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Figure 3. Cell cycle and apoptosis in JT and JTL1-2 cells. (A) Cell cycle
analysis of JT and JTL1-2 cells was performed 2 and 3 days after
induction with Dox (0 or 1000 ng/mL). Experiments were performed in
triplicate and data are presented as means with standard errors. Black,
gray, and white represent the ratio of cells in G1, S, and G2/M,
respectively. (B) To assess the apoptosis, 2 days after the Dox induction
(0 or 1000 ng/mL), JT and JTL1-2 cells were stained with 7-AAD and
Annexin V and analyzed by FACS. The numbers in the corner of each
quadrant indicate the percentage of cell events within the quadrant.
Early apoptotic cells were defined as those positive for Annexin V but
negative for 7-AAD. (C) Cell extracts harvested 2 days after Dox
induction were analyzed by western blotting for the apoptosis markers,
caspase-3 (Cas3) and poly(ADP-ribose) polymerase (PARP).

CAEBV-derived cells (relative quantity to 2 m: SNTI16,
0.14 in Fig. 1A; SNT13, 0.0090 [17]; SNT15, 0.022 [17]).
However, JTL1-2 induced with 1000 ng/mL Dox
expressed slightly higher levels of LMP1 compared to the
other CAEBYV cell lines tested (Fig. 1A). Therefore, JTL1-1
and JTL1-2 express an adequate range of LMP1 levels to
evaluate its role in T cells.

© 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

Role of LMP1 in CAEBV

Expression of LMP1 failed to increase cell
proliferation and growth signal intensity

After successfully generating T cell lines that express
LMP1 in response to Dox, the cell proliferation rates were
analyzed in the presence of 0, 10, 100, or 1000 ng/mL
Dox (Fig. 2A). The parental cell line, JT, had the fastest
growth rate of the three cell lines, with the untreated con-
trols reaching about 20 x 10 cells by day 4 (please take
notice that the scale of y-axis is different in JT cells). The
growth of JT cells slowed with increasing concentrations
of Dox, suggesting that higher concentrations of Dox
might be slightly toxic to the cells. Compared to JT and
JTL1-1 cells, the growth of JTL1-2 cells was inhibited sig-
nificantly after abundant LMP1 expression had been trig-
gered by high concentrations of Dox (Fig. 2A). This
suggests that LMP1, the major oncogene of EBV, may not
confer a growth advantage to T cells, at least in Jurkat
cells, under conditions of exogenous expression.

We then measured the activities of AKT and NF«xB sig-
naling pathways, which are activated by LMP1 in B cells.
When LMP1 was expressed in a dose-dependent manner
by increasing concentrations of Dox, the phosphorylation
of AKT in JTL1-2 cells decreased (Fig. 2B). We also
assessed the levels of the p65 component of NFxB and
IxBo, the major inhibitor of NFxB. We found that the
p65 levels were comparable, but that the expression of
IxBo increased concurrently with LMP1 expression in
JTL1-2 cells (Fig. 2B). The mRNA expression of IxBa, as
assessed by microarray analysis, was also upregulated in
JTL1-2 cells but not in JTLI-1 cells (data not shown).

These unexpected observations reveal that LMP1 inhib-
its cell growth and the activation of key signaling path-
ways, such as AKT and NFxB, in Jurkat cells, particularly
when LMP1 is expressed abundantly. This contradicts
previous studies that found that LMP1 induces cell prolif-
eration through these pathways in B cells.

LMP1-induced apoptosis in JTL1-2 cells at
high concentrations of Dox

Because of the unexpected effects of LMP1 on the growth
of JTL1-2 cells, we assessed the cause of the decreased
growth rate. Therefore, cell cycle and apoptosis were
examined in JTL1-2 cells in the presence or absence of
Dox (Fig. 3). We here did not examine cell cycle and
apoptosis in JTLI-1 cells because cell growth inhibition
rate of the JTL1-1 cells by Dox addition was almost com-
parable to the parental control cell line, JT (Fig. 2A).

Propidium iodide staining followed by FACS analysis
showed that the ratio of cells in G1, S, and G2/M were
comparable between JT and JTL1-2 cells, with or without
Dox, after 2 or 3 days of incubation (Fig. 3A).
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Figure 4. Dominant negative LMP1 inhibits proliferation of CAEBV T cells. (A) An illustration of the LMP1 signal pathway. LMP1 molecules form
an oligomer that is required for its signaling activity (the oligomer is designated as a dimer for simplification). (B) DN-LMP1 has point mutations
that modify the PXQXT motif in the TES1 domain to AXAXT and the YYD in the tail of TES2 to IID, resulting in the dysregulated signaling activity.
(C) The growth rates of Jurkat and SNT16 cells were assessed after transient transfection with empty vector (Vec) or DN-LMP1 (DN). Experiments
were performed in triplicate and data are presented as means with standard errors. Western blotting results for the expression of LMP1,
phospho-AKT (pAKT), AKT, and actin are shown underneath the growth bars.

To monitor apoptotic cell death, in the Figure 3B, JT
or JTL1-2 cells were stained with Annexin V, an early
apoptosis marker that detects the abnormal localization of
phosphatidylserine on the cell membrane, and 7-AAD,
which enters cells and intercalates into nuclear DNA
when the integrity of cell plasma membrane has been
damaged in the later stages of apoptosis. The levels of
both markers were similar in JT and JTL1-2 cells without
Dox treatment (Fig. 3B). However, the proportion of
Annexin V (+)/7-AAD (—) cells, indicative of early apop-
tosis execution program, increased to 41.1%, and the
number of Annexin V (+)/7-AAD (+) cells, indicative of
late apoptosis, also increased to 7.9% in JTL1-2 cells incu-
bated with Dox (Fig. 3B).

To confirm these observations, we carried out western
blotting for caspase-3 and poly (ADP-ribose) polymerase
(PARP). Caspase-3 is a cysteine protease that plays a
major role in apoptosis. Caspases cleave target proteins,
including PARP, during the execution of apoptosis.
Western blotting indicated that the increased apoptotic
cell death in JTL1-2 cells was correlated with increased
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cleavage of caspase-3 and PARP, whereas the total levels
of these proteins were unchanged (Fig. 3C). In addition,
the proapoptotic gene, Jun was induced and the antia-
poptotic gene, Bcl-2, were suppressed in our microarray
analysis (data not shown). These results suggest that the
inhibition of cell growth in JTL1-2 cells was due to the
induction of apoptosis by abundant expression of LMP1.

