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Figure 2. ECHS1 Sanger sequencing analysis and ECHS1 functional domains. A: Sequence chromatograms from part of exon 1 of ECHST were
generated by Sanger sequencing of genomic DNA. Each parent had one wild-type allele; the patient’s father also harbored a ¢.2T>G variant, and the
patient’s mother a ¢.5C>T variant. The patient inherited each variant allele and was a compound heterozygote. B: Sequence chromatograms from
partof ECHS7exon 1 obtained by Sanger sequencing of cDNA prepared from patient mRNA. The same variants seen in genomic DNAwere observed
in the cDNA. C: A schematic diagram of the functional domains in ECHS1 and the locations of the mutations. MTP, mitochondrial transit peptide.

fractions prepared from patient and control skeletal muscle were
used; whole-cell lysates or mitochondrial fractions prepared from
patient-derived or control myoblasts were also used. All experiments
using these specimens showed that the expression level of ECHSI
protein of the patient was too low to detect by immunoblotting
even though the expression level of SDHA was almost the same as
controls (Fig. 3A—-C). These findings indicated that ¢.2T>G; p.M1R
and ¢.5C>T; p.A2V mutations caused a remarkable reduction in
ECHSI1 protein expression. Notably, patient-derived and control
myoblasts were similar with regard to ECHSI mRNA expression
(Fig. 3D), indicating that the mutations apparently affected ECHS1
protein expression directly. Next, we measured ECHS1 enzyme ac-
tivity in mitochondrial fractions prepared from patient-derived and
control myoblasts. ECHS1 activity was normalized to CS activity,
and activity in patient-derived myoblasts was 13% of that in con-
trol myoblasts (Fig. 3E). Therefore, the mutations caused a severe
depletion of ECHS1 protein expression thereby decreasing ECHSI
enzyme activity.

To examine the stability of each mutated protein, we constructed
three pIRES2-AcGFP1 expression plasmids, each expressed a dif-
ferent HA-tagged protein: wild-type, M1R-mutant, or A2V-mutant
ECHS!. The expression of AcGFP was used as a transfection control.
After the transfection into DLD-1 cells, immunoblotting of whole-
cell lysate with anti-HA and GFP antibodies showed markedly
higher expression of wild-type ECHS1 than of either mutant pro-
tein; all ECHS1 expression was normalized to AcGFP expression
(Fig. 4, Supp. Fig. S2). This result indicated that ECHSI protein
expression was significantly reduced in the patient because of each
mutation.

To confirm that the patient had ECHS1 deficiency, we performed
a cellular complementation experiment. Patient-derived myoblasts
had to be immortalized for these experiments because nonimmor-
talized cells exhibited poor growth and finite proliferation. The
patient-derived myoblasts and control myoblasts were transfected
with pEF321-T vector (a kind gift from Dr. Sumio Sugano, Uni-

versity of Tokyo). We then ascertained that ECHS1 protein expres-
sion and activity were lower in immortalized patient-derived my-
oblasts than in controls (Fig. 5A and B). We then transduced an
empty expression vector, pEBMulti-Pur (Wako), or a pEBMulti-Pur
construct containing a full-length, wild-type ECHSI cDNA into
the immortalized patient-derived myoblasts; cells with the vector
only or the ECHS1-expression construct are hereafter called vector-
only and rescued myoblasts, respectively. ECHS1 protein expres-
sion level and enzyme activity were analyzed in mitochondrial frac-
tions prepared from rescued myoblasts. Relative expression level
of ECHS1 in rescued myoblasts was 11 times higher than that
in vector-only myoblasts (Fig. 5A), and ECHSI activity normal-
ized to CS activity in rescued myoblasts was 49 times higher than
that in vector-only myoblasts (Fig. 5B). From these cellular com-
plementation experiments, we concluded the patient had ECHS1
deficiency.

Since the patient showed the combined mitochondrial respira-
tory chain deficiency in the skeletal muscle as mentioned above, we
used a cellular complementation experiment to determine whether
wild-type ECHSI rescued the respiratory chain defect in patient-
derived myoblasts. First, we measured enzyme activities of each
mitochondrial respiratory complex in mitochondrial fractions pre-
pared from immortalized patient-derived myoblasts. CS activity
normalized values for complexes I, IV, and V activity in immor-
talized patient-derived myoblasts were decreased to 17%, 39%, and
43% of the mean values of immortalized control myoblasts (Fig. 5C).
Then, we measured enzyme activity in mitochondrial fractions pre-
pared from rescued myoblasts and found that each activity of com-
plexes I, IV, and V was mostly restored relative to that in vector-only
myoblasts. In rescued myoblasts, CS activity normalized values of
complexes I, IV, and V were 3.5, 1.3, and 2.2 times higher than those
in vector-only myoblasts (Fig. 5C). Mitochondrial respiratory com-
plex activity was mostly restored in rescued myoblasts, suggesting
that there was an unidentified link between deficiency of ECHS1
and respiratory chain.
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Figure 3. ECHST expression and enzyme activity. ECHS1 expression was analyzed by immunoblotting. C1/2, control; P, patient. Mitochondrial
fraction prepared from patient’s skeletal muscle (A) or whole-cell lysate (B) and mitochondrial fraction (C) prepared from the patient-derived
myoblasts were analyzed via immunoblotting. All findings indicated that ECHS1 levels in patient samples were too low to detect by immunoblotting.
D: RT-PCR was used to assess ECHS? mRNA levels in the patient. Notably, patient-derived myoblasts and control myoblasts did not differ with
regard to ECHSTmRNA level. E: Mitochondrial fractions prepared from patient-derived myoblasts were used to estimate ECHS1 enzyme activity in
the patient. All ECHS1 activity measurements were normalized to CS activity; ECHS1 activity in patient-derived samples was 13% of that in control
samples. The experiments were performed in triplicate. Error bars represent standard deviations. (** P< 0.005 Student’s -test).
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Figure 4. Exogenous expression of mutant ECHS1 protein in cancer cells. A: Schematic diagram of the pIRES mammalian expression vector. B:
Representative image of an immunoblotting containing AcGFP, an internal control, and each HA-tagged ECHS1 protein; all proteins were isolated
from DLD-1 cells that transiently overexpressed wild-type, A2V, or M1R HA-tagged ECHS1 from pIRES. The images cbtained by short exposure
(left) and long exposure (right). G: Overexpressed HA-tagged ECHS1 protein levels. Both mutant ECHS1 proteins showed dramatically decreased
expression compared to wild-type ECHS1 protein, when ECHS1 was normalized relative to the internal control. Each experiment was performed in
triplicate. Error bars represent standard deviations (** P < 0.005 Student's t-test).

