, with a severity score of 5 or more on a visual analogue scale (VAS), and persisting for 6 months or more. We calculated the incidence rate of new chronic pain based on the 4,797 persons who did not have chronic pain in fiscal 2010, and the chronic pain persistence rate based on the 1,460 persons who had reported chronic pain in fiscal 2010. Incidence rates and persistence rates were

Fig. 1 The full-body manikin used in the pain-associated epidemiological survey. I neck, 2 shoulder, 3 elbow, 4 wrist/hand, 5 arm, 6 back, 7 low back, 8 hip, 9 knee, 10 ankle/foot, 11 leg

calculated according to the individual factors such as gender, area of residence, and urban size, and occurrence rates were compared by the χ^2 test. In addition to gender and age, significantly associated factors identified by the crude odds ratio (p < 0.1) were ultimately included in multivariate analysis (logistic regression analysis), and adjusted odds ratios were calculated. Factors for which the crude odds ratio did not find an association were also incorporated into the final model, one by one, to check their effect.

We evaluated the treatment circumstances in detail for respondents who reported persistent chronic pain, including whether the pain was treated, the type of treating facility, the nature and effectiveness of the treatment, the subject's degree of satisfaction, and whether the patient changed treatment facilities. This study was approved by the IRB of Keio University.

Table 1 Incidence of chronic pain by factors

	Number	Incidence (%)	Crude OR (95 % CI)	p value	Multivariate-adjusted OR ^a (95 % CI)	p value
All	531/4797	11.1				
Gender						
Men	220/2110	10.4	1		1	
Women	311/2687	11.6	1.12 (0.94–1.35)	0.209	1.47 (1.17–1.85)	0.001
Age						
20–29	54/496	10.9	1		1	
30–39	100/733	13.6	1.29 (0.91–1.84)	0.153	1.07 (0.73–1.63)	0.728
40–49	113/794	14.2	1.36 (0.96–1.92)	0.083	1.11 (0.76–1.63)	0.595
50–59	92/794	11.6	1.07 (0.75–1.53)	0.700	0.92 (0.62–1.37)	0.692
60–69	93/1044	8.9	0.80 (0.56–1.14)	0.218	0.80 (0.54–1.20)	0.282
70–79	72/854	8.4	0.75 (0.52–1.09)	0.136	0.89 (0.58–1.35)	0.571
80-	7/82	8.5	0.76 (0.33–1.74)	0.522	0.71 (0.27–1.88)	0.496
Area	,,,,,	0.0	0.70 (0.00 1.7.)	0.022	0.77 (0.227 1.00)	0.170
Hokkaido	27/211	12.8	1		1	
Touhoku	32/295	10.9	0.83 (0.48–1.43)	0.501	0.86 (0.50–1.50)	0.602
Kanto	204/1837	11.1	0.85 (0.55–1.31)	0.462	0.80 (0.51–1.23)	0.307
Chubu	55/553	10.0	0.75 (0.46–1.23)	0.462	0.74 (0.45–1.23)	0.246
Hokuriku	17/205	8.3	0.62 (0.32–1.17)	0.230	0.64 (0.33–1.23)	0.182
Kinki	101/855	11.8	0.02 (0.52–1.17)	0.138	0.90 (0.56–1.42)	0.182
	38/295	12.9	1.01 (0.59–1.71)	0.094	1.09 (0.63–1.87)	0.760
Chugoku						
Shikoku	8/127 49/419	6.3	0.46 (0.20–1.04)	0.063	0.52 (0.22–1.19)	0.122
Kyushu	49/419	11.7	0.90 (0.55–1.49)	0.689	0.80 (0.48–1.36)	0.414
City size	100/1200	12.0	1		1	
500,000 ≦	180/1390	13.0	1	0.060	1	0.100
150,000 ≦	163/1521	10.7	0.81 (0.64–1.01)	0.062	0.83 (0.66–1.05)	0.122
<150,000	142/1360	10.4	0.78 (0.62–1.00)	0.041	0.83 (0.65–1.06)	0.134
County	39/401	9.7	0.72 (0.50–1.04)	0.084	0.78 (0.54–1.14)	0.201
No answer	7/125	5.6	0.40 (0.18–1.01)	0.021	0.47 (0.20–1.10)	0.082
Occupation	0.4610.40	10.1				
Others ^b	346/3427	10.1	1		1	
Professional, manager, clerical, and skill	183/1345	13.6	1.41 (1.16–1.70)	< 0.001	1.36 (1.08–1.71)	0.010
Marital status	100/1020	0.6	1		1	
Divorced/widowed/single	100/1038	9.6	1 22 (0.07, 1.54)	0.006	1 27 (0.00, 1.64)	0.072
Married	427/3702	11.5	1.22 (0.97–1.54)	0.086	1.27 (0.98–1.64)	0.073
Living condition	20/224	0.6				
Alone	28/324	8.6	1	0.150		
Not alone	497/4417	11.3	1.34 (0.90–2.00)	0.150		
BMI category	101100					
-18.49	48/400	12.0	1.15 (0.83–1.58)	0.395	1.03 (0.74–1.44)	0.864
18.5–24.9	368/3469	10.6	1		1	
25.0-	108/857	12.6	1.22 (0.97–1.53)	0.095	1.28 (1.01–1.62)	0.038
Alcohol drinking ^c						
Never	197/2033	9.7	1		1	
Ex-drinker	49/365	13.4	1.45 (1.03–2.02)	0.031	1.4 (0.98–1.98)	0.061
Current drinker	282/2344	12.0	1.27 (1.05–1.55)	0.014	1.23 (1.00–1.52)	0.050
Smoking ^c						
Never	335/3155	10.6	1		1	
Ex-drinker	74/753	9.8	0.92 (0.70-1.20)	0.524	0.92 (0.69–1.22)	0.567

