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Figure 4. Single-cell gene expression analysis using the Fluidigm dy-

namic array. Single-cell gene expression profiling using Fluidigm dy-
namic arrays was performed. Heat maps depict the expression of
genes differentially expressed between iKC6 (transgene residual) and
iKC6-R1 (transgene-free) hiPSCs and primary human keratinocytes
(control). Rows represent individual cells, and columns represent the
evaluated genes. Genes highly expressed are shown in white, and genes
with low expression are shown in red. Abbreviations: AFP, a-fetoprotein;
dNp63,A N p63;iKC, induced keratinocyte; INV, involucrin; ITGA6, a6
integrin; ITGB4, B4 integrin; KRAT, keratin; PKC, primary human ker-
atinocytes from neonatal male skin.

keratinocytes (CELLNTEC). According to the manufacturer’s pro-
tocols, we performed the 3D culture experiments with both
transgene-residual (iKC6) and -free (iKC6-R1) cell lines for approx-
imately 21 days. As representatively shown in Figure 5A, iKC6-R1
cells successfully formed pluristratified epidermal structures in
four of six experiments (67%), whereas no such structures were
formed by iKC6 cells in any of the six experiments. In 3D culture,
keratinocyte differentiation was evaluated by immunofluores-
cence staining of K14 and involucrin proteins (Fig. 5B). Lower
layers of the pluristratified structure were positive for K14,
whereas the upper layers were positive forinvolucrin, indicating
in vitro reproduction of normal keratinocyte differentiation in
vivo. A pluristratified structure was also formed by transgene-
free hESCs in three of six experiments (50%) (Fig. 5C). In con-
trast, no such structures were formed by any of the
transgene-residual hiPSC lines including iKC1 (seven experi-
ments) and iKC-Retro (five experiments) (Fig. 5D). These results
indicated that residual transgenes and their reactivation upon
differentiation of keratinocytes from hiPSCs could critically in-
fluence not only the cellular phenotypes of such keratinocytes
but also the functional properties of these cells for potential
therapeutic use in regenerative medicine.

Discussion

In this study, we present a direct comparison of the effects of ex-
cising reprogramming transgenes from hiPSCs in terms of cellular
and molecular phenotypes and their potential for differentiation
into keratinocytes in vitro. Comparison between hiPSCs gener-
ated by different induction methods, e.g., retrovirus-based
(transgene-residual) hiPSCs versus Sendai virus-based (transgene-
free) hiPSCs, did not reveal any effects of residual transgenes
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in hiPSCs. However, our piggyBac transposon-based method
allowed generation of an isogenic pair of hiPSC lines with or with-
out retention of the reprogramming transgenes, leading to a pre-
cise evaluation of the effects of residual transgenes in hiPSCs and
their derivatives.

The present study showed that, in the presence of the resid-
ual transgenes that had been silenced in a pluripotent state before
differentiation induction, the iPSCs underwent transcriptional reac-
tivation of the exogenous genes and showed less efficient differ-
entiation into keratinocytes. In fact, we compared the phenotypes
and function of transgene-residual and -free hiPSCs and their deriv-
atives (iKCs). In the undifferentiated state, there appeared to be
no characteristic differences between transgene-residual and -free
hiPSCs. Next, we differentiated these established hiPSCs into
epidermal keratinocytes using a modified method published
elsewhere [19, 20]. In morphological, gene expression, and
functional analyses, we found that transgene-residual hiPSCs
did not fully differentiate into keratinocytes. Single-cell analysis
using the Fluidigm dynamic array revealed that the cells derived
from transgene-residual hiPSCs remained in an early develop-
mental stage of keratinocyte differentiation, i.e., the K8/K18-
positive stage, which may be related to residual transgene reac-
tivation and subsequent activation of endogenous pluripotency
genessuch as NANOG (Fig. 4). On the other hand, cells that resem-
bled normal human keratinocytes were effectively induced from
transgene-free hiPSCs (Figs. 3—5). Single-cell analysis showed that
our keratinocyte differentiation method successfully induced
epidermal lineage cells, because cell types belonging to other
lineages were not detected as shown in Figure 4. However,
the expression of keratinocyte-specific genes such as K5, K14,
and dNP63 was still weak even in cells differentiated from
transgene-free hiPSCs compared with that in primary human
keratinocytes, indicating that better methods need to be estab-
lished for keratinocyte differentiation. Another explanation is
that a minor population (~10%) of iKC cells that expressed an
extremely high level of K14 as shown in Figure 3D was included
in the bulk analysis but excluded from the single-cell analysis by
random selection (Fig. 4).