Discussion controls. Exogenous expression of two recombinant mutant proteins

in DLD-1 cells showed ¢.2T>G; p.MIR and ¢.5C>T; p.A2V muta-

Here, we described a patient harboring compound heterozygous  tjons affected ECHS1 protein expression. Cellular complementation
mutations in ECHSI. Immunoblotting analysis revealed that ECHS1  experiment verified the patient had ECHS] deficiency.

protein was undetectable in patient-derived myoblasts; moreover, The ¢.2T>G; p.M1R mutation affected the start codon and there-

these cells showed significantly lower ECHS1 enzyme activity than  fore was predicted to impair the protein synthesis from canonical
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Figure 5. ECHS1 protein expression and enzyme activity in rescued myoblasts. An empty vector or a construct encoding wild-type ECHS1
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performed in triplicate. Error bars represent standard deviations (** P < 0.005 Student's t-test). C: Mitochondrial fractions prepared from rescued
myoblasts were used to measure enzyme activities of mitochondrial respiratory complexes. Activity values were normalized to CS activity. Activities
of complexes |, IV, and V were mostly restored from “iP” and “iP-vector.” In “rescued,” the enzyme activities of complexes |, IV, and V were 3.5,
1.3, and 2.2 times higher, respectively, than the “iP-vector.” Each experiment was performed in triplicate. Error bars represent standard deviations

(**P < 0.005, * P < 0.05 Student’s t-test).

initiation site. In the reference ECHSI sequence, the next in-frame
start codon is located in amino acids 97 (Fig. 2C). Even if transla-
tion could occur from this second start codon, the resulting product
would lack the whole transit peptide and part of the enoyl-CoA
hydratase/isomerase family domain (Fig. 2C). The ¢.5C>T; p.A2V
mutation was located in the mitochondrial transit peptide and the
mutation may affect the mitochondrial translocation of ECHS1. Sur-
prisingly, the MitoProt-predicted mitochondrial targeting scores for
the wild-type and A2V-mutant proteins were 0.988 and 0.991, re-
spectively [MitoProt II; http://ihg.gsf.de/ihg/mitoprot.html; Claros
and Vincens, 1996] and not markedly different from each other.
Nevertheless, mislocalized mutant protein may have been degraded
outside of the mitochondria. Consistent with this speculation was
the finding that immunoblotting of lysate from patient-derived my-
oblasts (Fig. 3B) or from transfected cells that overexpressed the
recombinant p.A2V-mutant ECHS1 (Fig. 4B, Supp. Fig. 52) did not
show upper shifted ECHS1 bands that indicated ECHS1 with the
transit peptide. Another possible explanation is that the mutation
affected the translation efficiency because it was very close to the
canonical start codon. It can change secondary structure of ECHS1
mRNA or alter the recognition by the translation initiation fac-
tors. As stated above, even if there was a translation product from
the second in-frame start codon, that product would probably not
function.

This patient presented with symptoms that are indicative of
fatty acid oxidation disorders (e.g., hypotonia and metabolic aci-
dosis), but he also presented with neurologic manifestations, in-
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cluding developmental delay and Leigh syndrome, that are not
normally associated with fatty acid p-oxidation disorders. Inter-
estingly, developmental delay is also found in cases of SCAD defi-
ciency [Jethva et al.,, 2008]. In the absence of SCAD, the byprod-
ucts of butyryl-CoA—including butyrylcarnitine, butyrylglycine,
ethylmalonic acid (EMA), and methylsuccinic acid—accumulate in
blood, urine, and cells. These byproducts may cause the neurologi-
cal pathology associated with SCAD deficiency [Jethva et al., 2008].
EMA significantly inhibits creatine kinase activity in the cerebral
cortex of Wistar rats but does not affect levels in skeletal or heart
muscle [Corydon et al., 1996]. Elevated levels of butyric acid mod-
ulated gene expression because excess butyric acid can enhance hi-
stone deacetylase activity [Chen et al., 2003]. Moreover, the highly
volatile nature of butyric acid as a free acid may also add to its
neurotoxic effects [Jethva et al., 2008].

On the other hand, it is very rare for fatty acid B-oxidation disor-
ders causing Leigh syndrome. Therefore, the most noteworthy man-
ifestation in this patient was Leigh syndrome. Leigh syndrome is a
neuropathological entity characterized by symmetrical necrotic le-
sions along the brainstem, diencephalon, and basal ganglion [Leigh,
1951]. It is caused by abnormalities of mitochondrial energy gen-
eration and exhibits considerable clinical and genetic heterogeneity
[Chol etal., 2003]. Commonly, defects in the mitochondrial respira-
tory chain or the pyruvate dehydrogenase complex are responsible
for this disease. This patient’s skeletal muscle samples exhibited
a combined respiratory chain deficiency, and this deficiency may
be the reason that he presented with Leigh syndrome. Although it
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remained unclear what caused the respiratory chain defect, cellular
complementation experiments showed almost complete restora-
tion, indicating there was an unidentified link between ECHS1 and
respiratory chain. One of the possible causes of respiratory chain de-
fect is the secondary effect of accumulation of toxic metabolites. For
example, an elevated urine glyoxylate was observed in this patient.
Although the mechanism of this abnormal accumulation is not clear
at the moment, it was shown that glyoxylate inhibited oxidative
phosphorylation or pyruvate dehydrogenase complex by in vitro
systems [Whitehouse et al., 1974; Lucas and Pons, 1975]. There-
fore, we speculate that in our patient, ECHS1 deficiency induced
metabolism abnormality including glyoxylate accumulation, and
glyoxylate played a role in decreased enzyme activities of respiratory
chain complexes. Interestingly, a recent paper describing patients
with Leigh syndrome and ECHS1 deficiency showed decreased ac-
tivity of pyruvate dehydrogenase complex in fibroblasts [Peters etal.,
20141}, (Supp. Table S5). BN-PAGE showed the assembly of respi-
ratory complex components in the patient was not clearly different
from the control (Supp. Fig. S1). This result suggests that the res-
piratory chain defect in the patient is more likely because of the
secondary effect of accumulation of toxic metabolites. On the other
hand, many findings indicate interplays between mitochondrial fatty
acid B-oxidation and the respiratory chain. For example, Enns et al.
[2000] mentioned the possibility of the physical association between
these two energy-generating pathways from overlapping clinical
phenotypes in genetic deficiency states. More recently, Wang and his
colleagues actually showed physical association between mitochon-
drial fatty acid B-oxidation enzymes and respiratory chain com-
plexes (Wang et al., 2010). Similarly, Narayan et al. demonstrated
interactions between short-chain 3-hydroxyacyl-CoA dehydroge-
nase (SCHAD) and several components of the respiratory chain
complexes including the catalytic subunits of complexes I, II, III,
and IV via pull-down assays involving several mouse tissues. Con-
sidering the role of SCHAD as a NADH-generating enzyme, this
interaction was suggested to demonstrate the logical physical asso-
ciation with the regeneration of NAD through the respiratory chain
[Narayan et al., 2012]. Still more recently, mitochondrial protein
acetylation was found to be driven by acetyl-CoA produced from
mitochondrial fatty acid §-oxidation [Pougovkina et al., 2014]. Be-
cause the activities of respiratory chain enzymes are regulated by
protein acetylation [Zhang et al., 2012], this finding indicated that
B-oxidation regulates the mitochondrial respiratory chain. Remark-
ably, acyl-CoA dehydrogenase 9 (ACADS9), which participates in the
oxidation of unsaturated fatty acid, was recently identified as a fac-
tor involved in complex I biogenesis [ Haack et al., 2010; Heide et al.,
2012]. Cellular complementation experiments that involve overex-
pression of wild-type ACADS9 in patient-derived fibroblast cell lines
showed restoration of complex I assembly and activity [Haack et al.,
2010]. Accumulating evidence indicates that there are complex reg-
ulatory interactions between mitochondrial fatty acid S-oxidation
and the respiratory chain.

