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Recurrent CDC25C mutations drive malignant
transformation in FPD/AML

Akihide Yoshimi'*, Takashi Toya1'*, Masahito Kawazu?, Toshihide Ueno3, Ayato Tsukamoto!, Hiromitsu lizuka',
Masahiro Nakagawa', Yasuhito Nannya', Shunya Arai', Hironori Harada®, Kensuke Usuki®, Yasuhide Hayashi®,
Etsuro Ito’, Keita Kirito®, Hideaki Nakajimag, Motoshi Ichikawa', Hiroyuki Mano® & Mineo Kurokawa' ‘

Familial platelet disorder (FPD) with predisposition to acute myelogenous leukaemia (AML)
is characterized by platelet defects with a propensity for the development of haematological
malignancies. Its molecular pathogenesis is poorly understood, except for the role of germline
RUNXT mutations. Here we show that CDC25C mutations are frequently found in FPD/AML
patients (53%). Mutated CDC25C disrupts the G2/M checkpoint and promotes cell cycle
progression even in the presence of DNA damage, suggesting a critical role for CDC25C in
malignant transformation in FPD/AML. The predicted hierarchical architecture shows that
CDC25C mutations define a founding pre-leukaemic clone, followed by stepwise acquisition of
subclonal mutations that contribute to leukaemia progression. In three of seven individuals
with CDC25C mutations, GATAZ is the target of subsequent mutation. Thus, CDC25C is a novel
gene target identified in haematological malignancies. CDC25C is also useful as a clinical
biomarker that predicts progression of FPD/AML in the early stage.

T Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.

2 Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan. 3 Department of
Cellular Signaling, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan. 4 Department of Hematology,
Juntendo University School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan. ® Department of Hematology, NTT Medical Center Tokyo, 5-9-22
Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8625, Japan. 6 Department of Hematology/Oncology, Gunma Children’s Medical Center, 779 Simohakoda,
Kitaakebonocho, Shibukawa-shi, Gunma 377-8577, Japan. 7 Department of Pediatrics, Graduate School of Medicine, Hirosaki University, 53 Honmachi,
Hirosaki-shi, Aomori 036-8563, Japan. 8 Department of Hematology and Oncology, University of Yamanashi, 1110 Simokawakita, Chuou-shi, Yamanashi
409-3898, Japan. ? Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku,

Tokyo 160-8582, Japan. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to M.K.
(email: kurokawa-tky@umin.ac.jp).

CATIONS | 5:4770 | DOI: 10.1038/ncomms5770 | www.nature.com/naturecommunications 1
© 2014 Macmillan Publishers Limited. All rights reserved.



ARTICLE

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5770

amilial platelet disorder (FPD)/acute myelogenous leukae-
mia (AML) (MIM601399) is an autosomal dominant
disorder with inherited thrombocytopenia, abnormal plate-
let function and a lifelong risk of the development of a variety of
haematological malignancies!, such as AML, myelodysplastic
syndromes (MDS) and myeloproliferative neoplasms. Although
inherited RUNXI mutations are the cause of the congenital
thrombocytopenia, it remains unclear whether a mutation in
RUNX1, which is generally known to have a dominant-negative
effect?>™, is sufficient to induce the development of haemato-
logical malignancies in individuals with FPD/AML. It is also not
known whether additional gene mutations are required for the
transformation, and, if so, which genes are involved. Given that
only 40% of FPD/AML patients develop these neoplasms® and
that a relatively long period is required for subsequent RUNXI
mutation-mediated development of neoplasms in FPD/AML, the
secondary genetic events may function as a driver to promote
malignant transformation. We reasoned that identifying gene
mutations responsible for the malignant transformation of FPD/
AML would provide indispensable information for addressing
these questions. However, only about 30 pedigrees with FPD/
AML have been reported so far, and the rarity of this disorder has
impeded the establishment of clinical diagnostic criteria and the
clinical improvement to refine cancer therapy and to identify
biomarkers that would allow detection of patients at risk for the
onset of malignancies in FPD/AML.

