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Table 2 Pearson correlation

u-cAMP u-cAMP/u-Cr

between baseline urine cAMP

concentration and physiological R (95 % CD D R (95 % CI) D

variables and measures of

disease severity Age —0.143 (—0.410 to 0.148) 0.334 0.096 (—0.193 t0 0.370)  0.515
BMI 0.039 (—0.251 to 0.323) 0.794 —0.100 (—0.376 to 0.193)  0.505
Waist circumference —0.086 (—0.445 to 0.297) 0.663 —0.292 (—0.600 to 0.091) 0.132
MAP 0.001 (—0.284 to 0.285) 0.997 0.050 (—0.238 to 0.329) 0.738
TKV —0.104 (—0.377 to 0.186) 0.482 —0.006 (—0.290 to 0.278) 0.967
htTKV —0.184 (—0.448 to 0.109) 0.215 —0.035 (—0.319 to 0.255)  0.817
eGFR 0.224 (—0.064 to 0.478) 0.126 0.077 (-0.212 t0 0.354)  0.602
s-Cr —0.209 (—0.465 to 0.080) 0.155 —0.150 (—0.416 t0 0.141)  0.310
u-Cr 0.595 (0.374-0.752) <0.001 —0.153 (—0.419 to 0.137)  0.299
Cystatin C —0.245 (—0.508 to 0.060) 0.114 —0.113 (-0.400 to 0.194) 0471
NAG 0.465 (0.209-0.662) <0.001 —0.100 (—0.374 t0 0.189)  0.498
s-OSM —0.217 (—0.474 to 0.075) 0.144 —0.094 (—0.371 to 0.198) 0.528
u-OSM 0.520 (0.236-0.722) <0.001 —0.193 (—0.486 to 0.140) 0.254

. FENa —0.460 (—0.658 to —0.202) 0.001 0.005 (—0.280 to 0.289) 0.973

CI Confidence interval

Table 3 Pearson correlation u-copeptin u-copeptin/u-Cr

between baseline urine copeptin

concentration and physiological R (95 % CI) P R (95 % CI) p

variables and measures of

disease severity Age —0.023 (—0.305 to 0.449) 0.878 0.189 (—0.101 to 0.449) 0.198
BMI 0.111 (—0.283 to 0.386) 0.458 0.005 (—0.283 to 0.292) 0.974
Waist circumference 0.052 (—=0.455 to 0.417) 0.792 —0.098 (—0.455 to 0.285) 0.618
MAP 0.098 (—0.156 to 0.372) 0.507 0.134 (—0.156 to 0.403) 0.363
TKV 0.261 (0.075-0.508) 0.073 0.351 (0.075-0.578) 0.014
htTKV 0.261 (—0.028 to 0.510) 0.076 0.383 (0.107-0.604) 0.008
eGFR —0.153 (—0.542 to 0.138) 0.301 —0.304 (—0.542 to —0.022) 0.036
s-Cr 0.114 (—0.094 to 0.386) 0.441 0.195 (—0.094 to 0.454) 0.184
u-Cr 0.324 (—0.592 to 0.557) 0.025 —0.370 (-0.592 to —0.096) 0.010
Cystatin C 0.183 (—0.003 to 0.458) 0.241 0.298 (—0.003 to 0.549) 0.052
NAG 0.465 (—0.344 to 0.662) <0.001 —0.066 (—0.344 to 0.222) 0.654
s-OSM 0.198 (0.020-0.459) 0.183 0.306 (0.020-0.545) 0.037
u-OSM 0.200 (—0.593 to 0.492) 0.234 —0.333 (—0.593 to —0.010)  0.044
FENa —0.161 (0.002-0.129) 0.274 0.286 (0.002-0.527) 0.049
u-cAMP 0.527 (0.285-0.380) <0.001 0.108 (—0.182 to 0.380) 0.467
u-cAMP/u-Cr 0.361 (0.086-0.658) 0.012 0.460 (0.202-0.658) 0.001

CI Confidence interval

and NAG (R = 0.465, p < 0.001). U-copeptin/u-Cr was
significantly inversely correlated with u-Cr (R = —0.370,
p = 0.010).

Discussion

The relationship between renal function, TKV
and cAMP, plasma copeptin in ADPKD patients

In ADPKD, disease progression causes decreased urinary
concentrating capacity [12]. Binding of AVP to the V2R at
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collecting duct cells causes an increase in intracellular
cAMP, which then leads to proliferation of epithelial cells
and fluid secretion into cysts. However, the use of u-cAMP
as a marker of AVP activity remains controversial [17].
Hypertonic saline infusion does not affect u-cAMP in pa-
tients with ADPKD [20]. In this study, we failed to show
statistical correlations between u-cAMP, u-cAMP/u-Cr and
markers of disease severity including TKV, htTKV and
eGFR. Therefore, we regretfully conclude that cAMP is not
useful as a surrogate marker of ADPKD disease progression.

Plasma copeptin and GFR were significantly associated
in ADPKD patients, but not in renal donors without
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Fig. 1 Scatter plots for correlation between u-copeptin/u-Cr and
markers of disease severity. a plasma copeptin: R = 0.318 (95 % CI;
—0.174 to 0.684) p=10.198. b TKV: R=0351 (95% CI;
0.075-0.578) p =0014. ¢ hTKV: R=0383 ©O5% CI

ADPKD {13]. Several previous studies reported that in
ADPKD patients, plasma copeptin level is associated with
rate of kidney function decrease [12, 21-23]. As indicated
in this study, it was also reported that a higher TKV was
independently associated with higher plasma copeptin
levels [11]. Boertien WE et al. [10] reported that the higher
the baseline copeptin concentration, the more measured
GFR decreased and the more TKV increased, independent
of age, sex, and kidney risk factors.