ECHS]1 has been shown to interact with several molecules outside
the mitochondrial fatty acid B-oxidation pathway [Chang et al,,
2013; Xiao et al., 2013] and the loss of this interaction can affect
respiratory chain function in a patient. Further functional analysis
of ECHS1 will advance our understanding of the complex regulation
of mitochondrial metabolism.
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Abstract Leigh syndrome (LS) is an early-onset progres-
sive neurodegenerative disorder characterized by unique,
bilateral neuropathological findings in brainstem, basal
ganglia, cerebellum and spinal cord. LS is genetically
heterogeneous, with the majority of the causative genes
affecting mitochondrial malfunction, and many cases still
remain unsolved. Here, we report male sibs affected with
LS showing ketonemia, but no marked elevation of lactate
and pyruvate. To identify their genetic cause, we performed
whole exome sequencing. Candidate variants were nar-
rowed down based on autosomal recessive and X-linked
recessive models. Only one hemizygous missense mutation
(c.665G>C, p.W222S) in glycogenin-2 (GYG2) (isoform
a: NM_001079855) in both affected sibs and a heterozy-
gous change in their mother were identified, being consist-
ent with the X-linked recessive trait. GYG2 encodes glyco-
genin-2 (GYG2) protein, which plays an important role in
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the initiation of glycogen synthesis. Based on the structural
modeling, the mutation can destabilize the structure and
result in protein malfunctioning. Furthermore, in vitro exper-
iments showed mutant GYG2 was unable to undergo the
self-glucosylation, which is observed in wild-type GYG2.
This is the first report of GYG2 mutation in human, implying
a possible link between GYG?2 abnormality and LS.

Introduction

Glycogen is a large branched polysaccharide contain-
ing linear chains of glucose residues. Glycogen deposits
in skeletal muscle and liver serve as shorter-term energy
storage in mammals, while fat provides long-term storage.
Glycogen biosynthesis begins with self-glucosylation of
glycogenins by covalent binding of UDP-glucose to tyros-
ine residues of the glycogenins and the subsequent exten-
sion of approximately ten glucose residues (Pitcher et al.
1988; Smythe et al. 1988). Glycogen particles are formed
by the continued addition of UDP-glucose to the growing
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glycogen chain by glycogen synthase, and introduction of
branches every 10-14 residues by the glycogen branch-
ing enzyme (Krisman and Barengo 1975; Larner 1953).
To date, two glycogenin paralogues have been identified in
human, glycogenin-1 (GYG1) and glycogenin-2 (GYG2).
These proteins have been shown to form homodimers,
heterodimers and larger oligomers (Gibbons et al. 2002).
GYG1 (muscle form) is expressed predominantly in muscle
while GYG2 (liver form) is expressed mainly in liver, heart
and pancreas (Barbetti et al. 1996; Mu et al. 1997). Bial-
lelic GYGI abnormality is known to cause muscle weak-
ness and cardiac arrhythmia in humans through GYGI
autoglucosylation failure (Moslemi et al. 2010). However,
human disease due to GYG2 abnormality has never been
reported.

Leigh syndrome (LS; MIM #256000) was first
described as a subacute necrotizing encephalomyelopa-
thy by Dr. Denis Leigh in 1951 (Leigh 1951). LS is a
progressive neurodegenerative disorder with an estimated
incidence of 1:40,000 live births (Rahman et al. 1996).
Onset is usually in early childhood (typically before age
2) (Naess et al. 2009; Ostergaard et al. 2007). Clinical
manifestations of LS are observed in the central nervous
system (CNS) (developmental delay, hypotonia, ataxia,
convulsion, nystagmus, respiratory failure and dysphagia),
peripheral nervous system (polyneuropathy and myopa-
thy) and extraneural organs (deafness, diabetes, cardiomy-
opathy, kidney malfunction and others) (Finsterer 2008).
The neurological features depend on the affected regions
and degree of severity. The presence of bilateral, symmet-
rical, focal hyperintense T2-weighted MRI signals in basal
ganglia (mainly putamen), thalamus, substantia nigra, sub-
stantia ruber, brainstem, cerebellum, cerebral white mat-
ter or spinal cord is diagnostic of LS (Farina et al. 2002;
Medina et al. 1990). Neuropathological studies revealed
that these lesions reflect neuronal necrosis, gliosis and vas-
cular proliferation (Brown and Squier 1996; Leigh 1951).
In the majority of LS cases, lactate, pyruvate or the lactate/
pyruvate ratio is increased in blood and cerebrospinal fluid
(Finsterer 2008). To the best of our knowledge, 37 nuclear
genes are known to be mutated in LS, in addition to some
mitochondrial genes (Antonicka et al. 2010; Debray et al.
2011; Finsterer 2008; Lopez et al. 2006; Martin et al.
2005; Quinonez et al. 2013). Thus, inheritance patterns
of LS include mitochondrial, autosomal recessive and
X-linked recessive modes (Benke et al. 1982; van Erven
et al. 1987).

We encountered a Japanese family with affected broth-
ers showing atypical LS without marked elevation of lac-
tic or pyruvic acid and unknown etiology. A unique genetic
variant was identified by whole exome sequencing (WES),
which may be associated with atypical LS phenotype in
this family.
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Materials and methods
Subjects

Peripheral blood samples of affected brothers diagnosed with
LS and their parents were collected after obtaining written
informed consent, DNA was extracted from peripheral blood
leukocytes using QuickGene-610L (Fujifilm, Tokyo, Japan)
according to the manufacturer’s instructions. Lymphoblas-
toid cell lines derived from all family members were estab-
lished. The Institutional Review Boards of Yokohama City
University School of Medicine approved this study.

Causative gene identification

Whole exome sequencing was performed in two affected
individuals (II-2 and 1I-3 in Fig. la) as described in the
Supplementary methods. All candidate variants based on
autosomal and X-linked recessive models were checked by
Sanger sequencing in the parents and affected siblings. PCR
products amplified with genomic DNA as a template were
sequenced on an ABI3500x] autosequencer (Applied Biosys-
tems, Foster City, CA) and analyzed using Sequencher 5.0
(Gene Codes Corporation, Ann Arbor, MI). As the pedigree
tree might also indicate mitochondrial inheritance of this dis-
ease and LS is known to be caused by mitochondrial genome
mutations, we screened the entire mitochondrial genome by
the algorithm reported previously (Picardi and Pesole 2012),
using exome data (detailed in Supplementary methods).

Structure modeling

To evaluate the effect of the GYG2 missense mutation
(c.665G>C, p.W222S in isoform a: NM_001079855) on
its function at the molecular structural level, the mutated
molecular structure was constructed, and the free energy
change caused by the mutation was calculated using the
FoldX software (version 3.0) (Guerois et al. 2002; Khan
and Vihinen 2010). As crystal structure of human GYG2
is unavailable, that of human GYGI1 (Protein Data Bank
code; 3T70) was used as a structural model. The mutation
was introduced into one subunit of the GYG1 homodimer.
The ligands included in the crystal structure of GYG1 were
ignored in the calculation, because the FoldX energy func-
tion could not deal with the ligands. The calculation was
repeated three times, and the resultant data were presented
as an average value with standard deviations.