DN-LMP1 inhibits proliferation of CAEBV-
derived cell line

In the Jurkat T-cell background, the EBV major oncogene
LMP1 did not enhance cell proliferation, and even more, it
inhibited cell growth by inducing apoptotic cell death,
particularly when high levels of LMP1 were produced.
Because these data contradict published studies describing
a proliferative role for LMP1, we used a more physiologi-
cally relevant cell line, SNT16, which is an EBV-positive
cell line that was isolated from a CAEBV patient [14].
The EBV in SNT16 features latency type II, and so endog-
enous LMP1 is produced [16]. To assess whether LMP1 is

© 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
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Figure 5. Dominant negative LMP1 inhibits proliferation of CAEBV NK cells. (A) As in Figure 4, the growth rates of KAI3 cells were assessed after
transient transfection with empty vector (Vec) or DN-LMP1 (DN). Experiments were performed in triplicate and data are presented as means with
standard errors. ‘Western blotting results for the expression of LMP1, phospho-AKT (pAKT), AKT, and actin are shown underneath the growth
bars. (B) As in (A), KAI3 cells were transfected with empty vector (white circles) or DN-LMP1 (black circles). Cell numbers were counted on

indicated days after transfection.

necessary for T-cell proliferation in SNTI16 cells, we
attempted to knockdown LMPI1 by siRNA and shRNA,
but were unable to due to unknown technical difficulties.
Therefore, we inhibited LMP1 activity using a DN form
of LMP1. An LMP1 mutant with artificial point
mutations in the CTARI/TESI and CTAR2/TES2 domains
acts as a DN to inhibit the function of native LMPI,
because these domains are the sites that dock to signaling
mediators, such as TRAF proteins (Fig. 4A and B) [11,
18, 19].

To test the effects of LMP1 in CAEBV, we transfect-
ed SNT16 cells with a vector expressing DN-LMP1. It
is important to note that the expression of mutant
LMP1 was higher than native LMP1 (Fig. 4C). As a
control, Jurkat cells were also transfected with DN-
LMPI, in parallel. SNT16 cells transfected with DN-
LMP1 grew significantly slower than empty vector con-
trols, by approximately 40% (Fig. 4C). In contrast, Jur-
kat cells transfected with DN-LMP1 grew only slightly
slower than control (Vec), suggesting that the DN-

@© 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

LMP1 had little effect on the proliferation of cells lack-
ing endogenous wild-type LMP1. The phosphorylation
of AKT was correlated with the growth rate of both
cell lines, suggesting that the DN-LMP1 blocked the
native LMP1 signaling pathway by suppressing AKT
phosphorylation (Fig. 4C).

In order to extend these results, we then tested KAI3,
an EBV-positive NK cell line derived from a CAEBV
patient. Expression of DN-LMP1 caused significant
decrease in growth of KAI3 cells, which correlated with
weak phosphorylation of AKT (Fig. 5A). When cell prolif-
erations were monitored daily, the difference became
more apparent (Fig. 5B). These results suggest that LMP1
enhanced the proliferation of T/NK cells in CAEBV, simi-
lar to its effects in B cells or NPCs.

Discussion

LMP1 is an EBV-encoded oncogene that stimulates cell
growth at least in B cells and NPC. Here, we demon-
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strated that LMP1 regulates cell proliferation in cell lines
derived from CAEBYV, whereas LMP1 gave no proliferative
advantage to an EBV-negative cell line.

During the preparation of this manuscript, Ndour et al.
reported that a DN-LMP1 inhibited the cell growth and
tumorigenesis of a T cell line artificially transformed with
EBV [20, 21]. In contrast, we here used SNT16 and KAI3,
T and NK cell lines, respectively, derived from patients
with CAEBV, which are more physiologically relevant
models [14]. In SNT16 and KAI3 cells, EBV establishes a
latent infection, expressing specific protein-coding genes
including LMP1, LMP2, and EBNAI. Our results suggest
that LMP1 is a necessary component of the proliferative
machinery, although it is possible that LMP2 and EBNAI
also play a role. Interestingly, LMP1 and LMP2 may
cooperatively promote carcinoma development in a
mouse carcinogenesis model [22]. The cooperation model
also explains the induction of TRAF2 by LMP2 [23]. It is
possible that LMP1 and LMP2 also act synergistically dur-
ing T/NK-cell proliferation because no proliferation was
stimulated in Jurkat cells expressing only LMP1 (Fig. 2).
Therefore, the contribution of other viral factors should
be considered.

Due to unknown reasons, phosphorylated AKT in
EBV-negative Jurkat cells decreased slightly by DN-LMP1
(Fig. 4C). This decrease in AKT phosphorylation by DN-
LMP1 might be caused by unintended influence on the
AKT signaling molecules, or simply by massive expression
of the protein. Anyway, the decrease in AKT phosphoryla-
tion levels in Jurkat was not potent enough to reduce the
proliferation rate.

Despite a general understanding that LMP1 is an onco-
gene, adverse effects of LMP1 on cultured cells have also
been reported in B cells, NPC cells, and other epithelial
cells [24-26]. It has been suggested that high levels of
expression of LMP1 inhibited proliferation, and so the sup-
pressed growth and apoptosis observed in JTL1-2 cells in
our study might also be explained by the abundance of
LMP1. Consistent with this, LMP1 could simultaneously
induce and inhibit apoptosis in B cells, depending on the
context (27]. In LMPI, the C-terminal domains suppress
the proapoptotic effects of transmembrane domains. There-
fore, it is possible that overexpressed LMP1 in JTL1-2 cells
induces apoptotic cell death by causing aggregation of the
protein rather than by exerting a direct proapoptotic effect.

Expression of LMP1, either low or high levels, did not
promote the proliferation of Jurkat cells, suggesting that
LMPI does not enhance the growth of these cells, regard-
less of the expression level. There are two possible expla-
nations for this. One is that the intrinsic growth signals
in Jurkat cell are already maximal, and so LMP1 is unable
to further promote cell growth. The other is that LMP1
requires an additional factor to exert these effects. For
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example, LMP2 or gene products induced by the tran-
scriptional activity of EBNAT were not expressed in our
Jurkat system.

In summary, LMP1 alone was not sufficient to enhance
proliferation, at least in Jurkat cells. Therefore, LMP1
may require additional factors to promote cell growth.
Nevertheless, our results suggest that LMP1 plays a cen-
tral role in the lymphoproliferative disorder CAEBV. Tar-
geting LMP1 and other factors, such as LMP2A, may
facilitate effective, specific drug development for the
treatment of CAEBV.
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SUMMARY

The EBV is a human y-herpesvirus associated with various neoplasms. It is responsible for causing cancers of B, T, and
NK cells as well as cells of epithelial origin. Such diversity in target cells and the complicated steps of oncogenesis are
perplexing when we speculate about the mechanisms of action of EBV-positive cancers. Here, we first note three
common features that contribute to the development and maintenance of EBV-positive cancers: effects of EBV oncogenes,
immunosuppression and evasion/exploitation of the immune system, and genetic and epigenetic predisposition/alteration -
of the host genome. Then, we demonstrate the mechanisms of oncogenesis and the means by which each EBV-positive
cancer develops, with particular focus on the mode of EBV infection. The EBV has two alternative life cycles: lytic
and latent. The latter is categorized into four programs (latency types O-III) in which latent viral genes are
expressed differentially depending on the tissue of origin and state of cells. The production of viral latent genes
tends to decrease with an increase in time, and, in an approximate manner, the expression levels of viral genes
are inversely correlated with the degree of abnormalities in the host genome. Occasional execution of the viral
lytic cycle also contributes to oncogenesis. Understanding this life cycle of the EBV and its relevance in oncogen-
esis may provide valuable clues to the development of effective therapies for the associated cancers. Copyright ©