We collected DNA samples and clinical information of 73
individuals, belonging to 57 pedigrees, who have a history of
familial thrombocytopenia and/or haematological malignancies,
with the aim of identifying pedigrees with FPD/AML and
uncovering recurrent mutations that drive the malignant
transformation. Next-generation sequencing and single-cell
sequencing strategy suggest that somatic mutation in CDC25C
may be one of the early genetic events for leukaemic initiation in
FPD/AML, and further stepwise acquisition of mutations such as
GATA2 leads to FPD/AML-associated leukaemic progression.
These observations shed light on a part of leukemogenesis in
FPD/AML.

Results

A novel gene target in haematological disorders. Thirteen
patients in 7 pedigrees were diagnosed as having FPD/AML after
screening for germline RUNXI mutations in 73 index patients; 7
of the 13 patients had developed haematological malignancies,
while the other 6 only showed thrombocytopenia (Table I).

Most of the detected RUNX1 mutations were point mutation
in Runt homology domain or frame-shift mutation that lost
transactivation domain, consistent with the previous reports®*.
As haploinsufficiency of RUNXI might cause familial
thrombocytopenia with propensity to develop AML!, we also
examined whether the pedigrees have RUNXI loss of
heterozygosity (LOH) or not. A synchronized quantitative-PCR
method® and single-nucleotide polymorphism (SNP) sequencing
detected no case with LOH in RUNXI in our cohort
(Supplementary Fig. 1 and detailed in Methods). To
systematically identify additional genetic alterations, we utilized
whole-exome sequencing for two individuals from the same FPD/
AML pedigree who shared a common RUNXI_p.Phe303fs
mutation and who had developed MDS (subject 20) or
myelofibrosis (subject 21) at the age of 37 and 17 vyears,
respectively. In both these patients, the disease had progressed
to AML’. Validation by Sanger sequencing and/or targeted deep
sequencing of candidate mutations in paired tumour/normal
DNA samples confirmed 10 (subject 20) and 8 (subject 21)
somatically acquired nonsynonymous mutations (Table 2;
Supplementary PFigs 2-4; Supplementary Methods). Surprisingly,
both patients carried the identical somatic CDC25C mutation
(p.Asp234Gly), which had not been reported previously in
human cancers (Fig. 1lab). Prompted by this finding, we
investigated CDC25C mutations in other FPD/AML cases by
deep sequencing. In total, four of seven affected patients with
haematological malignancies had CDC25C mutations, of which
three carried the same p.Asp234Gly mutation. Moreover,
CDC25C mutations were detected in an additional three FPD/
AML patients who had not yet developed haematological
malignancies, although the variant allele fractions (VAFs) were
much lower in this group of patients than in those who had
already developed haematological malignancies (Fig. 1¢; Table 1).
Thus, 7 of the 13 FPD/AML patients (53%) harboured a CDC25C
mutation. CDC25C was also screened for mutations in 90
sporadic MDS and 53 AML patients, including 13 MDS and 3
AML cases who carried RUNXI mutations. No CDC25C
mutations were identified in the 90 sporadic cases, except for
the p.Ala344Val in an MDS patient bearing a RUNXI mutation,
indicating that CDC25C mutations were significantly associated
with germline, but not with somatic RUNXI mutations
(P=0.004; Supplementary Fig. 5; Supplementary Table 1).