Table 1 continued

	Number	Incidence (%)	Crude OR (95 % CI)	p value	Multivariate-adjusted OR ^a (95 % CI)	p value
Current drinker	119/841	14.2	1.39 (1.11–1.74)	0.004	1.32 (1.03–1.69)	0.031
Education						
High school or lower	241/2457	9.8	1		1	
Technical or higher	287/2316	12.4	1.30 (1.08-1.56)	0.005	1.24 (1.02–1.51)	0.030
Income						
-3,990,000	188/1752	10.7	1			
4,000,000-7,990,000	226/2022	11.2	1.05 (0.85-1.29)	0.662		
8,000,000-9,990,000	60/461	13.0	1.24 (0.91-1.70)	0.167		
10,000,000-	48/432	11.1	1.04 (0.74-1.46)	0.820		

a adding to age category and sex, variables which had a statistically significant influence on odds ratio were included in the model

Results

Incidence rate and risk factors for new chronic pain

Among the 4,797 people who did not have chronic pain in 2010, 531 reported newly developed chronic pain in the 2011 survey; the incidence rate was 11.1 %. Table 1 shows the incidence rates according to individual factors. Crude analysis suggested associations between the development of chronic pain and age, area, city size, occupation, marital status, BMI category, alcohol use, smoking, and education history. Multivariate analysis identified statistically significant associations with gender (female), occupation (professional, managerial, clerical/specialist), a BMI ≥25, current alcohol or cigarette use, and a highest-completed education level of vocational school or higher (Table 1).