2014 John Wiley & Sons, Ltd.
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Abbreviations used

IM, infectious mononucleosis; NPC, nasopharyngeal carcinoma;
LMP1, latent membrane protein 1; NF-xB, nuclear factor-kappa B;
PI3K, phosphatidylinositol 3-kinase; MAPK, mitogen-activated pro-
tein kinase; BCR, B-cell receptor; EBNA, EBV nuclear antigen; EBER,
EBV-encoded RNA; XLP, X-linked lymphoproliferative syndrome;
SAP, signaling lymphocytic activation molecule-associated protein;
XIAP, X-linked inducer of apoptosis; TAF, transporter associated with
antigen processing; HLA, human leukocyte antigen; CTLs, cytotoxic T
lymphocytes; CAEBV, chronic active EBV; PTLD, posttransplant
Iymhoproliferative disorder; LCLs, lymphoblastoid cell lines; Cp, C
promoter; IE, immediate-early; H3K27me3, H3 Lys27 trimethylation;
PAXS5, paired box 5; IL, interleukin; VEGF, vascular endothelial
growth factor; TGE, transforming growth factor; STAT, signal trans-
ducers and activators of transcription; C/EBP, CCAAT enhancer-
binding protein; HRS, Hodgkin and Reed—Sternberg; IxB, inhibitor
of NFxB; CNS, central nervous system; PEL, primary effusion lym-
phoma; AID, activation-induced cytidine deaminase; ENKTL,
extranodal NK/T cell lymphoma; ANKL, aggressive NK leukemia;
FOXO3, forkhead box O3; PRDM1, PR domain zinc finger protein
1; BLIMP1, B lymphocyte-induced maturation protein 1; JAK3, Janus
kinase 3; ARID1A, AT-rich interactive domain-containing protein 1A;
PTEN, phosphatase and tensin homolog deleted on chromosome 10.

MECHANISMS UNDERLYING ONCOGENESIS
BY THE EBV

The EBV is a human y-herpesvirus. It has a double-
stranded DNA genome measuring approximately
170kb in length and encoding >80 genes. It is a
ubiquitous virus infecting >90% of the population
worldwide [1]. Transmission of the virus occurs
through saliva, and once infected, it cannot be
eliminated for a lifetime. The main reservoir of the
EBV in vivo is memory B cells, but it also can infect
NK, T, and epithelial cells.

Besides infectious mononucleosis (IM), which is
caused by acute infection with the virus during ado-
lescence, the EBV is linked to several human cancers
such as Burkitt lymphoma, Hodgkin lymphoma,
nasopharyngeal carcinoma (NPC), gastric cancer,
and T/NK lymphoma [2]. Although the incidence
of such cancers among EBV-positive populations is
not very high, these proliferative disorders are, in
general, associated with a poor prognosis.

Carcinogenesis of EBV-positive cancers is a
multistep process. We here suggest the three major

Copyright © 2014 John Wiley & Sons, Ltd.
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causes shown in Table 1. First, the EBV encodes on-
cogenes such as latent membrane protein 1 (LMP1)
and LMP2A. The effects of such virus-encoded
oncogenes have been reviewed extensively in other
studies [3,4]. For instance, LMP1 elicits growth
promoting signals, such as nuclear factor-kappa B
(NF-kB), phosphatidylinositol 3-kinase/AKT, and
mitogen-activated protein kinases, by mimicking
CD40 signaling pathway [5]. LMP2A is structurally
and functionally related to B-cell receptor (BCR)
and can activate phosphatidylinositol 3-kinase/
AKT, NF-xB, NOTCH, and mitogen-activated
protein kinases [6]. EBV nuclear antigen (EBNA)
3A/C also plays a critical role in maintenance and
formation of cancer cells by silencing tumor
suppressor genes [7,8]. Elsewhere, EBV-encoded
noncoding RNAs (EBERs) and microRNAs (BART
and BHRLFI miRNAs) have been implicated in
oncogenesis [9-13], although the targets and mech-
anisms of the noncoding RNAs are not perfectly
understood as yet.

Second, suppression, escape, and exploitation of
host immunity contribute to the emergence of EBV-
positive cancers. For example, B-cell lymphomas
(BCLs) associated with AIDS or transplantation are
caused by systematic immunosuppression [14,15].
X-linked lymphoproliferative syndrome type 1
(XLP-1) and XLP-2 are caused by mutation of signal-
ing lymphocytic activation molecule-associated pro-
tein and X-linked inducer of apoptosis, respectively,

both of which are linked to abnormalities in the
immune system [16,17]. In these cases, EBV and tumor
cells make use of the weakness in antiviral/tumor
immunity and can avoid elimination by the host.
On the other hand, EBV has intricately evolved
itself to evade the host immunity. In particular,
multiple genes have been reported to suppress
antigen presentation. EBNA1 contains a Gly/Ala
repeat sequence, through which proteasomal
degradation and antigen presentation of the protein
are impaired [18]. BNLF2A targets the transporter
associated with antigen processing and blocks
antigen presentation [19]. BGLF5 represses HLA
class I synthesis, whereas BILF1 downregulates cell
surface expression of the molecule [20]. Moreover,
EBV can increase survival rate and promote tumor
formation by playing elaborate tricks on the
processes of B-cell maturation in germinal center.
Such processes include selected expansion of B cells,
acquisition of immune diversity (e.g. somatic
hypermutation and class switching), and elimina-
tion of abnormal or self-reacting B cells. It is highly
likely that at least LMP1 and LMP2A, viral func-
tional mimic of CD40 and BCR, have tactfully
evolved to modify those processes in germinal
center, and thus, these EBV gene products are able
to deregulate the immune system for survival [21].
In addition, the EBV exploits host immune/
inflammatory systems for its survival and oncogenesis
[22]. Several studies report that EBV-positive B-cell

Table 1. Oncogenesis of EBV-positive cancers

Action Examples

Effects of oncogenes encoded by EBV LMP1: elicits NF-«B, PI3K/AKT, MAPK, and JAK/STAT
pathways, by mimicing CD40

LMP2A: elicits NF-xB and PI3K/AKT pathways, by
mimicing BCR

AlDS-associated lymphomas, PTLD, and XLP
Downregulation of MHC molecule

Malignant transformation alongside development in germinal
center, where B cells obtain translocation or somatic mutations
efficiently

Growth promotion by cytokines and growth factors, induced
by EBV infection

Myc translocation in Burkitt lymphoma

Mutation or silencing in tumor suppressor genes, including
TP53 and p16INK4A

Genetic background of HLA signature

Immunosuppression and evasion,
exploitation of the host immune/
inflammatory system

Genetic or epigenetic predisposition/
alterations of the host genome
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neoplasms such as Burkitt lymphoma and Hodgkin
lymphoma arise during B-cell development in the
germinal center [22,23]. In addition, accumulating ev-
idence suggests that immunological/inflammatory
stimulation by the host promotes the proliferation
of EBV-positive cancer [24,25]. Interestingly, EBV
infection and its associated diseases are deeply
linked to intense immune/inflammatory reactions.
For example, severe infiltration of lymphocytes is
the pathological hallmark of EBV-positive gastric
cancer [26] and NPC [27]. The essential pathology
of IM is hyperreaction of CTLs, which is occasionally
associated with very high cytokine levels [28,29].
This is circumstantial evidence that EBV-positive
cancer may exploit immunological/inflammatory
reactions. Recently, Imadome et al. clearly demon-
strated that the presence of uninfected CD4"T cells
from the same patient is quintessential for the
successful engraftment and proliferation of EBV-
positive NK, CD8'T, or ydT cells from chronic active
EBV (CAEBV) in vivo [30].