Clonal evolution of FPD/AML. Deep sequencing of individual
mutations that had been detected by whole-exome sequencing

Table 1 | Mutational status of CDC25C in FPD/AML patients.
Pedigree number Subject number RUNX1 mutation Disease status Age, years* CDC25C mutation VAF (%)
18 20 p.Phe303fs MDS/AML 37/38 p.Asp234Gly 31.7/45.8
21 MF/AML 17/18 p.Asp234Gly 31.1/39.0
19 22 p.Argl74* AML 41 p.His437Asn 39.7
54 65 p.Ser140Asn MDS 25 - —
66 AML 56 p.Asp234Gly 24.2
32 38 . p.Leu445Pro HCL 72 - —
16 18 p.Thr233fs Thrombocytopenia — p.Asp234Gly 59
53 62 p.Gly262fs MDS 12 —_ —
63 Thrombocytopenia — — —
67 Thrombocytopenia - - —
57 7 p.Gly172Glu Pancytopenia’ — p.Asp234Gly 83
72 Thrombocytopenia — — —
73 Thrombocytopenia — p.Lys233Glu 1.8
AML, acute myeloid leukemia; FPD, familial platelet disorder; HCL, hairy cell leukemia; MDS, myelodysplastic syndrome; MF, myelofibrosis; VAF, variant allele fraction.
*Age at the time of diagnosis of each haematological malignancy is shown.
+Thrombocytopenia, leukopenia and iron-deficiency anemia were diagnosed.
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Table 2 | Validated somatic mutations.
Gene symbol Ref seq_no. Amino-acid  Position (hg19) Base change Mutation type SIFT prediction VAF at VAF
change MDS/MF (%) at AML (%)

Subject 20
AGAP4 NM_133446 p.Arg484Cys g.chr10:46321905 C->T Missense Damaging 13.2 1.5
CDC25C NM_001790 p.Asp234Gly  g.chr5:137627720 A->G Missense Damaging 31.7 45.8
CHEK2 NM_007194 p.Arg406His g.chr22:29091740 G->A Missense Tolerated 14.6 na
COLSAT NM_001851 p.Gly878Val  g.chr6:70926733 G->T Missense Damaging 9.6 264
DTX2 NM_001102594 p.Pro74Arg  g.chr7:76110047 C->G Missense Damaging 183 1.2
FAM22G NM_00M70741  p.Ser508Thr g.chr9:99700727 T->A Missense Tolerated 10.2 27.6
GATA2 NM_001145661 p.Lleu321His  g.chr3:128202758 T->A Missense Damaging 0.0 28.1
LPP NM_00167671  p.Val538Met  g.chr3:188590453 G->A Missense Damaging 9.7 28.8
RPILT NM_178857 p.Ser215fs g.chr8:10480295 insC Frameshift Damaging 14.2 12.7
SIGLECS NM_014441 p.Serd37Gly  g.chr19:51633253 A->G Missense Tolerated 27.4 42.5

Subject 21
ANXA8LT  NM_001098845 p.Val281Ala  g.chr10:48268018 T->C Missense Damaging 30.8 36.8
cDbC2s5¢c NM_001790 p.Asp234Gly g.chr5:137627720 A->G Missense Damaging 311 39.1
DENNDSA  NM_001243254 p.Arg320Ser g.chr11:9215218 A->C Missense Damaging 295 373
FER NM_005246 p.Tyr634Cys  g.chr5:108382876 A->G Missense Damaging 1.4 30.4
FNDC1 NM_032532 p.Arg189Cys  g.chr6:159636081 C->T Missense Damaging 293 359
OR8U1 NM_001005204 p.Asnl175lle  g.chr11:56143623 A->T Missense Damaging 30.0 341
PIDD NM_145886 p.Arg342Cys g.chr11:802347 C->T Missense Damaging 3.3 283
ZNF614 NM_025040 p.Glu202Gly  g.chr19:52520246 A->G Missense Damaging 28.7 33.7

AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; MF, myelofibrosis; SIFT, sorting intolerant from tolerant; VAF, variant allele fraction.