Persistence rate for chronic pain, and risk factors for persistence

Of the 1,460 persons who reported chronic pain in 2010, 660 reported its persistence in the 2011 survey (45.2 %). Table 2 shows persistence rates according to individual factors. Crude analysis suggested associations between pain persistence and age, area, occupation, marital status, and household income, and the pain site, severity, frequency and duration and change of practice as reported on the 2010 survey. Multivariate analysis identified statistically significant associations with the following factors in the 2010 survey: a pain VAS score of 7–8, constant pain, pain persistence for 5 years or more, and a pain site in the lower back (Table 2). Although the *p* value for the crude analysis of change of practice was 0.082, it is not included in the multivariate analysis because this greatly reduced the sample size. Even if we forcibly included this variable of

the model, it did not show a statistically significant result (p = 0.299).

The state of treatment for persistent chronic pain

Characteristics of initial treatment

Although 31.7 % of the people with persistent chronic pain reported ongoing treatment for pain, 50.6 % had received treatment in the past but were no longer being treated, and 15.3 % had never received treatment (Fig. 2a). Approximately 60 % of those with persistent chronic pain and a history of treatment were initially treated at a medical facility such as an orthopaedic surgery department or surgery department, and the others were initially treated with folk medicines such as chiropractic, osteopathy, massage, or acupuncture/moxibustion (Fig. 2b). The most common type of initial treatment was physical therapy (28 %), followed by massage (26 %), medication (22 %), and orthotic treatment (8 %) (Fig. 2c). The most common treatment frequencies were once and several times weekly (approximately 30 % each), followed by once every 2 weeks or less, and daily (Fig. 3a). The most common treatment duration, reported by 40 %, was a year or longer (Fig. 3b).

Effectiveness of initial treatment and degree of patient satisfaction

Of the respondents who were initially treated at a medical facility, the pain was improved in 7 %, somewhat improved in 54 %, unchanged in 33 %, somewhat aggravated in 2 %, and aggravated in 1 % by the treatment received (Fig. 4a). Only 6 % reported that they were very satisfied with the treatment received; 28 % were somewhat satisfied, 35 % were neither satisfied nor dissatisfied, 20 %

b agriculture, forestry, and fisheries/independent business/part-time worker/full-time homemaker/student/inoccupation

c alcohol drinking and smoking were categorized into three categories [never, ex (used to), and currently smoking] based on the questionnaire