Genetic or epigenetic background/alteration of
the host genome is also major causalities. This
category includes enhanced Ig-Myc translocation
in Burkitt lymphoma [31,32] and silencing of tumor
suppressor genes (e.g. pl6™ *4) by epigenetic
alterations or mutations in many EBV-positive
cancers [7,8,33]. It is assumed that these genetic/
epigenetic alterations are caused, at least in part,
by EBYV, although these abnormalities may occur
without the virus. In addition, several reports have
demonstrated that the predisposition of individual
HLA allele significantly affects the morbidity of
EBV-positive proliferative disorders, particularly
in NPC and Hodgkin lymphoma [34-39].

We admit that some of the three mechanisms of
EBV oncogenesis overlap with others. For example,
the viral oncogene LMP1 seems to act by inducing
genetic/epigenetic alterations [40-42] and by
modifying immune/inflammatory systems [21].

LATENT AND LYTIC MODES OF EBV

The EBV has two alternative life cycles: latent and
lytic [43] (Figure 1). In the latent state, its genomic
DNA exists as an episome in the nucleus, in which
closed circular plasmid DNA is incorporated with
histones, and produces only a limited number of
viral latent genes. This silent mode of infection is
advantageous for the virus to persist for long
periods because only a few gene products that can
be targeted by the host immune system are expressed.

Latent infection
Type 0; EBER
Type I; +EBNA1
Type I, +LMP1,2
Type lil; +EBNA2,3,LP

Reactivation

Lytic infection
produce >80 genes
virus DNA replication
progeny production

L

Figure 1. Life cycle of EBV. EBV infection takes two possible states:
latent and lytic. During latent infection, the production of viral
genes occurs from a limited number of latent genes (green).
Reactivation from latency results in production of >80 genes, virus
DNA replication, and the genesis of a progeny virus

The latent viral genome is replicated once at the
S-phase in synchronization with the host genome
and delivered to daughter cells in mitosis.

The expression pattern of viral latent genes
varies with the tissue of origin, state of the cells,
and immune condition [2,31,4445] (Figure 1).
Neoplasms such as Burkitt lymphoma or gastric
carcinoma typically express only EBERs and
EBNAT1 (latency type I), whereas some types of
Hodgkin lymphoma, NPC, and T/NK lymphomas
produce EBERs, EBNA1, LMP1, and LMP2 genes
(type II). In addition to type II genes, EBNA2,
EBNAS3, and EBNA-LP are also expressed in most
cases of posttransplant lymhoproliferative disorder
or lymphoblastoid cell lines (LCLs; type III). In type
III, EBNA2 acts as a strong transcriptional
coactivator for LMP1 and LMP2 promoters, as well
as C promoter (Cp, promoter for EBNA2 itself).
However, in latency II, other factors must take part
in the activation of LMP1/LMP2 promoters
because EBNA2 is absent. Memory B cells latently
infected with the EBV express only EBERs in vivo
(type 0).

In the viral lytic cycle, all the lytic genes of the
EBV are expressed coordinately, including its own
transcription factor or DNA polymerase catalytic
subunit, resulting in amplification of its genome
by >100-fold [43] (Figure 1). Execution of this
dynamic cycle produces progeny virus particles,
and the cells stop growing and are eventually
eliminated by immunity. Although the EBV in
cancer cells is mostly in the latent state, the lytic
cycle of the virus also plays a key part in the devel-
opment and maintenance of the cancers. Recent
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reports clearly demonstrate that lytic cycle of EBV
increases B-cell transformation efficiency at cell
culture levels [46,47] and development of B-cell
lymphoma in a humanized mouse model [48].

PRELATENT, TRANSIENT LYTIC CYCLE IN
PRIMARY INFECTION

Here, we overview the chronological timeline of
EBV infection at cellular levels along with the states
and changes in the expression patterns of EBV
genes during oncogenesis.

For a long time, it was taken for granted that the
EBV established latent infection immediately after
primary infection of cells. However, in 2007, Wen
et al. overturned this hypothesis and clearly
demonstrated that BZLF1 [the immediate-early
(IE) gene that induces lytic replication] is expressed
when EBV-negative B cells such as Akata, Daudi, or
even primary B cells are infected with the EBV [49].
This phenomenon was confirmed by the research
teams of Shannon-Lowe and Tsao in the cells of
epithelial origins, too [50,51]. Kalla et al. then dem-
onstrated that not only the two regulator IE genes,
BZLF1 and BRLF1, but also a subset of early genes
such as BMRF1 are produced for >10 days after the
infection of primary B cells by the EBV, even
though lytic DNA replication and late gene expres-
sion were not detected [47] (Figure 2). Taking this
phenomenon into consideration, we suggest that
an abortive lytic cycle is the initial mode of EBV
infection that occurs upon primary infection
(Figure 3). This prelatent, transient implementation
of the EBV lytic cycle, which is silenced later
(Figure 2), is now accounted for by the CpG DNA
methylation state of the EBV genome and the
peculiar characteristics of the BZLF1 (it preferentially
associates with and enhances CpG-methylated DNA
motifs) [52-55]. The EBV genome in the virus particle
is not associated with any form of epigenetic
suppression, including CpG methylation and
histone modifications. When the naked viral DNA
is transported into the nucleus, IE gene expression
followed by early gene expression is induced;
however, the progeny virus is not generated. At this
stage, BZLF1 cannot exercise its entire transcrip-
tional ability because the viral genome is devoid of
CpG methylation [56]. This short, abortive, lytic
cycle of primary EBV infection provides a prolifera-
tive advantage, at least to resting naive and memory
B cells [47].

Pre-latent, abortive lytic

—

Primary infection

)
2

Reactivation

Latent Abortive lytic

growth
promotion

Re-silencing

% Qytokines etc

cytokines etc

Rea(ﬁation

%

Lytic Efficient proliferation

Figure 2. Progress of a complicated life cycle of the EBV that leads
to the efficient proliferation of cells. Upon primary infection of
EBYV, the cells undergo prelatent, short lytic cycles in which only
immediate-early and early genes (blue and red circles) are
expressed without viral lytic DNA replication. The transient lytic
state is silenced later, and only a limited number of latent genes
(shown in green) is expressed. In latency, only one copy of the
EBV genome (red hoop) was drawn for simplicity, but in general,
one latent cell contains approximately 5-100 copies of the viral
genome. A part of latent cells transits into the abortive lytic state,
in which viral lytic replication may or may not be induced and
then “resilenced” to the latent state again. Others may undergo
the complete lytic cycle, including late gene (yellow) expression
and viral genome replication and production of the progeny virus.
For cancerous growth, cells may exploit cytokines released from
Iytic or abortive lytic cells, although latent factors such as LMP1
can also promote cell proliferation by enhancing cell signaling,
modulating immune system, and inducing genomic instability