Preparation for mammalian expression vectors
Human glycogenin-2 isoform a cDNA clone (IMAGE Clone

ID: 100008747) integrated in pENTR221 was purchased
from Kazusa DNA Research Institute (Chiba, Japan). The
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Fig. 1 Mutation Analysis of GYG2. a Pedigree of the family with
a unique type of LS and a GYG2 mutation (c.665G>C, p.W222S).
Square, circle and triangle denote male, female and spontaneous
abortion, respectively. White and black symbols indicate unaffected
and affected individuals, respectively, while the affection status of the
spontaneous abortion is unknown. b Electropherograms of a GYG2
mutation. ¢ The functional domain of human GYG2 (isoform a). The
substitution of p.W222S is located within the glycosyltransferase
family 8 domain (yellow square). d The evolutionary conservation of
the W222 in GYG2. Red stars indicate identical amino acids from S.
cerevisiae to H. sapiens. Sequences were aligned using CLUSTALW
(http://www.genome.jp/tools/clustalw/)

missense mutation (c.665G>C, p.W222S) was introduced
by Site-directed mutagenesis using the QuikChange IT XL
site-directed mutagenesis kit (Agilent Technologies, Santa
Clara, CA). Wild-type and mutant C’ V5/6xHis tagged
GYG?2 constructs were created using pcDNA-DEST40 (Inv-
itrogen, Carlsbad, CA) by LR recombination in Gateway
system (Invitrogen). To create the untagged construct, the
last codon was altered to a stop codon by mutagenesis.

Self-glucosylation analysis

Glucosyltransferase activity of GYG2 was measured as pre-
viously described (Lomako et al. 1988), with slight modi-
fications. In brief, COS-1 cells were maintained in Dulbec-
co’s modified Eagle’s medium (DMEM) (Sigma-Aldrich,
Schnelldorf, Germany) containing 10 % heat-inactivated
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fetal bovine serum (FBS) (Gibco-BRL, Grand Island, NY),
2 mM L-glutamine (Sigma-Aldrich) and 1 % penicillin—strep-
tomycin (Sigma-Aldrich). As previously described (Mu and
Roach 1998), the ~80 % confluent COS-1 cells (~1 x 107)
were transiently transfected by X-treamGENE9 DNA trans-
fection reagent (Roche Applied Science, Foster City, CA)
with 5 pg of either a wild-type Human GYG2 (isoform
a) expressing plasmid or the same plasmid into which the
W222S encoding mutation had been introduced. After 24 h,
the cells were collected and lysed in 300 .l of buffer con-
sisting of 50 mM HEPES, 0.5 % Triton X-100, 1 x EDTA-
free protease Inhibitor Cocktail tablets (Roche Applied Sci-
ence), 1 x phosphatase inhibitor cocktail (Nacalai Tesque
Inc., Kyoto, Japan) and 0.5 mM B-mercaptoethanol (Mu et al.
1997). After centrifugation at 14,000 rpm for 15 min, 10 ! of
the soluble fractions were mixed with 10 L1 of 2 X reaction
buffer containing 100 mM HEPES (pH7.5), 10 mM MgCl,
4 mM dithiothreitol (DTT) and 40 pM UDP-['*C]-glucose
(250 mCi/mmol; PerkinElmer, Waltham, MA) (Cao et al.
1993). After incubation at 30 °C for 30 min, the reaction was
stopped by addition of 20 pl of 2 x Laemmli sample buffer
(Sigma-Aldrich) (Viskupic et al. 1992). 15 .l of each sam-
ple was subjected to SDS-polyacrylamide gel electrophoresis.
After treatment with Gel drying solution (Bio-Rad Laborato-
ries, Hercules, CA) for 30 min, gels were dried. Dried gels
were then exposed on X-ray film for 2 weeks to detect the
incorporation of UDP-[!*C]-glucose into GYG2. In addition,
the '“C-signal intensities were evaluated using an imaging
analyzer, BAS2500 (Fujifilm). Three independent experi-
ments were performed.

Western blot analysis

For the detection of GYG2 protein, rabbit polyclonal
anti-GYG2 antibodies (1:500 dilution; Abcam Inc.,
Cat. #HPA005495, Cambridge, MA) and horse-radish per-
oxidase (HRP)-conjugated anti-rabbit IgG (1:10,000 dilu-
tion; Jackson ImmunoResearch, Cat.#111-035-003, West
Grove, PA) were used. Immunoblot chemiluminescence
was performed using SuperSignal West Dura as substrate
(Thermo Fisher Scientific, Waltham, MA). The chemilumi-
nescence signal images were captured by FluorChem 8900
(Alpha Innotech, San Leandro, CA). Signal intensities were
measured by AlphaEase FC (Alpha Innotech). Three inde-
pendent experiments were performed.

Results
Clinical finding

Patient II-2 (Fig. 1a; Table 1) is a 26-year-old male born to
non-consanguineous parents. His mother previously had a
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Table 1 Clinical features of the presenting patients affected with LS

11-2 11-3
Sex M M
Age (years) 26 19
Common clinical phenotype
Psychomotor retardation + +
Failure to thrive + +
Swallowing difficulties - -
Spasticity + -+
Rigidity + +
Pathological reflexes + +
Ataxia -+ o+
Athetoid movements + -+
Convulsions + +
Ophthalmoplegia + -+
Strabismus + +
Gastrointestinal problems + +
Renal agenesis NA -
Pes equinovarus + +
Uncommon clinical phenotype
Increase of ketone body + +

