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A KCNQ1 mutation contributes to the concealed type 1
long QT phenotype by limiting the Kv7.1 channel
conformational changes associated with protein

kinase A phosphorylation

Daniel C. Bartos, PhD,” John R. Giudicessi, BA," David J. Tester, BS,
Michael J. Ackerman, MD, PhD,' Seiko Ohno, MD, PhD,* Minoru Horie, MD, PhD,*
Michael H. Gollob, MD,® Don E. Burgess, PhD,” Brian P. Delisle, PhD"

From the *Depan‘ment of Physiology, Center for Muscle Biology, University of Kentucky, Lexington, Kentucky,
"Departments of Medicine, Pediatrics, and Molecular Pharmacology and Experimental Therapeutics, Divisions
of Cardiovascular Diseases and Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota, *Department of
Cardiovascular and Respiratory Medicine, Shiga University of Medical Sciences, Seta-tsukinowa, Otsu, Japan,
and *Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.

BACKGROUND Type 1 long QT syndrome (LQT1) is caused by loss-
of-function mutations in the KCNQI-encoded Kv7.1 channel that
conducts the slowly activating component of the delayed rectifier
K* current (Iy). Clinically, the diagnosis of LQT1 is complicated by
variable phenotypic expressivity, whereby approximately 25% of
genotype-positive individuals present with concealed LQT1 (resting
corrected QT [QTc] interval <460 ms).

OBJECTIVE To determine whether a specific molecular mechanism
contributes to concealed LQT1.

METHODS We identified a multigenerational LQT1 family whereby
79% of the patients genotype-positive for p.Ile235Asn-KCNQ1
(I235N-Kv7.1) have concealed LQT1. We assessed the effect
1235N-Kv7.1 has on Iy and the ventricular action potential (AP)
by using in vitro analysis and computational simulations.

RESULTS Clinical data showed that all 10 patients with I235N-
Kv7.1 have normal resting QTc intervals but abnormal QTc
interval prolongation during the recovery phase of an electro-
cardiographic treadmill stress test. Voltage-clamping HEK293
cells coexpressing wild-type Kv7.1 and I235N-Kv7.1 (to mimic
the patients’ genotypes) showed that I235N-Kv7.1 generated
relatively normal functioning Kv7.1 channels but were insensi-
tive to protein kinase A-(PKA) activation. Phosphomimetic and
quinidine sensitivity studies suggest that I235N-Kv7.1 limits the

conformational changes in Kv7.1 channels, which are necessary
to upregulate Iy after PKA phosphorylation. Computational
ventricular AP simulations predicted that the PKA insensitivity
of I235N-Kv7.1 is primarily responsible for prolonging the
AP with B-adrenergic stimulation, especially at slower cycle
lengths.

CONCLUSIONS K(NQ1 mutations that generate relatively normal
Kv7.1 channels, but limit the upregulation of Iy by PKA activation,
likely contribute to concealed LQT1.

KEYWORDS Long QT syndrome; KCNQI; Kv7.1; PKA activation;
Iys; Treadmill stress test

ABBREVIATIONS AKAP9 = A-kinase anchoring protein 9 (Yotiao);
AP = action potential; APDgy = steady-state action potential
duration at 90% repolarization; ECG = electrocardiogram/
electrocardiographic; HEK293 = human embryonic kidney 293;
Iy, = slowly activating delayed rectifier K* current; Iyax =
maximally activated Iys; k = slope factor; LQT1 = type 1 long QT
syndrome; LQTS = long QT syndrome; PKA = protein kinase A;
QTc = corrected QT; Vi, = midpoint potential for half-maximal
activation of Iy; WT = wild-type Kv71.
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Introduction

Congenital long QT syndrome (LQTS) is a condition of
abnormal cardiac repolarization that affects approximately 1
of every 2000 live births and is characterized clinically by
prolongation of the heart rate—corrected QT (QTc) interval
on a resting 12-lead electrocardiogram (ECG). Patients with
LQTS are at an increased risk of syncope, seizures, and

hitp://dx.doi.org/10.1016/j.hrthm.2013.11.021
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sudden cardiac death secondary to polymorphic ventricular
tachyarrhythmias." Type 1 long QT syndrome (LQTI) is
caused by loss-of-function missense, nonsense, frameshift,
or splice-site altering mutations in the KCNQ/-encoded
Kv7.1 o subunit and accounts for an estimated 40% of all
genotype-positive LQTS cases.'™ Kv7.1 a subunits tetra-
merize to form the pore of the slowly activating delayed
rectifier K* current (Ix,) channel complex, and in the human
heart, g, is upregulated by protein kinase A (PKA)
activation to prevent ventricular action potential (AP)
prolongation during f-adrenergic stimulation.™  Conse-
quently, many patients with LQT1 tend to experience life-
threatening symptoms while exercising or swimming.”®
Unfortunately, rendering a diagnosis of LQT1 on the basis