LATENCY AND THE LYTIC CYCLE

CONTRIBUTE TO ONCOGENESIS

Complete silencing of this prelatent active state
requires weeks. The major epigenetic players in
suppression include CpG DNA methylation,
histone H3 Lys27 trimethylation (H3K27me3),
H3K9me2/3, and H4K20me3 [45,56-61]. This
silencing of exogenous DNA is considered to be a
type of innate immunity of the host because neu-
tralizing of nucleic acids of extrinsic origin means
silencing of pathogens. If we take a closer look at
this stage, while the expression of lytic genes is
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-90 -

Rev. Med. Virol. 2014; 24: 242-253.
DOI: 10.1002/rmv



T. Murata af al

EBV gene g;;sr:‘e B cells Non-B cells
eXpressions  yerations infection Disorder infection Disorder
Lytic M OHL
By Initial Initial
At;o;uve mode of mode of
ytic infection infection
Default
Lympho-
Latency }:‘t’;’:csf blasts,
1 circulating A‘TELS'RL
8 cells
CAEBY
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Figure 3. Mode of infection and oncogenesis of the EBV. The abor-
tive lytic state is the initial mode of infection in B or non-B cells
because of the prelatent, transient lytic infection upon primary
infection. Latency III and II are the default modes of latency in B
and non-B cells, respectively (could be type I for some gastric cancer
cases, though). Although EBV gene expressions are silenced, slowly
but steadily, the host genome accumulates genetic or epigenetic
alterations for malignancies. IM, infectious mononucleosis; PTLD,
posttransplant  lymhoproliferative disorder; AIDSAL, AIDS-
associated lymphomas; OHL, oral hairy leukoplakia; CAEBY,
chronic active EBV infection; NPC, nasopharyngeal carcinoma

being eliminated, a limited number of latent genes
are kept expressed (Figure 2) depending on the cell
types. EBV infection of B cells in vitro (naive, germinal
center,-or memory B cells) results in latency type III
by default [62], whereas a type II pattern manifests
in non-B cells such as T, NK, or epithelial cells
(Figure 3) [50,63,64], although there seem to be
exceptions, especially in the case of gastric carcinoma
[65]. In fact, type I1I latency is reserved only for B cells
because activation of Wp/Cp (the promoters for
EBNAs, including EBNA2) seems to require
transcription factors such as paired box 5, which are
predominantly present only in B cells [60,66,67]. In
addition, it seems likely that lymphocyte-specific
factors such as PU.1 or its related factors are required
for EBNA2-dependent LMP1 expression [68]. Latent
infection by the EBV unambiguously contributes to
EBV oncogenesis in B or non-B cells (Figure 2). For
instance, a latent gene, LMP1, activates growth/
survival signaling pathways [5], induces pro-
inflammatory cytokines such as IL-6 and IL-8 [69,70],
plays a part in immune evasion [21], and increases
genomic instability [42,71].

Difference in default latency patterns between B
cells and non-B cells may contribute to oncogenesis
differently. EBV can efficiently transform even resting

(GO) B cells in a short period, although it could
increase cell growth of already immortalized cells of
epithelial origin [51]. This may be accounted for by
the presence of extra oncogene such as EBNAS3,
expressed in B cells.

The lytic cycle of the virus also makes a signifi-
cant contribution to the development and mainte-
nance of associated cancers (Figure 2) [46-48]
First, the lytic cycle of the EBV in a fraction of cells
enhances expression of viral/ cellular cytokines and
growth factors, such as viral IL-10, IL-10, IL-8,
vascular endothelial growth factor, and transforming
growth factor-f, which increases proliferation of the
surrounding cells latently infected with EBV [72].
Moreover, we propose the “hit and hide” hypothesis,
in which the abortive lytic state of the virus enhances
instability in the host genome and is subsequently
“resilenced” to latency (Figure 2) [72]. Among the
lytic genes, at least BZLF1 [73] (the lytic switch),
BGLF4 (the only protein kinase of EBV [74]), and
BGLF5 (the alkaline nuclease [75]) are reported to af-
fect the stability of the host genome. The “hit” of the
host genome, implemented during the transient lytic
cycle, may increase the proliferation of the resilenced
or “hidden” latent cells. Interestingly, recent paper
indicated, by using humanized mouse model, that
lymphoma could be developed by abortive but
persistent lytic infection of EBV [76]. So, lytic cycle
of the virus may not even need to be completely
silenced for cancerous growth of infected cells, if lytic
replication levels are low.

B-CELL LYMPHOMATOGENESIS AND THE EBV
Latency III is a necessary and fundamental latent
mode in EBV infection of B cells (Figure 3) because
this type of latency induces resting B cells (memory
and naive B cells) to proliferating lymphoblasts and
expands virus-containing B cells to increase
survival [22]. Here, we would like to describe that
type III latency is the “default” mode of latency
caused by primary infection of the EBV in B cells
(Figure 3) because of several reasons. First, we
assume that the infection of circulating B cells is
the initial configuration for the EBV. Second, the in-
fection of naive, germinal center, or memory B cells
by the virus under more simple conditions (in vitro)
results in latency type III [62]. Third, some Burkitt
lymphoma cells, generally associated with latency
I EBV, occasionally switch to latency III (but not
latency II} if cultured without immunological
pressure [77].
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The EBV-positive lymphoblasts derived from
naive B cells are led to a germinal center where B
cells develop into memory (or plasma) cells [1]. In
the germinal center, the EBV in general exhibits
latency type II (or possibly type I) [1,22] (Figure 3)
because of the loss of Wp/Cp activity. Because the
specific transcription factors of Cp/Wp, such as
paired box 5, are still abundantly present in germi-
nal center B cells [78], the mechanism of silencing of
the promoter is elusive. EBNA2 may not be
compatible with entry into the germinal center
and may therefore require to be silenced [1,22,62].
In type II latency, LMP1 and LMP2 are expressed
even without EBNA2, probably through the effect
of signal transducers and activators of transcription
(STAT), NF-xB, and CCAAT enhancer-binding
protein [64,79-82].

The EBV in circulating memory B cells (which are
the main reservoir of the virus) manifests latency
0 after exiting the germinal center (Figure 3). Mem-
ory B cells, the reservoir cells of the virus, will not
be eliminated without cell division for years or
even decades; therefore, once the virus can estab-
lish successful latent infection in memory B, it does
not require viral products to support its survival.

Lines of evidence also indicate that primary
infection of memory B cells by the EBV plays an
important role in at least IM pathogenesis [2]. After
onset of the disease, viral genes are downregulated,
and the virus in the memory B cells then establishes
persistent infection, featuring latency 0, presumably
without going through the germinal center.