NA not assessed

spontaneous abortion. He was born at 39 weeks gestation
without asphyxia after an uneventful pregnancy. His body
weight was 3,680 g (+1.6 SD), his height was 50.0 cm
(—0.5 SD), and his head circumference (HC) was 34.0 cm
(—0.5 SD). His early developmental milestones were nor-
mal with head control and reach to toys at 4 months, roll
at 6 months and grasp with two fingers at 7 months. At
10 months, he was referred to our hospital because of an
inability to sit. His body weight was 9,120 g (£0.0 SD),
his height was 76.0 cm (41.3 SD), and his HC was 48.0 cm
(+1.4 SD). He could smile and swallow well. Bilateral stra-
bismus was noted. No minor anomalies were noticed. Mus-
cle tone was normal. Deep tendon reflexes were normal with
negative Babinski sign. He showed athetoid movements of
trunk and extremities. He showed pes equinovarus at trac-
tion response. Levels of lactate and pyruvate were normal
with 12.2 and 0.89 mg/dl (L/P ratio = 13.7), respectively.
Other laboratory examinations, including blood gas, blood
sugar, ammonia, AST, ALT, BUN, Creatine, TSH, T3, T4,
amino acids, and urine organic acid analyses were all nor-
mal. Electroencephalogram (EEG) showed no abnormali-
ties. He was suspected to have dyskinetic cerebral palsy and
referred to the division of rehabilitation. He could crawl
at the age of 2. At 6 years, he experienced a loss of con-
sciousness followed by generalized tonic—clonic convul-
sion with fever and was admitted to another hospital. He
was diagnosed with bilateral infarction of the basal gan-
glia. Although EEG showed no abnormalities, clonazepam
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was started with the suspicion of symptomatic epilepsy. At
the age of 9, he was referred to us again. His weight was
19.1 kg (—4.5 SD), his height was 115.0 cm (—2.8 SD). He
lost the ability to speak several words and switched hand-
edness from right to left. He also showed other signs of
regression: including spasticity with elevated deep tendon
reflexes and positive Babinski sign. In addition, he suf-
fered bilateral hip joint dislocations and the foot deformity
became worse. Contractures were noted in all extremities.
Brain magnetic resonance imaging (MRI) revealed a bilat-
eral necrotic lesion of the globus pallidus (Fig. 2a, b). EEG
and motor conduction velocities were normal. Laboratory
examinations, including lactate and pyruvate, were all nor-
mal. At the age of 12, he was admitted with acute bronchi-
tis, at that time he showed an increase of blood ketone bod-
ies: acetoacetic acid, 720 pwmol/l; 30HBA, 974 jumol/l and
urine ketone (4-+). Blood levels of ammonia (18 pumol/l),
sugar (125 mg/dl) and lactate/pyruvate (5.1/0.29 mg/dl)
were all within normal range. The values of blood ketone
bodies returned to normal level with the cease of fever.
Deficiencies of 3-ketothiolase and succinyl-CoA:3-oxoacid
CoA transferase were ruled out by enzyme analysis using
fibroblasts. His clinical symptoms and repeated MRI show
the non-progressive course of his disease. Currently he is
unable to sit or speak any words. Despite the addition of
carbamazepine and lamotrigine, he still exhibits generalized
tonic—clonic convulsion a few times a year. He also takes
medicine for hypertonicity including dantrolene sodium,
diazepam, baclofen and levodopa.

Patient 1I-3 (Fig. la; Table 1), the younger brother of
II-2, was born uneventfully. He was born at 37 week’s
gestation without asphyxia after an uneventful pregnancy.
His body weight was 3,668 g (1.5 SD), his height was
50.0 cm (0.5 SD), and his HC was 36.0 cm (—0.5 SD).
He suffered from bacterial meningitis of unknown origin at
1 month of age. He became unconscious followed by con-
vulsion and gastroenteritis at 1 year and 11 months. Brain
MRI showed marked swelling of the basal ganglia (Fig. 2c,
d). He was diagnosed with bilateral infarction of the basal
ganglia. After this event, he became left handed. When he
was 2 years old, surgery was performed to correct bilat-
eral inner strabismus. He was referred to our hospital at
the age of 4 for evaluation. His body weight was 11.0 kg
(—2.2 SD), his height was 92.5 cm (—1.2 SD), and his HC
was 49.5 cm (—1.3 SD). He could respond with a smile to
his mother’s voice. Motor milestones were delayed with
no head control. No minor anomalies were noticed. Mus-
cle tone was hypotonic. Deep tendon reflexes were exag-
gerated with positive Babinski sign and ankle clonus. He
showed pes equinovarus. He showed a significant increase
of blood acetoacetic acid of 1,270 wmol/l and 3-OHBA of
3,270 wmol/l. Levels of blood lactate and pyruvate were
normal (6.2 and 0.48 mg/dl, respectively, L/P ratio = 12.9).
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Fig. 2 Brain MRI of affected patients with a GYG2 mutation. a, b
(Patient 11-2): T1 (a) and T2 (b) weighted brain magnetic resonance
imaging (MRI) show necrotic lesion of bilateral globus pallidus
(arrows). T2 elongation is observed at deep white matter at 1 year.
c—f (Patient II-3): MRI at 1 year and 11 months shows swellings of
caudate nuclei, globus pallidus, and putamen with the decreased T1
intensity (c¢) and increased T2 signals (d). Arrows indicate swollen
lesions in basal ganglia. At 4 years (e, f), swelling of basal ganglia dis-
appeared with continued mild high intensity in T2 weighted image (f)

Lactate and pyruvate levels of cerebrospinal fluid were
slightly elevated with 11.3 and 1.11 mg/dl, respectively.
Other laboratory examinations, including blood gas, blood
sugar, ammonia, AST, ALT, BUN, Creatine, TSH, T3, T4,
amino acids, and lysosomal enzymes were all normal.
Urine organic acid analyses showed an increase of ace-
toacetic acid, 3-OHBA, and 3-OH-isovaleric acid. EEG
showed no paroxysmal discharges. Muscle biopsy showed
no specific abnormalities and no ragged red fibers. Stain-
ing for cytochrome ¢ oxidase was normal (data not shown).
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Brain MRI disclosed T2 elongation in the basal ganglia
and cerebral deep white matter (Fig. 2e, f). At the age
of 5, he showed lethargy with fever. At 6 years, he again
showed lethargy. Biochemical analysis disclosed a sig-
nificant increase of blood ketone bodies: acetoacetic acid,
1,337 pmol/l; 3-OHBA, 4,845 pmol/l and urine ketone
(+++). Blood levels of ammonia (28 pmol/l), sugar
(78 mg/dl), lactate (5.1 mg/dl) and pyruvate (0.43 mg/dl)
were all within normal range. Blood gas analysis revealed
metabolic ketoacidosis with an increase of anion gap;
22.4 mEq/l (normal range 12 =+ 2). His consciousness and
biochemical measurements returned to normal within a few
days with intravenous fluid infusion. Similar ketoacidosis
attacks were repeatedly observed and agenesis of the left
kidney and neurogenic bladder were recognized at the age
of 8. He started intermittent urinary catheterization, and
suffered from repeated urinary tract infections, resulted
in chronic renal failure. Repeated brain MRI shows the
progression of cerebral and cerebellar atrophy. He is now
19 years old and shows no gain of motor or intellectual
abilities from the age of 4. He takes dantrolene sodium and
diazepam for hypertonicity, and spherical charcoal, allopu-
rinol for renal failure.

Identification of a GYG?2 variant by exome sequencing

A total of 2,433,011,483 bps (II-2) and 7,926,169,749
bps (II-3) were mapped to RefSeq coding DNA sequence
(CDS). 83.3 and 96.0 % of CDS were covered by ten reads
and more. We used only NGS data of II-3 for selecting can-
didate variants as the lower-quality NGS data of II-2 may
lead to erroneous conclusion. Based on the hypothesis
that this syndrome is inherited in an autosomal recessive
or an X-linked recessive fashion, we focused on homozy-
gous or compound heterozygous variants on autosomes
and hemizygous variants on the X chromosome. While
nine variants in four candidate genes were selected by
in silico flow, only one hemizygous missense mutation
in GYG2 gene agreed with the familial segregation pat-
tern (autosomal recessive or X-linked recessive) (Table
S1, S2). The c.665G>C (p.W222S) in GYG2 (isoform a:
NM_001079855) was hemizygous in affected sibs and
heterozygous in their mother, consistent with the X-linked
recessive model, and was confirmed by Sanger sequence
(Fig. 1b). The variant was absent in our in-house Japanese
exome data (n = 418), the 1,000 Genomes database and
ESP6500. Furthermore, no pathological variants in mtDNA
were detected by exome sequence (Supplementary Results,
Figure S1). In addition, a total of 21 LS patients (12 males
and 9 females) were screened, but no pathological changes
were found in GYG2.