Validity of u-copeptin as a surrogate marker of ADPKD

Analysis of urine can offer a non invasive means to detect
changes in the expression of proteins [24]. In contrast to
other body fluids such as serum or plasma, urinary proteins
do not undergo detectable degradation by endogenous
proteases after voiding, thus minimizing the bias intro-
duced by preanalytical sample handling [24].
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0.107-0.604) p = 0.008. d eGFR: R = —0.304 (95 % CI;, —0.542
to —0.022) p = 0.036. e s-OSM: R = 0.306 (95 % CI; 0.020-0.545)
p = 0.037. £ u-OSM: R = —0.333 (95 % CI, —0.593 to —0.010)
p = 0.044

Unfortunately, there is no literature concluding how
copeptin is cleared from the body. Copeptin has a mole-
cular weight of 5 kDa [6] and consequently is subjected to
glomerular filtration. Taking the undeniable effect of urine
volume into account, we evaluated not only u-copeptin but
also u-copeptin/u-Cr, as has been done with albuminuria.
Results of this study and previous reports suggest that
decreased renal clearance may lead to higher plasma
copeptin values and, consequently, higher u-copeptin/u-Cr
values.

With respect to TKV, urinary copeptin and urinary
copeptin/u-Cr correlated with TKV in this study, although
these correlations were moderate. We therefore chose
htTKYV as a surrogate marker, as it has recently been shown
to be a strong predictor of the development of stage 3 and 4
KDOQI CKD within 8 years in ADPKD patients [25]. In
this study, a linear model to predict htTKV achieved a high
accuracy.
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It is a clinically accepted fact that patients with ADPKD
already have decreased urinary concentrating capacity [26]
at a young age [27], and that plasma osmolality is main-
tained within the normal range at the cost of higher plasma
copeptin and AVP levels [18]. Boertien et al. [10] show that
in relatively early stage ADPKD, plasma copeptin levels, as
a marker for AVP, are not associated with plasma osmo-
lality. However, in another study involving different
populations, the same group found a significant association
between plasma copeptin level and plasma osmolality [11].
On the other hand, two other studies performed in patients
without ADPKD investigating the association between
plasma osmolality and plasma copeptin level showed that in
accordance with normal physiology, the higher the plasma
osmolality, the higher the plasma copeptin level [21, 28].
Given these previous observations, it is difficult to conclude
whether or not there is statistical relationship between
plasma osmolality and plasma copeptin level in ADPKD.
Our data indicated that u-copeptin/u-Cr was significantly
positively associated with s-OSM and negatively associated
with u-OSM. Previous report that maximal urinary con-
centration capacity was lower in ADPKD patients [18] may
be consistent with our data of inversely significant corre-
lation between u-copeptin/u-Cr and u-OSM.

Although several reports evaluate urine copeptin in
model animals [29, 30], as far as we know, ours is the first
report indicating the usefulness of u-copeptin as a valuable
novel biomarker to identify ADPKD disease progression.
Unlike previous studies involving plasma copeptin in pa-
tients in a relatively early phase of disease [18], ours en-
rolled ADPKD patients with CKD stage <4. As mentioned
above, the novel treatment of V2R antagonist for ADPKD
with CKD stage <4 began in Japan under national health
insurance in 2014. Therefore, it may be possible to use
u-copeptin/u-Cr as a therapeutic response evaluation of this
therapy.

We acknowledge that this study has limitations. First,
little is known about the freeze—thaw durability of urine
copeptin. Second, patients were allowed to drink ad libitum
in this study. After 14 h of water deprivation, ADPKD
patients tended to have higher plasma osmolality and sig-
nificantly higher plasma AVP and copeptin levels, whereas
u-OSM was similar in ADPKD patients and controls [18].
Differences in hydration status between individuals may be
lead to variability in urine copeptin concentration. We do
not yet know how urine copeptin values might change
following water load or deprivation. On the other hand, it is
known from previous studies that plasma copeptin values
can decrease very quickly after a water load [6], suggesting
extrarenal clearance as the predominant clearance
mechanism [10]. The relationship between u-copeptin and
limitations on liquid intake should be the subject of a future
investigation. Third, we do not know about u-copeptin
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values in healthy controls and patients with CKD other
than ADPKD. It was reported that plasma copeptin is un-
specific for ADPKD and mostly shows considerable over-
lap with healthy controls [31]. Therefore, from this study,
one may not be able to conclude whether or not urine
copeptin is a specific marker for ADPKD, or a marker for
chronic kidney disease progression in general. Fourth,
mainly because of a small number cases with preserved
blood plasma (n = 18), we could not show the significant
correlations between u-copeptin and plasma copeptin. The
relationship between plasma copeptin and u-copeptin will
be one of the agenda to be examined in the future. Fifth, no
sex-based differences in u-copeptin values were found in
this study. On the other hand, it was reported that plasma
copeptin concentration was higher in men than in women
[11]. Unfortunately, at present, we cannot determine the
cause of this outcome. Hereafter, we should explore the
root causes of this difference. Sixth, as a matter of course,
we should perform validation analysis. Replication of our
findings must precede their clinical usage.

In conclusion, our results suggest that u-copeptin/u-Cr
might be a convenient and easily measured surro-
gate marker to help predict disease progression in ADPKD.
It is tempting to hypothesize that, in ADPKD patients,
a u-copeptin increase could be used as a surrogate marker
to predict the treatment efficacy with respect to
renoprotection.
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