In terms of the relationship between residual transgenes and
iPSC function, we found conflicting results in the present study.
Previous reports have suggested that impaired silencing of trans-
genes in hiPSCs results in poor differentiation [22, 23]. Once the
transgenes were silenced in iPSCs, these cells appeared to show
a normal differentiation ability. Major et al. [24] reported that
there are no differences between neuronal cell differentiation
from transgene-residual or -free hiPSCs (induced by a lentiviral
vector with Cre-loxp-mediated transgene excision system), and
in that study, transgenes were silenced in hiPSCs. On the other
hand, Toivonen et al. [25] reported that the reactivation of trans-
gene in retrovirally generated hiPSCs affected the differentiation
ability of these cells. The major problems of these previous con-
tradicted reports were that hiPSCs generated from different
methods (i.e., retrovirus-based and Sendai virus-based hiPSCs)
had been compared. However, with our present situation, we
could compare the phenotypes of transgene-residual and -free
hiPSCs of the same genetic background, and this led to a precise
evaluation of the effects of residual transgenes in hiPSCs and their
derivatives. Thus, in our study, although the transgenes appeared
to be silenced in hiPSCs, reactivation of the transgenes was obvi-
ous upon keratinocyte differentiation, leading to poor keratino-
cyte differentiation.
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Figure 5. Functional analysis of iKCs from hiPSCs. (A): Representative cross-sectional views of three-dimensional (3D) culture of iKCs using a 3D
epidermal culture system (CELLNTEC). iKC6 and iKC6-R1 keratinocytes were generated from Kel6 (Tg+) and Kel6-R1 (Tg—) hiPSCs, respectively.
Hematoxylin and eosin staining. Magnification is <40 (top and middle) and X200 (bottom). (B): Immunofluorescence analysis of K14 and
involucrin expression in the reconstituted epidermis shown in (A) (<100). (C): Representative cross-sectional view of 3D culture of iKCs from
hESCs. Hematoxylin and eosin staining is shown at X 100 magnification. (D): Results of 3D culture-based functionality tests of iKCs derived from
various hiPSC lines or a hESC line. Abbreviations: hESC, human embryonic stem cell; iKC, induced keratinocyte; iKC-hESC, iKCs from hESCs; Tg+,

transgene-residual; Tg—, transgene-free.

From another point of view, Itoh et al. [20] also reported that
they selected cells in which the transgenes were not reactivated
when evaluating their keratinocytes induced from retrovirus-
based hiPSCs. Based on these results, including our own, the dif-
ferentiation abilities of transgene-residual hiPSCs may be
impaired, and this phenomenon may be more easily detected
depending on the induced cell type. Specifically, residual trans-
genes tended to be reactivated more easily upon keratinocyte
differentiation.

To further investigate whether reactivation of residual
transgenes in hiPSCs was related to the method of derivation,
namely transposon system specific, we differentiated
retrovirus-based hiPSCs that were already confirmed to be
pluripotent [26] (transgene residual) and hESCs (no transgenes)
into epidermal keratinocytes using the same protocols and per-
formed characteristic analyses of these cells. Morphologically,
as expected, the cells differentiated from retrovirus-based
hiPSCs showed a spindle shape resembling that of the differen-
tiated transposon-based transgene-residual hiPSCs. On the
other hand, cells differentiated from hESCs showed a cobble-
stone appearance that resembled the morphology of
transposon-based transgene-free hiPSCs. Moreover, we clearly
observed transgene reactivation in cells differentiated from
retrovirus-based hiPSCs. These results strongly suggest that resid-
ual transgenes in hiPSCs can affect the differentiation ability, at
least when differentiating into keratinocytes, through the reacti-
vation of residual transgenes.

©AlphaMed Press 2014

Moreover, the piggyBac transposon-based system for cellular
reprogramming allowed efficient removal of reprogramming
transgenes without residual exogenous sequences or any footprint
mutations in the hiPSC genome. Even for establishment of human
disease models in vitro, proper quality and safety precautions may
be required because of the use of hiPSCs with viral transgene inte-
gration. Reactivation of any integrated transgene is one of the rea-
sons for the oncogenicity of iPSCs [5—8]. Furthermore, transgene
integration itself causes insertional mutagenesis [9]. Therefore,
several methods have been developed to generate iPSCs, other
than retrovirus-based methods, including those using plasmids
[27], recombinant proteins [28], episomal viral vectors [29], and
mRNA [30, 31] for derivation of transgene integration-free iPSCs.
Among these methods, although the Sendai viral vector is now
widely used to generate transgene integration-free iPSCs, it can
be quite difficult to show that there is no residual virus in the cells.
Therefore, among the various methods, we selected the piggyBac
transposon system to generate hiPSCs.

CONCLUSION

Our results have significant implications for the clinical use (or
even laboratory use) of hiPSCs. Specifically, we confirmed that
transgene-residual hiPSCs are not suitable for clinical use and
that transgene integration-free hiPSCs are necessary. The timing
of integrated transgene reactivation cannot be predicted, and
thus, transgene-free hiPSCs are more appropriate not only for
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clinical use and also laboratory use; otherwise the results may be
affected. In addition, our piggyBactransposon system for the creation
of hiPSCs may be a powerful approach, especially for clinical use.
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