GYG2 encodes GY G2 proteins with at least five isoforms:
isoform a (NM_001079855), isoform b (NM_003918),
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Fig. 3 Molecular structural consideration of the W222S mutation
of GYG2. a Crystal structure of human GYGI (Protein Data Bank
code; 3T70) (Chaikuad et al. 2011). Each monomer is colored yellow
and cyan. a-helices, -sheet and loops are drawn as ribbons, arrows
and threads, respectively. The side chain of W222, glucose and UDP-
glucose (UDPQG) are shown as sticks in red, orange and green, respec-
tively. Amino acid numbering shown is for human GYG1 with that
for human GYG2 in parenthesis. The squared area corresponds to

isoform ¢ (NM_001184702), isoform d (NM_001184703),
and isoform e (NM_001184704). At least two GYG2
isoforms (isoform a and b) are expressed preferentially
in liver, heart and pancreas (Mu et al. 1997), while the
detailed expression and function of other isoforms are
undetermined. GYG2 has a glycosyltransferase family
8 domain and initiates glucose addition on its Tyrosine
residue (Y197 in isoform a) via O-glycosylation (self-
glucosylation) and can also attach an additional 7-10
residues of UDP-glucose to itself (Bollen et al. 1998;
Lomako et al. 2004; Zhai et al. 2001). The W222 within
the glycosyltransferase family 8 domain is evolutionarily
highly conserved from S. cerevisiae to H. sapiens (Fig. lc,
d). In addition, all isoforms contain this residue. Thus,
it is thought that this mutation may impair its biological
function.

Structural consideration of the p.W222S mutation
in human GYG2

The amino acid residue W222 of GYG2 (isoform a) was
mapped to the crystal structure of human GYG1 (Chaikuad
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the close-up views in (b). b Detailed views of structures of the wild-
type (left) and mutated GYG2 (p.W222S) (right). Amino acid resi-
dues at positions of 15, 218 and 220 and UDPG are shown as sticks
with van der Waals representation and annotations. Hydrogen bonds
are depicted as dotted lines. ¢ Calculated free energy change upon the
p-W222S mutation of GYG2 using FoldX software. All the molecular
structures were drawn using PyMOL (www.pymol.org)

et al. 2011), since no experimental structure of GYG2 was
available. W222 is involved in a hydrophobic core near
the UDP-glucose (UDPG) binding site along with Y17
and K220 (Fig. 3a, b). The side chains of Y17 and K220
are hydrogen-bonded to UDPG, and the former also makes
van der Waals contacts with the uridine ring of UDPG in a
stacking mode. Therefore, the formation of the hydropho-
bic core appears to be a prerequisite for UDPG binding. To
estimate the impact of the W222S mutation on the protein
stability, we modeled the mutant structure and calculated
the free energy change upon the mutation using the FoldX
software. As a result, the mutation was predicted to destabi-
lize the protein structure with about 4 kcal/mol increase in
free energy (Fig. 3c). This suggests that the W222S muta-
tion would impair UDPG binding (Fig. 3b).

Self-glucosylation analysis

To see the functional effects of the GYG2 mutation in
vitro, glucosyltransferase activity monitoring by self-
glucosylation was measured using wild-type (WT) and
W222S mutant (Mut) GYG2 (isoform a) transiently
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Fig. 4 Enzyme activity of GYG2. a Western blot analysis of recom-
binant GYG2. Wild-type (WT) and mutant (p.W222S) GYG2 was
detected at the expected size (52 kDa). B-actin (42 kDa) was used as
an internal control. b Autoradiography images presenting '“C glu-
cosylation toward GYG2. The signal was detected in WT, but unde-
tected in mutant, with similar levels to Mock. ¢ Graphic presentation
of autoglucosylation of GYG2. The activity detected in Mock might
be due to the endogenous glycogenin. Error bars represent the stand-
ard error of the mean

overexpressed in COS-1 cells. By immunoblotting, the
expected 52 kDa bands of recombinant WT and Mut
GYG2 were detected with similar expression levels
(Fig. 4a). While WT GYG2 showed reasonable glucosyl-
transferase activity, Mut GYG2 almost completely lost
the enzyme activity and was similar to the Mock level
(Fig. 4b, c).

Expression analysis of GYG1 and GYG2

To observe tissue distribution of the human GYGI and
GYG2, expression analysis was performed using multiple
tissue ¢cDNA panels. GYGI was expressed preferentially
in skeletal muscle and heart from fetus to adult stages as
previous reports (Barbetti et al. 1996). GYG2 is dominantly
expressed in liver from fetus through adult stages and
moderately expressed in brain, heart, pancreas and kidney
(Supplementary Results, Figure S2). To be marked, GYG!
is not expressed in liver and brain where GYG?2 is highly
expressed.

Discussion

In this study, we analyzed unique brothers affected with
LS who were born to non-consanguineous healthy parents
after uneventful pregnancies. Patient II-2 and II-3 devel-
oped LS accompanied by delayed developmental mile-
stones at 10 months and 13 months of age, respectively.
Their age of onset, clinical features and brain imaging
were compatible with the diagnosis of LS. Interestingly,

53

CNS abnormalities were observed (developmental delay,
convulsion, athetoid movements, nystagmus, hypoto-
nia, spasticity, increased deep tendon reflex and abnormal
reflection), but involvement of peripheral nerve and extra-
neural organs was obscure. Based on the facts including (1)
male (X-linked recessive), (2) normal lactate/pyruvate, (3)
ketonemia/ketonuria, and (4) CNS predominant symptoms,
the hemizygous GYG2 mutation was highlighted a primary
culprit.

In this study, we first identified a human GYG2 muta-
tion in affected brothers with LS with ketonemia/ketonu-
ria but normal blood lactate/pyruvate. We can hypothesize
a pathomechanism of the GYG2 impairment in this family
based on the canonical pathway of glycogen metabolism
(Fig. 5). As glycogen storage in liver might be decreased
because of the GYG2 malfunction, glucose is easily
depleted. To keep appropriate blood glucose concentra-
tions, the metabolism would be shifted toward gluconeo-
genesis and beta-oxidation to create glucose and energy
sources like Acetyl-CoA (Garber et al. 1974; Laffel 1999;
Randle et al. 1964). Excess beta-oxidation would result
in overproduction of ketone bodies, consistent with the
observation of ketonemia and ketonuria. However, pyru-
vate and lactate could be normally metabolized in gluco-
neogenesis and/or TCA cycle and would not accumulate
in the body as seen in the majority of LS patients. Inter-
estingly, both patients showed normal blood glucose level
while showing LS manifestations which might be due to
tissue energy depletion. In GYG2-deficient patients, the
CNS was dominantly affected, while the effect of this
abnormal metabolism was thought to extend to the entire
body. This predominance could be explained by high glu-
cose consumption as the primary energy source in brain
(Amaral 2012; Magistretti and Pellerin 1999) and glyco-
gen depletion in brain tissue level, while the blood sugar
level was maintained by the other compensatory mecha-
nism. This is similar to the muscle specific phenotypes
(muscle weakness and arrhythmia) observed in patients
with deficiencies of “muscle form” GYGI in the absence
of hypoglycemia (Moslemi et al. 2010). Remarkably, gly-
cogen was less in the muscle tissue of GYG1 depleted
patient (Moslemi et al. 2010). These evidences might
indicate that it is not always linked between glucose level
in the peripheral blood and glycogen/energy supply in tis-
sue level while we could not show the loss of glycogen in
liver or brain tissues because the materials were not avail-
able. In addition, deficiencies in two paralogous enzymes,
GYG1 and GYG2, result in different human diseases sug-
gesting they are unable to compensate each other in spe-
cific organs.