Table 2 Continuance rate of pain by factors

	Number	Continuance rate	p value for χ^2 test	Crude OR (95 % CI)	p value	Multivariate-adjusted OR ^a (95 % CI)	p value
All	660/1460	45.2 %					
Gender							
Men	248/564	44.0 %	p = 0.452	1		1	
Women	412/896	46.0 %	•	1.08 (0.88–1.34)	0.452	1.23 (0.94–1.61)	0.124
Age				,			
20–29	78/138	56.5 %	<i>p</i> < 0.001	1		1	
30–39	125/270	46.3 %		0.66 (0.44–1.00)	0.051	0.74 (0.44–1.24)	0.255
40–49	159/309	51.5 %		0.82 (0.54–1.22)	0.322	1.14 (0.68–1.90)	0.628
50–59	121/269	45.0 %		0.63 (0.42–0.95)	0.028	0.80 (0.47–1.36)	0.411
60–69	101/256	39.5 %		0.5 (0.33–0.76)	0.001	0.76 (0.44–1.33)	0.340
70–79	72/194	37.1 %		0.45 (0.29–0.71)	0.001	0.71 (0.40–1.27)	0.246
80	4/24	16.7 %		0.15 (0.05–0.47)	0.001	0.37 (0.10–1.30)	0.120
Area				0110 (0100 0117)	0.001	0.0. (0.10 1.00)	0.120
Hokkaido	32/65	49.2 %	p = 0.519	1		1	
Touhoku	41/86	47.7 %	P 01013	0.94 (0.49–1.79)	0.850	0.96 (0.44–2.07)	0.910
Kanto	264/590	44.8 %		0.84 (0.5–1.39)	0.491	0.64 (0.35–1.18)	0.155
Chubu	85/180	47.2 %		0.92 (0.52–1.63)	0.781	0.81 (0.41–1.60)	0.554
Hokuriku	28/53	52.8 %		1.16 (0.56–2.39)	0.697	0.74 (0.31–1.77)	0.498
Kinki	101/231	43.7 %		0.80 (0.46–1.39)	0.431	0.70 (0.36–1.36)	0.496
Chugoku	33/83	39.8 %		0.68 (0.35–1.31)	0.451	0.55 (0.25–1.21)	0.136
Shikoku	12/39	30.8 %		0.46 (0.2–1.06)	0.067	0.38 (0.14–1.07)	0.067
Kyushu	64/133	48.1 %		0.96 (0.53–1.73)	0.883	0.86 (0.43–1.71)	0.659
City size	01/100	10.1 70		0.50 (0.55 1.75)	0.003	0.00 (0.13 1.71)	0.037
500,000 ≤	220/460	47.8 %	p = 0.605	1			
150,000 ≤	206/474	43.5 %	p = 0.005	0.84 (0.65–1.09)	0.181		
<150,000 =	173/385	44.9 %		0.89 (0.68–1.17)	0.401		
County	52/114	45.6 %		0.91 (0.61–1.38)	0.672		
Occupation	32/111	13.0 %		0.51 (0.01 1.50)	0.072		
Others ^b	491/1139	43.1 %	p = 0.002	1		1	
Professional, manager, clerical, and skill	169/319	53.0 %	p = 0.002	1.49 (1.16–1.91)	0.002	1.33 (0.96–1.85)	0.086
Marital status							
Divorced/widowed/single	156/287	54.4 %	p = 0.001	1		1	
Married	503/1166	43.1 %		0.64 (0.49-0.83)	0.001	0.72 (0.51–1.01)	0.061
Living condition							
Alone	36/70	51.4 %	p = 0.292	1			
Not alone	622/1382	45.0 %		0.77 (0.48–1.25)	0.294		
BMI category							
-18.49	63/139	45.3 %	p = 0.838	1.02 (0.71–1.46)	0.913		
18.5-24.9	438/977	44.8 %	•	1			
25.0-	156/334	46.7 %		1.08 (0.84–1.38)	0.552		
Alcohol drinking ^c							
Never	253/591	42.8 %	p = 0.240	1			
Ex-drinker	83/169	49.1 %	•	1.29 (0.92–1.82)	0.146		
Current drinker	322/693	46.5 %		1.16 (0.93–1.45)			
Smoking ^c				. ,			
Never	413/922	44.8 %	p = 0.640	1			
Ex-drinker	101/228	44.3 %	•	0.98 (0.73–1.31)	0.893		