1:1 ;2

A

of a 12-lead ECG alone presents a significant challenge as an
estimated 25% of genotype-positive individuals with LQT1
fail to display an abnormal QTc interval at rest, commonly
referred to as a concealed LQT1 phenotype.”'”

Patients with a concealed LQTS phenotype may remain at
risk of cardiac events during exercise owing to inappropriate
adaptation of repolarization.'” As such, developing a deeper
understanding of the molecular mechanisms underlying a
concealed LQTI phenotype might improve personalized
diagnostic and management approaches to lower the risk of
life-threatening arrhythmias. In this study, we tested the
hypothesis that some mutations contribute to a high inci-
dence of the concealed LQT! phenotype by a specific
molecular mechanism.
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Figure 1

1235N-Kv7.1 causes concealed LQT1. A: A pedigree of a LQT1 family with I235N-Kv7.1 who underwent an ECG treadmill stress test. Patients

with the 1235N-Kv7.1 mutation are denoted by filled gray symbols. Individual males and females are denoted by squares and circles, respectively; each

generation is denoted by a Roman numeral; OC denotes an obligate carrier; and asterisks signify individuals who underwent an ECG treadmill stress test. B: The

QTec interval values recorded at baseline and after 3 minutes of recovery used to calculate AQTc of the 10 patients positive for 1235N-Kv7.1 who underwent an

ECG treadmill stress test are plotted. C: The mean QTc interval values recorded during the exercise treadmill stress test were plotted at baseline, peak exercise,

and 1,2, 3, 4, or 5 minutes during the recovery phase ("P < .05 vs baseline). ECG = electrocardiogram; LQT1 = type 1 long QT syndrome; QTc = corrected .
QT; AQTc == difference in QTc interval between baseline recording and 3 minutes after the ECG treadmill stress test.
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Methods

Identification of a concealed LQT1
multigenerational pedigree

In this institutional review board—-approved study, a retro-
spective review of more than 1000 individuals with a referral
diagnosis of LQTS evaluated at Mayo Clinic between 1998
and 2008 was used to identify 76 of 249 (30.5%) individuals
with LQT1 who featured a concealed LQTS electrocardio-
graphic phenotype at rest (defined as a QTc interval of <460
ms for both men and women).'* To identify the mutation(s)
most likely to confer a mutation-specific risk of concealed
LQTS, we further limited this list to LQT! pedigrees in
which >2 genotype-positive family members featured a
concealed LQTS phenotype. This process led to the identi-
fication of 3 moderate-to-large LQT1 pedigrees harboring
1235N-Kv7.1, Y315C-Kv7.1, and T322A-Kv7.1.'"> The
concealed LQT1 phenotype was observed in 15 of 19
(79%) individuals who are genotype positive for I235N-
Kv7.1, 4 of 7 (57%) individuals who are genotype positive
for Y315C-Kv7.1, and 4 of 9 (44%) individuals who are
genotype positive for T322A-Kv7.1. Given the electro-
physiological defects associated with Y315C-Kv7.1" and
T322A-Kv7.1'* have been described in detail previously and
these mutations showed a lower incidence of concealed
LQT1, we focused our investigation on the large LQT1
family harboring the I235N-Kv7.1 mutation. Resting 12-lead
and exercise stress test ECGs were analyzed manually, and
the QT interval (lead II or V) was corrected for heart rate by
using Bazett’s formula (QTc interval = QT/y/RR) as
described previously.'*'?