The GYG2 mutation is probably causative for LS in this
family. However, it is possible that the mutation is just co-
incidence because we just showed genetic evidences (due
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Fig. 5 Biochemical metabolisms in glycogen storage and glycolysis
pathways. a Schematic presentation of glycogen biosynthesis. GYG2
has a catalytic capability for O-linked self-glucosylation at Tyrosine
(Y197 in isoform a) and adds approximately 10 glucose molecules.
By the subsequent elongating reactions by glycogen synthase and
branching enzyme, giant molecule “glycogen™ is formed. b Modeled
biochemical pathway in GYG2 impairment. As the GYG2 impair-
ment results in the absence of glycogen storage, glycogen is easy
to be depleted and gluconeogenesis is induced from fat tissues and

to its rarity and familial co-segregation) and GYG?2 loss of
function by in vitro study without showing any sufficient
data on how the GYG2 mutation causes LS.

In conclusion, we describe the first human variant of
GYG2 which may be associated with the atypical LS phe-
notype in this family. Further studies are absolutely needed
to conclude whether GYG2 abnormality leads to atypical
LS observed in this family.
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Abstract

We report the first case of Leigh syndrome (LS) with Fukuyama congenital muscular dystrophy (FCMD). A neonate suffered
from lactic acidosis and subsequently presented with poor feeding, muscle weakness, hypotonia, cardiopulmonary dysfunction,
and hydrocephalus. He died at 17 months. The findings of brain magnetic resonance imaging indicated some specific features of
both LS and FCMD, and FCMD gene mutation was detected. Decreased mitochondrial respiratory complex I and II activity
was noted. Mitochondrial DNA sequencing showed no pathogenic mutation. A case with complex I+ II deficiency has rarely been

reported, suggesting a nuclear gene mutation.

© 2013 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

Keywords: Leigh syndrome; FCMD; Mitochondria; Complex I + II deficiency

1. Introduction

Fukuyama congenital muscular dystrophy (FCMD),
one of the most common autosomal recessive disorders
in the Japanese population, is characterized by congen-
ital muscular dystrophy with cortical dysgenesis. The
gene responsible for FCMD is located on 9q31. Most
FCMD-bearing chromosomes (87%) have a 3-kb retro-
transposal insertion in the 3’-untranslated region of the
gene [1].

* Corresponding author at: Department of Pediatrics, Osaka Uni-
versity Graduate School of Medicine, 2-2 Yamadaoka, Suita City,
Osaka 565-0871, Japan. Tel.: +81 6 6879 3932; fax: +81 6 6879 3939.

E-mail address: hkondo@ped.med.osaka-u.ac.jp (H. Kondo).

Leigh syndrome (LS) is a progressive neurodegenera-
tive disorder with psychomotor retardation, signs and
symptoms of brain stem and/or basal ganglia involve-
ment, and raised lactate levels in blood and/or cerebro-
spinal fluid (CSF). In majority of the cases, dysfunction
of the mitochondrial respiratory chain is responsible for
the disease. LS is caused by either mitochondrial or
nuclear gene mutations with large genetic heterogeneity
[2]. Here, we report the first case of LS with FCMD.

2. Case report
2.1. Index case

A Japanese boy was born at term as the third child to
non-consanguineous healthy parents. His serum creatine

0387-7604/$ - see front matter © 2013 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
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kinase concentration was extremely high (45149 TU/L)
on the day of birth without any anomaly. Serum lactate
level, plasma amino acid profiles, and carnitine profiles
were normal. Urinary organic acid profiles showed no
specific abnormalities. The patient suddenly suffered
from severe lactic acidosis, hyperglycemia, and acute
heart failure at day 17. Levels of lactate and pyruvate
in the CSF were 4.9 mM and 0.21 mM. A mitochondrial
disorder was suspected and treatment was started with
carnitine, ubiquinone, and other vitamins in addition
to cardiotonics and insulin. The infant’s condition
improved, but he subsequently presented with poor
feeding, muscle weakness, and hypotonia at 1 month.
Hypertrophic cardiomyopathy occurred at 3 months
and cardiopulmonary function worsened after repeated
lactic acidosis, and he required mechanical ventilation
from the age of 6 months. He presented with an enlarged
head circumference and a tense anterior fontanelle at
12 months, and died of pneumonia at 17 months.
Magnetic resonance imaging (MRDat 2 months
revealed cerebellar cysts, pachygyria, and T2-hyperin-
tense lesions in white matter and the brainstem, but
basal ganglia were normal (Fig. 1A). A follow-up inves-
tigation at 4 months indicated extended T2-hyperintense

lesions (Fig. 1B). A brain computed tomography (CT)
scan at 14 months showed severe hydrocephalus and
extensive cerebral atrophy (Fig. 1C).

Cerebellar cysts and pachygyria are characteristic of
FCMD, genetic testing for FCMD was performed. We
examined retrotransposal insertion into the 3’-untrans-
lated region (UTR) of the FCM D gene using a polymer-
ase chain reaction (PCR)-based diagnostic method
involving peripheral blood leukocytes of this case and
his parents [1]. A homozygous mutation of this case
and heterozygous mutation of his parents were detected.
Repeated lactic acidosis and brain stem lesions led us to
suspect LS. A skin biopsy was performed for mitochon-
drial analysis at 1 month. Activities of mitochondrial
respiratory chain complex (Co) I, 11, III, and IV were
assayed from skin fibroblasts, as described previously
[3]. The activities were also calculated as the percent rel-
ative to citrate synthetase (CS), a mitochondrial enzyme
marker and to Co 11 activity, and evaluated according to
the diagnostic criteria [4]. Respiratory chain complex I
and II activities were very low, but CS, Co III, and Co
IV activities were normal (Table 1). Expression of the
mitochondrial respiratory chain Col, I, III, and IV pro-
teins was concurrently examined by Western blotting

Fig. 1. Magnetic resonance image (MRI) at the age of 2 months (A) shows cerebellar cysts (A, top), bilateral symmetrical lesions in the brainstem (A,
middle), pachygyria, and T2-hyperintensity in white matter, predominantly in the frontal lobes (A, bottom). An MRI at 4 months of age indicated
T2-hyperintensity extending into the middle cerebellar peduncles, posterior limb of the internal capsule, and the corona radiata (B). A brain
computed tomography scan at 14 months of age showed severe hydrocephalus, widespread hypodensity of white matter, and extensive cerebral

atrophy (C).
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Table 1

Activities of mitochondrial respiratory chain complex (Co) I, 11, 111,
and IV; citrate synthase (CS) from skin fibroblasts. Enzyme activities
are expressed as a percentage of mean relative activity of 35 normal
controls and relative to CS and Co II.