Endemic Burkitt lymphoma [1,2,22,31] in central
Africa is associated with the EBV of type I latency
(Figure 3). The presence of Myc translocation [83]
and somatic hypermutation in the variable region
of Ig [84,85] indicates that the lymphomas originate
from centroblasts of germinal center B cells. Despite
the fact that almost 100% of endemic lymphoma
specimens are EBV positive, dependence on the
virus for cell proliferation is not very high because
only EBNA1 and EBERs are expressed in the
lymphomas, and EBV-negative cell clones can be
isolated occasionally. It is likely that other latent
proteins such as LMP1 and LMP2A play important
roles in the process of oncogenesis, even though
these proteins are not expressed anymore in
already developed Burkitt lymphomas. Immuno-
suppression may also be a major contributor to
Burkitt lymphoma because Ig-Myc translocation is
frequently found in AlDS-associated, EBV-positive

BCLs (approximately 35%) [14,86] and XLP [87].
Besides Myc translocation, genetic alterations have
also been reported in TP53 [88] and RB2 [89] genes.

A hallmark of Hodgkin lymphoma [1,2,23] is
Hodgkin and Reed-Sternberg (HRS) cells, even
though the cells represent <1% of tumor cells.
Instead, EBV-negative, nonmalignant, normal lym-
phocytes (including T or B cells) occupy the tissue,
indicative of an inflammatory reaction. Isolation
of EBV-positive HRS cell line is technically very
difficult without support by the nonmalignant
surrounding lymphocytes. HRS cells have a trace of
somatic hypermutations and crippling mutations,
nonsense or deleterious mutations that appoint elim-
ination by apoptosis in the germinal center, indicat-
ing that the cells also originate from the germinal
center [90]. To avoid apoptosis, signaling pathways
from the BCR and CD4™T cells are required, and,
interestingly, LMP2A and LMP1 can complement
the signaling, respectively, at least partly [23,91].
Therefore, type II latency (Figure 3), in which LMP1
and LMP?2 are expressed in addition to EBNA1 and
EBERs, in Hodgkin lymphoma is justifiable. Despite
the definite dependence on LMP1 and LMP2A, EBV
association with Hodgkin lymphoma specimen is
not as high as that with Burkitt lymphoma {1,2,23].
Comparative examination demonstrated that NF-k
B activity in EBV-negative HRS cells was as high as
that in EBV-positive HRS cells [23]. Therefore,
constitutive activation of the signaling, by the EBV
or any other reason, is assumed to be a requisite for
Hodgkin lymphoma. Associated mutations in the
inhibitor of NF-«xB [92-94], CD95/FAS [95], and
A20 [96] and REL amplifications [97] have been
reported for Hodgkin lymphoma, all of which
affect NF«B activation. Immune system also
plays an important part in Hodgkin lymphoma
because particular HLA alleles are highly associ-
ated with the incidence [36-38], and approxi-
mately 5% lymphomas in patients with AIDS
fall under this criterion, with almost 100% cases
being EBV positive [14].

Posttransplant BCL [98] and AIDS-associated
BCL [14,86] are primarily caused by severe immu-
nosuppression. The cellular origin of most of these
lymphomas is the germinal center B cells, but
postgerminal center memory B cells also account,
at least in part, for the disease. For example, two
EBV-associated malignancies, primary CNS lym-
phoma and primary effusion lymphoma, likely reflect
postgerminal center B cells [2,15]. Posttransplant/
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AIDS-associated BCLs are usually derived from a
germinal center, probably because germinal center
B cells can efficiently acquire somatic mutations
there because of an abundance of activation-
induced cytidine deaminase [98]. Dependence of
the lymphomas on the EBV is high both in vivo
and in cell cultures, typically featured with type
I latency (Figure 3), making the most of the
absence of immunosurveillance.

T/NK CELL LYMPHOMATOGENESIS AND
THE EBV

Besides B cells, EBV can infect and promote prolifer-
ation of at least Tand NK cells. These EBV-associated
T/NK proliferative disorders [99,100] are more fre-
quently found in East Asia, including Japan. EBV is
present in almost 100% of established cell cultures,
as well as in specimens of those T/NK proliferative
disorders. The CAEBV [101] is a lymphoproliferative
disorder with a poor prognosis that follows IM. In
general, IM patients recover within weeks; however,
in some rare cases, the symptoms of IM continue for
more than months. Such cases of CAEBV are fre-
quently characterized by prolonged high anti-EBV
(EA-D and VCA) immunoglobulin titers, no obvious
immunosuppression, and EBV positivity in NK or T
cells [30]. CAEBV was named because the levels of
immunoglobulins against the lytic gene products of
the EBV, EA-D, or VCA are high in most cases.
Although a fraction of the infected T/NK cells are
possibly in -a Iytic state, a dominant portion of
lymphocytes proliferating in the disorder shows
type II latency (Figure 3), in which LMP1 and
LMP2 are expressed in an EBNAZ2-independent
manner [102,103]. It has also been reported that
CTL activity against certain EBV gene products is
weak [104,105], suggesting that a partially weakened
host immune system may be essential.

The lymphoproliferative disorder CAEBV is
thought to develop into malignant T/NK cell lym-
phoma, at least in some cases [106]. Two categories,
extranodal NK/T cell lymphoma and aggressive
NK leukemia, have been strongly associated with
EBV infection [107]. EBV gene expression in these
cells is type II (Figure 3), but in some cases of T/
NK infection, LMP1 and LMP2 were not detectable,
representing latency type I [108,109]. In fact, even
in type II cases, analyses at the single-cell level
showed that the expression of LMP1 and LMP2 is
heterogeneous and that a significant portion of cells
does not express these genes [100,109]. The

contribution of these gene products to the prolifer-
ation of T/NK lymphomas remains controversial.
Although dominant negative LMP1 repressed
proliferation of T lymphocytes infected with the
EBV ([110], our unpublished data), expression
levels of LMP1 do not necessarily correlate with
proliferation [111]. We assume that primary EBV
infection results in latency II in T or NK cells by
default, whereas LMP1 and LMP2 levels gradually
decline while the infected cells accumulate muta-
tions advantageous for their division. Therefore,
we believe viral oncogenes such as LMP1 are
needed for the pathogenesis of T/NK lymphomas,
at least at the beginning of the oncogenic proce-
dure. However, such a necessity may decrease after
the cells acquire significant levels of epigenetic or
genetic alterations. Candidates of such genomic
lesions include TP53, K-RAS, p-catenin [112],
forkhead box O3 (FOXO3), and PR domain zinc
finger protein 1/B lymphocyte-induced maturation
protein 1 [113]. Although exome sequencing has
recently identified mutations in Janus kinase 3 [114],
this could not be achieved in Japan [115].

EPITHELIAL CANCERS AND THE EBV

Nasopharyngeal carcinoma [116] is an epithelial
cancer that is most frequently found in the southern
part of China. Almost 100% of NPC specimens are
associated with the EBV, and dependence of the
carcinoma on the EBV has been demonstrated
[51], although EBV genome is lost very frequently
when cultured because of unknown reasons. Type
II latency accounts for a significant part of the
cancer, whereas LMP1 and LMP2 could not be
detected in other cases [117] (Figure 3). The contri-
bution of LMP1 to NPC development has been well
studied [118]. Heterogeneity in the expression of
the two latent membrane proteins indicates that
these oncogenic proteins may not be required for
cancerous proliferation of NPC, at least in some
cases in which the cells have already obtained
significant levels of mutations, similar to T/NK
lymphomas. With regard to NPC, the possible
candidates of such mutations have been studied
extensively: loss or mutations in Ras association
domain-containing protein 1A, cyclin-dependent
kinase inhibitor 2A/p16™5** and TP53 [119,120]
and overexpression of BCL-2 [121] and cyclin D1
[122]. In addition to the EBV, other etiological
factors have also been implicated in NPC, includ-
ing consumption of salted fish and tobacco, which
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can serve as mutagens [123]. Immune system must
influence NPC, too, because there is an extensive
literature indicating an important role for HLA
genes in the etiology of NPC [34,35,124].