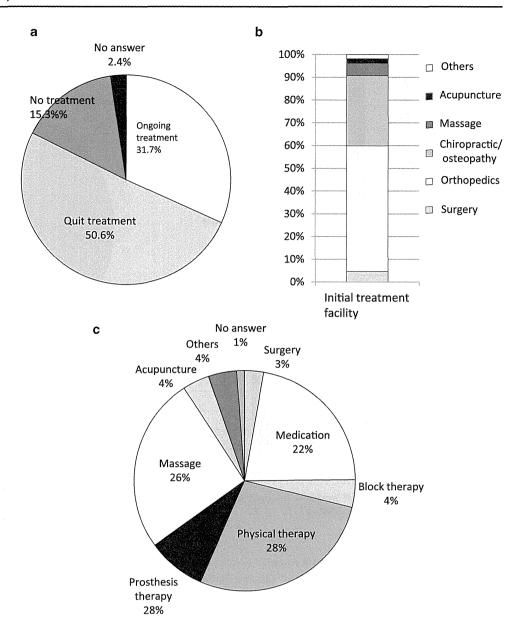
Table 2 continued

	Number	Continuance rate	p value for χ^2 test	Crude OR (95 % CI)	p value	Multivariate-adjusted OR ^a (95 % CI)	p value
Current drinker	145/304	47.7 %		1.12 (0.87–1.46)	0.378		
Education							
High school or lower	317/715	44.3 %	p = 0.540	1			
Technical or higher	339/738	45.9 %		1.07 (0.87-1.31)	0.540		
Income of family							
-3,990,000	220/511	43.1 %	p = 0.185	1		1	
4,000,000-7,990,000	280/618	45.3 %		1.1 (0.87–1.39)	0.448	1.00 (0.75-1.34)	0.997
8,000,000-9,990,000	63/149	42.3 %		0.97 (0.67-1.4)	0.867	0.86 (0.55-1.35)	0.510
10,000,000-	80/152	52.6 %		1.47 (1.02-2.11)	0.038	1.14 (0.73–1.78)	0.554
Strength of pain (VAS)							
5–6	412/984	41.9 %	p = 0.001	1		1	
7–8	228/433	52.7 %		1.54 (1.23-1.94)	< 0.001	1.43 (1.10–1.87)	0.008
9–10	20/43	46.5 %		1.21 (0.65-2.23)	0.547	1.33 (0.63-2.85)	0.455
Frequency of pain							
2-3 times/week	141/404	34.9 %	p < 0.001	1		1	
Once/day	100/270	37.0 %		1.1 (0.80-1.51)	0.571	1.34 (0.91-1.96)	0.135
Always	419/786	53.30 %		2.13 (1.66–2.73)	< 0.001	2.40 (1.79–3.23)	< 0.001
Duration of pain							
<3 years	152/432	35.2 %	p < 0.001	1		1	
3–5 years	89/214	41.6 %		1.31 (0.94-1.84)	0.114	1.45 (0.97–2.17)	0.073
5–10 years	145/270	53.7 %		2.14 (1.57-2.91)	< 0.001	2.13 (1.47–3.08)	< 0.001
10 years-	274/544	50.4 %		1.87 (1.44-2.42)	< 0.001	1.76 (1.29–2.42)	< 0.001
Site of pain							
Others	81/201	40.3 %	p = 0.001	1		1	
Neck	131/252	52.0 %		1.6 (1.1-2.33)	0.013	1.33 (0.87–2.02)	0.188
Shoulder	115/257	44.8 %		1.2 (0.83-1.74)	0.340	1.02 (0.68-1.54)	0.920
Low back	207/393	52.7 %		1.65 (1.17-2.33)	0.004	1.62 (1.11–2.37)	0.012
Knee	32/93	34.4 %		0.78 (0.47-1.3)	0.335	0.81 (0.47-1.39)	0.443
Treatment							
None	342/780	43.9 %	p = 0.553	1			
At hospital/clinic	134/289	46.4 %		1.11 (0.84–1.45)	0.462		
At folk remedy	139/295	47.1 %		1.14 (0.87–1.49)	0.336		
Both	26/50	52.0 %		1.39 (0.78-2.46)	0.262		
Change of practice							
No	126/290	43.5 %	p = 0.082	1			
Yes	144/284	50.7 %		1.34 (0.96–1.86)	0.082^{d}		

a adding to age category and sex, variables which had a statistically significant influence on odds ratio were included in the model

were somewhat dissatisfied, and 10 % were very dissatisfied (Fig. 4b). When compared by the type of treatment provider, 20 % of those treated at medical facilities such as an orthopaedics or surgery department reported being very or somewhat satisfied; however, 50 % of those who used

folk medicine such as chiropractic, osteopathy, massage, or acupuncture/moxibustion, reported being very or somewhat satisfied (Fig. 5). Thus, the degree of satisfaction with folk medicine treatments was higher than with treatments received at medical facilities.