Col Coll ColIl+III Colll ColV CS
Crude activity (%) 32 18 21 56 45 80
CS ratio (%) 38 21 24 65 55
Co 1l ratio (%) 177 112 312 259
lane 1 2 3 4
kDa
Col
669 -
Coll
440 -
232 - ColV
134 - Coll

Fig. 2. Blue native polyacrylamide gel electrophoresis (BN-PAGE)
analysis of skin fibroblasts 1: control; 2: this case; 3: a double of lane 2;
4: a triple of lane 2. The bands corresponding to Co II were almost
invisible and those corresponding to Co I were markedly weak,
whereas the intensities of the Co III and IV bands gradually became
strong.

using blue native polyacrylamide gel electrophoresis
(BN-PAGE), as described previously [5]. The BN-
PAGE analysis showed that the bands corresponding
to Co II were almost invisible and those corresponding
to Co I were markedly weak (Fig. 2). This finding was
in agreement with the enzyme activity assay results.
The mitoSEQr™ system (Applied Biosystems, Foster
City, CA, USA) was used for the entire mitochondrial
DNA analysis. Genomic DNA was extracted from skin
fibroblasts. Data were analyzed with SeqScape Software
v2.5 and compared with mitochondrial DNA sequences
(Mitomap: www.mitomap.org). Several base substitu-
tions were detected, but no pathogenic mutation was
detected in the entire mitochondrial DNA sequence.
High resolution chromosome analysis was normal.

2.2. Family history

The index case’s older brother had repeated afebrile
convulsions since the age of 2 months, but brain MRI
findings were normal. Laboratory tests showed elevated
level of lactate (2.92 mM) in CSF and a normal level of
serum creatine kinase (75 IU/L). He died of sudden car-
diac dysfunction at 4 months. The second child was a
healthy girl with normal development.
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3. Discussion

A case of FCMD and mitochondrial respiratory
chain disorder (MRCD) has never been reported. The
pathophysiology of FCMD and MRCD is quite differ-
ent, therefore, low activities of the respiratory chain
complexes in this case were probably not due to FCMD.
LS is clinically characterized by a wide variety of mani-
festations involving multiple organs in infancy or early
childhood. Thus, the early onset of his symptoms sug-
gested that LS was the main cause.

White matter abnormalities in patients with FCMD
are often detected by MRI as transient T2-hyperinten-
sity. Kato et al. reported that the pathological origin
of white matter lesions is dysmyelination and that the
lesions are masked by brain development [6]. In this
case, the extended signal abnormalities had different fea-
tures compared with those of FCMD. Some cases of
complex II deficiency with extensive T2-hyperintensities
in white matter have been reported [7.8]. The white mat-
ter abnormalities in our case may have been associated
with the complex II deficiency. The patient presented
with progressive hydrocephalus, but he had no prior
clinical signs of intraventricular hemorrhage or infection
in CSF. Patients with FCMD, who are homozygotes for
the insertion mutation with hydrocephalus have never
been reported [9]. A few patients with LS develop cere-
bellar atrophy or ventricular enlargement [10].

Many cases of combined complex deficiencies have
been reported, but a case with a complex I+ II defi-
ciency has rarely been reported. The entire mitochon-
drial DNA sequencing in this case showed no
pathogenic mutation. These findings suggest that LS in
this case was the result of a nuclear gene mutation.

The genes responsible for mitochondrial disease
located contiguous to the FCMD gene have not been
identified. The infant’s older brother was suspected to
have MRCD without obvious clinical signs of FCMD.
Therefore, we speculated that the present case was unli-
kely to be a contiguous gene syndrome. We are investi-
gating this patient’s fibroblasts using next-generation
sequencing to identify the causative nuclear gene muta-
tion and the relation between the two diseases.
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Japan: Focusing on mitochondrial DNA depletion syndrome
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Abstract Background: Although mitochondrial respiratory chain disorders (MRCD) are one of the most common congenital
metabolic diseases, there is no cumulative data on enzymatic diagnosis and clinical manifestation for MRCD in Japan
and Asia.

Methods: We evaluated 675 Japanese patients having profound lactic acidemia, or patients having symptoms or signs
of multiple-organ origin simultaneously without lactic acidemia on respiratory chain enzyme activity assay and blue
native polyacrylamide gel electrophoresis. Quantitative polymerase chain reaction was used to diagnose mitochondrial
DNA depletion syndrome (MTDPS). Mutation analysis of several genes responsible for MTDPS was also performed.
Results: A total of 232 patients were diagnosed with a probable or definite MRCD. MRCD are common, afflicting one
in every several thousand people in Japan. More than one in 10 of the patients diagnosed lacked lactic acidemia. A
subsequent analysis of the causative genes of MTDPS identified novel mutations in six of the patients. A 335 bp deletion
in deoxyguanosine kinase (DGUOK; g.11692_12026del335 (p.A48fsX90)) was noted in two unrelated families, and
may therefore be a common mutation in Japanese people. The proportion of all patients with MTDPS, and particularly
those with recessive DNA polymerase y (POLG) mutations, appears to be lower in Japan than in other studies. This is
most likely due to the relatively high prevalence of ancient European POLG mutations in Caucasian populations. No
other significant differences were identified in a comparison of the enzymatic diagnoses, disease classifications or
prognoses in Japanese and Caucasian patients with MRCD.

Conclusion: MTDPS and other MRCD are common, but serious, diseases that occur across all races.

Key words DGUOK deletion mutation, enzymatic diagnosis, mitochondrial DNA depletion syndrome, mitochondrial respiratory

chain disorder, racial difference.

Mitochondrial respiratory chain disorders (MRCD) are disorders
of the oxidative phosphorylation system, which is responsible
for ATP production. MRCD are the most common congenital
metabolic diseases, afflicting at least 1 in 5000 persons.!
Mitochondrial DNA depletion syndrome (MTDPS), in which
mitochondrial DNA (mtDNA) level is lower than normal, is one
of the major MRCD. A number of responsible genes of MTDPS
have been identified, and the pathophysiology of this disease is
partially characterized at the molecular level.> We have previ-
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ously diagnosed and characterized MRCD cases in Japan using
respiratory chain enzyme analysis.*® Having recently analyzed
the molecular diagnoses and clinical manifestations of MRCD in
Japanese patients, and analyzing several genes responsible for
hepatocerebral MTDPS, we herein discuss and compare the col-
lected data to those reported for MRCD outside of Japan.

Methods
Patients and samples

The subjects consisted of patients clinically suspected of having
MRCD. We measured respiratory chain enzyme activity and
quantity for patients with profound lactic acidemia, or patients
with symptoms or signs of multiple-organ origin simultane-
ously without lactic acidemia. Other metabolic disorders were
excluded on plasma tandem mass spectrometry and urine organic
acid analysis. Approximately half of candidates were <1 year old,