The EBV can also be detected in approximately
10% (or less) of gastric cancers [125,126]. Because
gastric carcinoma cell lines naturally infected with
EBV are widely present, the virus presumably plays
a crucial role in the cell proliferations, even at the
cell culture level. EBV infection of epithelium cell
cultures, including AGS, frequently leads to type
II latency upon primary infection by default
[50,64], although the virus can also adapt type I la-
tency in cell cultures of gastric carcinomas [65,127].
Infiltration of lymphocytes and macrophages in
both NPC and gastric cancer is very remarkable
and almost inevitable, and thus, it seems like essen-
tial for the pathogenesis. Beyond mutations in
other genes such as TP53, exome sequencing has
identified frequent mutations or deficiencies in the
AT-rich interactive domain-containing protein 1A
gene, which encodes a member of the SWI-SNF
chromatin remodeling family, in EBV-positive gas-
tric cancer [128]. In addition, the research team of
Fukayama has focused on epigenetic silencing of
tumor suppressor genes, including p16™
pl4”R¥ p73, E-cadherin, and phosphatase and
tensin homolog deleted on chromosome 10, in
EBV-positive gastric carcinomas, where they
identified LMP2A as a contributor to epigenetic
silencing [129-131].
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Background Epstein-Barr virus (EBV)-associated T/natural-killer lymphoproliferative
disorders form a group of diseases that includes classical and systemic hydroa
vacciniforme (HV) and hypersensitivity to mosquito bites (HMB). Patients with
systemic HV (sHV) and HMB often have a poor prognosis, although little is
known about the prognostic factors.

Objectives To elucidate the prognostic factors of HV and HMB.

Methods We studied clinicopathological manifestations, routine laboratory find-
ings, anti-EBV titres, EBV DNA load and EBV-encoded gene expression, including
expression of BZLF1, in 50 patients with classical HV (cHV), sHV, HMB only
and HMB with HV (HMB + HV), and further analysed 30 patients who were
available for follow-up.

Results The median age of disease onset was 5 years (range 1-74). A follow-up
study indicated that fatal outcomes were observed in three of eight patients with
sHV, two of six patients with HMB only, and two of five patients with HMB + HV.
The main causes of death were complications from haematopoietic stem-cell trans-
plantation and multiorgan failure. There were no fatalities among the 11 patients

with cHV. Univariate analysis revealed two poor prognostic indicators: (i) onset age
> 9 years and (ii) the expression of an EBV-encoded immediate—early gene tran-
script, BZLF1 mRNA, in the skin lesions (P < 0-001 and P = 0-003, respectively).
Conclusions No prognostic correlation was observed in EBV-infected lymphocyte
subsets, anti-EBV antibody titres or EBV DNA load. Late onset and EBV reactiva-
tion are both related to more severe phenotypes of the disease, and thus may
predict a poor prognosis.
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Epstein-Barr virus (ERV)-associated T/nawral-killer (NK) lym-
phoproliferative disorders (LPDs) form a group of diseases
including hydroa vacciniforme (HV) and hypersensitivity o
mosquito bites (HMB). EBV-associated HV lesions contain a
number of TBV-encoded small nuclear RNA (EBER)” T cells,
together with larger numbers of EBER™ cytotoxic T lympho-
cytes (CTLs). Meanwhile, NK cells are absent or occur at back-
ground levels in such lesions."? Although there are no
systemic symptoms or abnormalities in the routine laboratory
tests of patients with classical HV (cHV), EBV DNA load and
EBV" 8T cells are increased in the peripheral blood mononu-
clear cells (PBMCs).* In contrast, patients with HV-like ulcera-
tive cutaneous eruptions ofien present with systemic symptoms
such as fever, hepatic damage and lymphadenopathy (systemic
HV, sHV), and show dense inflammatory-cell infiltrates that
reach the subcutancous tissue. As reported previously, patients
with cHV may progress to sHV in the clinical course.”

HMB is an EBV-associated T/NK LPD characterized by
intense local skin reactions and systemic symptoms, including
high fever, lymphadenopathy, hepatosplenomegaly and
haemophagocytic syndrome.* These clinical symptoms can be
induced by mosquito bites, other insect bites or vaccination.
Patients with HMB usually have EBV’ NK-cell lymphocyto-
sis,>® and HV-like eruptions may occur over the course of the
disease. We previously examined differences in cellular events
between HMB and HV-like eruptions.” Our results indicated
that many CD56" NK cells and T cells are present in the sub-
cutancous infiltrates in HMB, but no CD56" NK cells occur in
HV dermal infiltrates.

Unlike ¢HV, both sHV and HMB have been reported in Asian
and Latin American countries.®™ However, the nomenclature of
EBV-associated T/NK LPDs has been controversial. Patients with
sHV in the present study may be synonymous with HV-like
lymphoma in the World Health Organization classification,”
and may overlap with chronic active EBV infection (CAEBV)
and EBV-associated haemophagocytic lymphohistiocytosis
(HLH).'® Because of the diagnostic value of HV-like cutaneous
signs, we have used the terms HV and HMB in our classification,
excluding the diagnoses of CAEBV and HLH.

Although no prognostic markers have been elucidated, pre-
vious reports of CAEBV indicate that patients with the EBV"
T-cell-predominant type have a poorer prognosis than those
with the EBV" NK-cell-predominant type, and that late onset
may be a risk factor.'® In the present study, we attempted to
clarify cellular and molecular markers related to the prognosis
of cutaneous EBV-associated T/NK LPDs in a series of patients
with HV and HMB, and to verify the validity of diagnostic
criteria to distinguish benign from malignant types for the
purposes of prognosis.

Patients and methods

Patients

Fifty patients were categorized into four groups: cHV (23

cases), sHV (12 cases), HMB only (nine cases) and

© 2014 British Association of Dermatologists
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HMB + HV (six cases), according to the criteria in Table 1.
Briefly, patients with ¢HV presented with lesions defined as
vesiculopapules on sun-exposed areas without any systemic
symptoms or abnormalities in routine laboratory test results.
Patients with sHV presented with HV-like eruptions associated
with systemic symptoms such as fever and lymphadenopathy
and/or abnormalities in routine blood examinations at diag-
nosis. In our series, one of 12 patients with sHV initially had
skin symptoms without systemic symptoms, although the
patient had an increased percentage of NK cells (> 30% of
lymphocytes) in the blood test. HMB is defined as an intense
skin response to mosquito bites, insect bites or vaccination
associated with systemic symptoms and/or abnormalities in
routine blood tests.

Skin biopsy materials, crusts and blood samples were
obtained for diagnosis, and used for in situ hybridization with
EBER and quantitative reverse-transcriptase polymerase reaction
(RT-PCR) to detect EBV infection in skin lesions.