allowed accurate determination of their VAFs; on this basis, we
could establish an inferred model of clonal evolution in terms
of individual mutations in subjects 20 and 21 (Fig. 2a,b;
Supplementary Fig. 6a,b). Intratumoral heterogeneity was evident
at both MDS and AML phases in subject 20. According to the
predicted model, a founding clone with a CDC25C mutation
acquired additional mutations in COL9AI, FAM22G and LPP
(group A), followed by the emergence of a GATA2 mutation
(group B), which was associated with leukaemic transformation,
whereas the size of another subclone, defined by mutations in
CHEK2 and three other genes (group C), was unchanged. To
validate this hierarchical model, single-cell genomic sequencing
was performed using genomic DNA of 63 bone marrow cells
from subject 20 when the patient was in the AML phase.
Assuming that all cells harbour the RUNXI mutation, the false-
negative rate of the procedure reached 35%, possibly due to
biased allele amplification (Online Methods). However, this
technique successfully demonstrated that the group A/B and
group C mutations were mutually exclusive (Fig. 2¢;
Supplementary Table 2). To statistically evaluate this possibility,
we assumed two hypotheses (Hy: the mutational status of genes in
group A/B and group C is independent; H;: mutations in group
A/B and group C are mutually exclusive) and calculated each
probability distribution (P;: probability that the current results as
shown in Fig. 2c were obtained under the hypothesis H;). Our
mutational profile data were achieved with a much higher like-
lihood under H, than H, (Supplementary Fig. 7 and detailed in
Supplementary Methods). Similarly, the clonal architecture for
subject 21 was portrayed in Fig. 2b and Supplementary Fig. 6b.
In both scenarios, CDC25C mutations seemed to represent a
founding mutation with the highest VAF, suggesting that
the CDC25C mutation contributed to the establishment of a
founding tumour population as an early genetic event,
whereas progression to AML seemed to be accompanied by
the appearance of additional mutations, indicating a multistep
process in leukemogenesis.

Along with the somatic mutations found in subjects 20 and 21,
a GATA2 mutation was also identified in subject 22 (Fig. 3a). This

patient developed AML with multilineage dysplasia, which led to
the diagnosis of AML — MRC (myelodysplasia-related changes).
Remission-induction therapies were only partially effective and
the blast cell count was reduced from 54 to 5.6%, while dysplastic
features persisted (Fig. 3b; Supplementary Fig. 8). Allogeneic stem
cell transplantation was successfully performed from a human
leukocyte antigen-matched unrelated donor and durable com-
plete remission, with 100% donor chimerism, was achieved.
During treatment, the VAF of the GATA2 mutation decreased
virtually in parallel with the blast cell percentage, while the VAF
of the CDC25C mutation hovered at a high level before
transplantation. Thus, we hypothesized that the GATA2 mutation
induced leukaemia progression in this patient, whereas the
CDC25C mutation was associated with the pre-leukaemic status.
Another GATA2 mutation (p.Leu359Val) was found in subject
18, with a VAF (0.94%), who showed only thrombocytopenia
without any signs of leukaemia progression and who had a small
subclone with a concurrent CDC25C mutation (Fig. 3c). Although
GATA2 mutations are detected in a small number of patients with
FPD/AML, the findings described above suggest that mutation
of GATA2 is a key factor promoting disease progression in
FPD/AML (Fig. 3d).

Biological consequences of CDC25C mutations. We next
investigated the possible impact of CDC25C mutation on clonal
selection and evolution. CDC25C is a phosphatase that prevents
premature mitosis in response to DNA damage at the G2/M
checkpoint, while it is constitutively phosphorylated at Ser216
throughout interphase by ¢-TAKl (refs 8-10). When
phosphorylated at Ser216, CDC25C binds to 14-3-3 protein'!,
leading to sequestration of CDC25C to the cytoplasm and its
inactivation. Ba/F3 cells were transduced with retroviruses
encoding the wild-type or mutant CDC25C containing each
of the individual mutations (p.Asp234Gly, p.Ala344Val,
p.His437Asn and p.Ser216Ala), and assayed for the phospho-
rylation status, 14-3-3 protein-binding capacity and intracellular
localization of each of these proteins. The Ser216Ala mutant form
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Figure 1 | Mutation in CDC25C recurs in cases of FPD/AML. (a,b) Sanger
sequencing of CDC25C mutations found in whole-exome sequencing is
shown. Both forward and reverse traces were available for each mutation,
but only one trace is shown above. The results of buccal mucosa,
pre-leukaemic phase and leukaemic phase is demonstrated for subject 20
(a) and subject 21 (b), respectively. (¢) The distribution of alterations is
shown for the CDC25C protein. NES, a putative nuclear export signal
domain between amino acids 177-200; NLS, a putative nuclear localization
sequence domain consisting of amino acids 240-244.