^b agriculture, forestry, and fisheries/independent business/part-time worker/full-time homemaker/student/inoccupation

c alcohol drinking and smoking were categorized into three categories (never, ex (used to), and currently smoking) based on the questionnaire

^d p for crude analysis of change of practice was 0.082, but not included in the multivariate analysis because this reduced sample size

Fig. 2 Treatments received for persistent, chronic pain: a treatment circumstances, b initial treatment facility, and c nature of the initial treatment

Circumstances regarding changes in treatment facility

Approximately 60 % of the persons who had been treated for pain had changed treatment facilities. Of these, 31 % had changed once, 28 % had changed twice, 22 % had changed 3 times, and, of particular note, a high proportion, 15 %, had changed 5 or more times. The most common reason for changing, given by 40 %, was dissatisfaction with the previous treatment, which is consistent with the low degree of satisfaction reported (Fig. 6).

A review of the data of the initial and most-recent treatment facilities showed that the use of conventional medical facilities decreased to less than half of the initial frequency, whereas hardly any decrease in folk medicine treatment was observed (Fig. 7a). Reflecting these results, the most common most-recent treatments reported were

massage for 34 %, physical therapy for 21 %, and acupuncture/moxibustion for 8 %, thereby accounting for about 60 % of the patients who received treatment. Medication was the most recent treatment for 18 %, nerve block therapy for 4 %, and orthotic treatment for 6 % (Fig. 7b). The most common reason given for discontinuing treatment was, "because it wasn't effective" (30 %), followed by, "I didn't have the time," "I couldn't afford it," and, "I thought I could take care of it myself" (Fig. 7c).

Actual status of persons with persistent, untreated chronic pain

Approximately 15 % of the respondents reporting persistent chronic pain had never received treatment (Fig. 2a). The most common reasons given for not seeking treatment

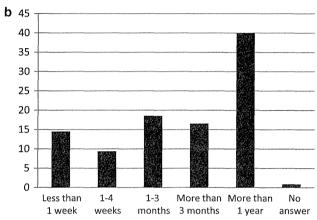


Fig. 3 Frequency and duration of treatment for persistent chronic pain: treatment a frequency and b duration

were, "I thought I could take care of it myself" (24 %) and, "I didn't think treatment was necessary" (16 %), indicating inadequate recognition or knowledge of chronic pain. Another 24 % chose, "I didn't expect treatment to be effective," indicating a low expectation for successful treatment for chronic pain (Fig. 8). Approximately 40 % of the respondents with untreated chronic pain coped by using non-prescription drugs, health foods, or supplements, or tried to improve their diet or lifestyle.

Discussion

New development of chronic musculoskeletal pain

The incidence rate of new chronic musculoskeletal pain among those who did not have chronic pain the previous year was 11.1 %, and in actuality, 1 in 10 persons met the criteria for newly developed chronic pain. On the other hand, the prevalence rate of chronic pain calculated the previous fiscal year was 15.4 %, indicating that much of

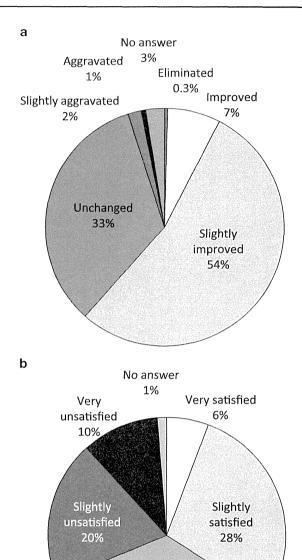


Fig. 4 Initial treatment at a medical facility for chronic pain: ${\bf a}$ effectiveness and ${\bf b}$ patients' degree of satisfaction

Neutral

35%

the chronic pain that met the criteria at that time resolved relatively quickly. Prevalence is generally calculated as prevalence rate = incidence rate × duration of illness; when the corresponding figures were inserted into the equation, the duration of chronic pain was 1.4 years. In other words, according to this calculation, chronic pain resolves in about a year and a half on average. However, this should be interpreted with caution, since it means that the pain no longer meets the criterion for chronic pain after about a year and a half, not that the pain has completely resolved. In addition, caution is required because 48 % of