This study was approved by the ethical committee (the
institutional review board of Okayama University Hospital,
no. 419, 2011) in accordance with the 1975 Declaration of
Helsinki.

Assay for Epstein—Barr virus DNA load in peripheral
blood mononuclear cells

DNA was extracted from 1 x 10° PBMCs using a QIAamp™
Blood Kit (Qiagen, Venlo, the Netherlands), and the PCR
amplification was performed using QuantiTect™ Probe PCR
(Qiagen) with Roche Light cycler (Roche, Pleasanton, CA,
U.S.A)). The PCR primers for this assay were selected in the
BamHI M region (BMRF1). The upstream and downstream pri-
mer sequences were 5 -GTGCCAATCTTGAGGTTTTAC-3 and
5 -CACCCGGGGACTTTTATC-3 , respectively. The fluorogenic
probes used were probe A, 5-GACCTGCCGTTGGATCTITA
GTG-3, and probe B, 5-TATTTTATTTAACCACGCCTCCGA
AGA-3 . Amplification was carried out at 95 °C for 15 min,
followed by 50 cycles of 95 °C for 15 s, 56 °C for 20 s and
72 °C for 15 s. The semiquantitative amounts of EBV DNA
copies in patients’ samples were determined from the standard
curve obtained by PCR amplification of serial 10-fold dilutions
of the template plasmid DNA solution.

Primer sets for reverse-transcriptase polymerase chain
reaction

RNA was extracted from the samples with TRIzol™ reagent

(Gibco-BRL, Gaithersburg, MD, U.S.A.), and the ¢DNA was
amplified by PCR using EBERI-specific and BamHI A rightward
transcripts  (BARTs)-specific primers, as described previ-
ously.'""'” The integrity of the RNA was checked by the paral-
lel amplification of beta-2-microglobulin (B2-MG). To detect
EBV reactivation, BZLF1 was amplified by RT-PCR, using
BZLF1-specific outer primers: sense, 5-CATGTTTCAACCGC
TCCGACTGG-3, and antisense, 5 -GCGCAGCCTGTCATTTTCA

GATG-3 . Amplification consisted of 40 cycles of 94 °C for
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Table 1 Criteria for classical and systemic hydroa vacciniforme (HV) and hypersensitivity to mosquito bites (HMB)

Classical HV

Systemic HV HMB

Cutaneous lesion Vesiculopapular lesion

EBER-positive cells : T
 Systemic symptoms : -
and/of abnormality - e

in routine laboratory Jf'indilylgs"1

Ulceronecrotic lesion - Swollen erythema or skin ulcer
following mosquito bites, insect
- bites orwvaccination

EBER, EpS[elIl“‘BaI‘l' v1rus “encoded small nuclear RNA. *Systemic. symptoms mclude hlgh-grade fever, lymphadenopathy and hepatosplenomeg- :

aly. Laboratory abnormahtxes include hepatic damage, haematological ﬁndmgs suggesave of haemophagocyuc syndrome and. natural kﬁ]er-

cell lymphocytosm (> 30%. of cel]s)

45 s, 64 °C for 30 s and 72 °C for 1 min. BZLF1-specific
inner primers were sense, 5 -TCCCAGTCTCCGACATAACCCA-
3, and antisense, 5 -AGCAGCGACCTCACGGTAGT-3 ; amplifi-
cation involved 28 cycles of 94 °C for 45 s, 58 °C for 30 s
and 72 °C for 1 min. Amplification gave 167 b.p. for EBER1
cDNA, 142 b.p. for BARTs cDNA, 295 b.p. for B2-MG cDNA
and 332 b.p. for BZLF1 c¢DNA (639 b.p. for BZLF1 DNA).

Labelling for Epstein—Barr virus-encoded small nuclear
RNA in situ hybridization

Lymphoid cells containing EBER1 were detected by in situ
hybridization on paraffin-embedded sections, as described pre-
viously.'* The density of EBER-positive cells was classified into
four subgroups according to the percentage of positive cells:
1+ (1-5% positivity in the infiltrate); 2 + (5-25%);
3 + (25-50%) and 4 + (= 50%).

Immunophenotyping of infiltrating cells

Deparaffinized biopsy specimens were incubated with mono-
clonal antibodies to CD3g, CD4, CD8, CD20, CD30 (Dako,
Glostrup, Denmark) and CD56 (Novocastra Laboratories Ltd.,
Newcastle upon Tyne, U.K.), as described previously.'*

Flow cytometric analysis for lymphocyte subsets

Blood samples from the patients were reacted with fluores-
cence-conjugated antibodies to CD3, CD56, T-cell receptor
(TCR)af and TCRYd (Beckman Coulter, Brea, CA, US.A)),
and analysed using a FACSCalibur flow cytometer and CELL-
QUEST software, version 5.2.1 (Becton Dickinson Co., Frank-
lin Lakes, NJ, U.S.A.).

Statistical analysis

Analyses were performed using SPSS for Windows version
20.0 (IBM, Armonk, NY, US.A.). For univariate analyses, a
one-sided Fisher’s exact test was used to compare the categori-
cal variable. To compare the quantitative variable, the

Mann—Whitney U-test was used. For survival analysis, the
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Kaplan—Meier method and log-rank test were used. In all
analyses, P < 0-05 was considered significant.

Results

Clinical observations of the patients

Fifty patients (26 male and 24 female) were enrolled in the
current study. They were classified into four groups: cHV,
sHV, HMB only or HMB + HV, according to our tentative
diagnostic criteria as described elsewhere (Table 1).* The age
of onset ranged from 1 to 74 years (median 5 years). The
median onset ages and the sexes of the four groups were as
follows: cHV, 5 years (13 male, 10 female); sHV, 8 years
(five male, seven female); HMB only, 8 years (six male, three
female) and HMB + HV, 3.5 years (two male, four female).
Of 23 patients with cHV, 21 (91%) had cutaneous lesions that
presented within their first decade. The cutaneous signs of
cHV occurred at younger ages than those of sHV and
HMB + HV (P = 0-022 and P = 0-026, respectively).

Mucocutaneous symptoms such as conjunctivitis and oral
aphthous stomatitis/gingivitis were observed in six (26%) of
23 patients with cHV and five (42%) of 12 patients with sHV,
but were not observed in any of the nine patients with HMB
or the six with HMB + HV. Of the 27 patients with sHV,
HMB only or HMB + HV, 22 presented with systemic symp-
toms, including fever (22, 81%), diarrhoea (two, 7%), intesti-
41%),
myocarditis (two, 7%) and haemophagocytic syndrome (two,
7%) (Table 2).

nal perforation (one, 4%), hepatosplenomegaly (11,

Follow-up study

Of the 50 patients enrolled in the present study, 30 were
included in a follow-up study; the time to follow-up ranged
from 1 to 26 years (median 65 years). The median follow-
up times for the four groups were 8 years for cHV, 7 years
for sHV, 3 years for HMB only and 12 years for HMB + HV.
All 11 patients with cHV were alive at follow-up, with or
without disease, and nine of the 11 patients had been treated
only with sunscreen. One of the two remaining patients, a
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