of CDC25C, which lacks the phosphorylation site, was used as a
negative control. In all of the mutated forms of CDC25C, the
capacity for binding to c-TAK1 was reduced (Fig. 4ab;
Supplementary Fig. 9a,b), resulting in decreased phosphory-
lation of CDC25C at Ser216 (Fig. 4c). Consequently, the mutant
proteins failed to bind 14-3-3 protein efficiently (Fig. 4d,e;
Supplementary Fig. 8c,d) and remained in the nucleus even
during interphase (Fig. 4f; Supplementary Figs 10 and 11). In
accordance with these observations, CDC25C mutants enhanced
mitotic entry, which was exaggerated by low-dose radiation-
induced DNA damage (Fig. 4gh; Supplementary Fig. 12;
Supplementary Methods). These results suggest that mutation
of CDC25C results in disruption of the DNA checkpoint
machinery. Next, we investigated why mutation of CDC25C is a
frequent genetic event in FPD/AML. It is known that RUNXI
mutations suppress DNA damage repair and subsequent cell cycle
arrest in hematopoietic cells by means of transcriptional
suppression of several genes that are involved in DNA
repair'>!3, We confirmed that FPD/AML-associated RUNXI
mutations have similar effects, as we observed activation of the
G2/M checkpoint mechanism in the presence of RUNXI
mutations (Fig. 4i; Supplementary Fig. 13ab). We found,
however, that introduction of mutations in CDC25C resulted
in enhanced mitosis entry, despite co-existence of RUNXI

4 NATURE

mutations (Fig. 4i). Therefore, we speculated that compromised
DNA damage checkpoint mechanisms caused by mutations in
CDC25C may contribute to malignant transformation, in concert
with increased genomic instability due to RUNXI mutations.

Discussion

Whole-exome sequencing, followed by targeted deep sequencing,
identified novel aspects of the pathogenesis of malignant
transformation in FPD/AML. First, the high frequency of
CDC25C mutations in FPD/AML underscores their major role
in the development of haematological malignancies in FPD/AML
patients. To our knowledge, CDC25C mutations have not been
reported previously and represent a new recurrent mutational
target in haematological malignancies, although CDC25C muta-
tions have been reported in some solid carcinomas with unknown
significance!*15. Furthermore, our functional assays support their
biological significance, which is characterized by cell cycle
progression and premature mitotic entry. Although the
5q31 minimally deleted region, in which CDC25C is located, is
frequently detected in MDS, it seems to be associated with other
oncogenic mechanisms since our functional assays suggested that
CDC25C mutations in FPD/AML were gain-of-function type
mutations that facilitate the mitotic entry by aberrant
accumulation in the nucleus. Impaired DNA repair function
mediated by germline RUNXI mutation may play a role in the
generation of CDC25C mutations.

Evaluation of the allelic burden of mutated genes demonstrated
that CDC25 mutations are found with high VAFs in FPD/AML-
derived leukaemia and with low VAFs in cases of thrombocyto-
penia. Our hierarchical model and clonal selection highlighted
that mutation of CDC25C defines an initial event during
malignant transformation and predates subclonal mutations in
GATA2 and other genes. On the basis of the observation that four
of the seven FPD/AML patients with CDC25C mutations have
developed leukaemia and that CDC25C mutations were actually
detected in the leukaemic subclones, we speculated that a FPD/
AML patient with a CDC25C mutation, but without clinically
evident leukaemia, is at high risk for the onset of leukaemic
progression. Examination of the allelic burden of CDC25C
mutation may thus serve to evaluate the risk of leukaemic
progression in patients with FPD/AML.

Among the mutations found in FPD/AML, mutations in
GATA2 were identified in 3 of 13 individuals (subjects 18, 20
and 22). GATA2 mutations were frequently identified in FPD/
AML-derived leukaemia (2/7) and in a patient with thrombocy-
topenia who had a small subclone bearing a CDC25C mutation
(1/6). Although reports on the clinical relevance of GATA2
mutations in myeloid malignancy are limited, several lines of
evidence in this respect have recently been reported. GATA2
mutations are frequently found in a subgroup of patients
with cy’to%enetically normal AML with biallelic CEBPA gene
mutations'®, which account for ~4% of AML. Germline
GATA2 mutations are also observed in disorders linked to an
increased propensity for the development of MDS and AML,
including Emberger syndrome, MonoMAC syndrome and
dendritic cells, monocytes, B and nataral killer cells
deficiency!’-20. The alterations in GATA2 (leading to
p.Leu321His and p.Leu359Val), which were found in FPD/AML
patients in this study, are located in the part of the gene encoding
the N-terminal and C-terminal zinc-finger domains, respectively
(Fig. 3d). Mutations affecting the identical amino acids have been
reported in AML patients bearing CEBPA mutations and chronic
myeloid leukaemia patients in blast crisis!®?!. Thus, GATA2
mutation may contribute to AML progression in collaboration
with RUNX1 and/or CDC25C mutations. Furthermore, although
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Figure 2 | Clonal evolution of FPD/AML-related myeloid disorders. (a,b) Observed variant allele fraction (VAF) of validated mutations are listed in
Table 2, in both pre-leukaemic and leukaemic phases, are shown in diagonal plots (top) for subject 20 (a) and subject 21 (b). Predicted chronological
behaviours in different leukemia subclones are depicted below each diagonal plot. Distinct mutation clusters are displayed by colour. The vertical

axis represents cell proportion of each clone calculated by VAF x 2 (%) (because all the mutations were heterozygous), regarding the whole bone marrow
as 100%. (¢) Mutation status of each bone marrow cell from subject 20 during the acute myeloid leukemia (AML) phase. The vertical axis represents
each cell (n=63) and the horizontal axis displays each gene mutation. Coloured columns show that the corresponding cell harbours gene mutation(s) as
defined in Online Methods. Subclone numbers shown in the right row correspond to the numbers in the lower figure of a.
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Figure 3 | GATA2 mutations in FPD/AML. The result of Sanger sequencing for GATA2 p.Leu321His mutation in subject 22 (a) and Leu35%Val mutation in
subject 18 (c) validated with subcloning strategy by methods shown in Supplementary Methods. (b) Variant allele fractions (VAFs) of RUNX1, CDC25C and
GATA2 mutation in subject 22 are demonstrated with the time course of treatment. Half the value of the blast cell percentage, which corresponds

to the allele frequency of a heterozygous mutation, is also shown by a red bar. |A, idarubicine 4+ Ara-C; AEM, Ara-C + etoposide + mitoxantrone; HDAC,
high-dose Ara-C; uBMT, unrelated bone marrow transplantation. (d) Schematic representation of GATA2 mutations. GATAZ mutations that were identified
in FPD/AML are displayed together with mutations found in AML with CEBPA mutation'® as well as in CML patients in blast crisis?'. ZF, zinc-finger
domain; NLS, a putative nuclear localization sequence domain.

another report identified somatic CBL mutation with acquired Although the precise pathogenetic roles of CDC25C mutations
11q uniparental disomy as a second hit as being responsible for ~remain unclear, we presume that mutant CDC25C alleles confer a
leukaemic transformation in FPD/AML?2, CBL mutations were proliferative advantage under certain circumstances in which
not detected in our series of FPD/AML samples. DNA repair machinery is compromised, such as that mediated by
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