Genetic analysis, mutagenesis, electrophysiology,
computational modeling, and statistics

These methods were performed similarly as described
previously and are explained in detail in the Online
Supplement. ' 619

Results

Patients with LQT1 and the I235N-Kv7.1 mutation

show marked QTc prolongation during the recovery
phase of the ECG treadmill stress test

Ten members of the large 1235N-Kv7.1 LQTI pedigree who
underwent a treadmill stress test are depicted in Figure 1A.
Each of these patients had a bona fide LQT1 phenotype as
evident by the normal QTc interval at rest (Table 1) and
AQTc > 30 ms at 3 minutes during the recovery phase as
compared to baseline (Table 1 and Figure 1B)."? Moreover,
marked QTc interval prolongation was seen at all recovery
time points tested (Figure 1C), which suggested that I235N-
Kv7.1 confers a mutation-specific risk of concealed LQT1.
Importantly, genotype-positive patients are at risk of life-
threatening cardiac events, as illustrated by the near drown-
ing of the index case at age 15 (IV.8) and the suspicious
sudden death of her genotype-positive father at age 41 (IIL.5).
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Table 1 Clinical characteristics of the genotype-positive I235N-
Kv7.1 family
Genotype-positive patients, n (female, n) 15 (6)
ECG treadmill stress test, n (female, n) 10 (3)
Mean age = SD (y) 38 £ 14
Female mean age *+ SD (y) 46 = 19
Male mean age = SD (y) 35 +11
Mean resting QTc = SD (ms) 445 + 16
Female mean resting QTc = SD (ms) 441 * 24
Male mean resting QTc = SD (ms) 446 = 14
Mean resting HR = SD (ms) 76 = 17
Female mean resting HR = SD (ms) 74+ 8
Male mean resting HR = SD (ms) 76 = 19
Mean AQTc = SD (ms) 76 £ 29
Female mean AQTc = SD (ms) 88 * 40
Male mean AQTc = SD (ms) 71 £ 25

Near-drowning episode, n (female, n) 1(1)

Mean 3 min of recovery HR = SD (ms) 117 £ 16
Female mean 3 min of recovery HR * SD (ms) 115 =7
Male mean 3 min of recovery HR = SD (ms) 118 £ 18

ECG = electrocardiogram; HR = heart rate; QTc = corrected QT;
AQTc = difference between the baseline QTc interval and the QTc interval
measured at 3 minutes during the recovery phase after the ECG treadmill
stress test.

I235N-Kv7.1 disrupts a highly conserved amino acid
in S4 and causes a large reduction in Iy

that is largely normalized by the coexpression

of wild-type Kv7.1

The Kv7.1 a subunit is composed of cytosolic amino and
carboxy termini and 6 transmembrane segments (S1-S6;
Figure 2A). 1235 is located in S4 between highly conserved
positively charged amino acids critical for the voltage
dependence of Kv channel gating (Figure 2B).%Y Sequence
alignments show that 1235 is also conserved in other Kv «
subunits (Figure 2B).”" We tested whether 1235N-Kv7.1
generates a unique functional phenotype that accounts for the
high incident of the concealed LQT1 clinical phenotype. For
all voltage-clamping experiments, we coexpressed the K™
channel p subunit, KCNE1, which is obligatory for Kv7.1 to
generate native-like Igg currents.>’ Ixs was recorded from
cells expressing wild-type Kv7.1 (WT), 1235N-Kv7.1, or
coexpressing WT and I235N-Kv7.1 (to mimic the patients’
genotypes) by applying steplike pulses from —80 to 70 mV
in 10-mV increments for 5 seconds, immediately followed
by applying a “tail” pulse to —50 mV for 5 seconds
(Figure 2C). The peak Ik, amplitude recorded during the
step pulse or at the start of the tail pulse was plotted as a
function of the step pulse potential (Figures 2D-2E). These
data show that cells expressing WT conducted Ik,-like
currents; cells expressing [235N-Kv7.1 generated small Iy
that activated at positive potentials; and cells coexpressing
WT and I235N-Kv7.1 conducted Iy that was slightly
smaller than cells expressing WT. We calculated changes
in the maximally activated Ixs (Imax) and tested for changes
in gating by fitting the individual tail Ix-V relations with a
Boltzmann equation (Table 2A and Figure 2E). Ix, measured
from cells expressing 1235N-Kv7.1 without WT were too
small to be reliably described by a Boltzmann equation and
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Ik = slowly activating delayed rectifier K* current; WT = wild-type Kv7.

were excluded from analyses. The mean Boltzmann data
showed that compared with cells expressing WT, cells
coexpressing WT and 1235N-Kv7.1 caused a ~30% reduction
in Iyax with modestly different gating properties (a slightly
more positive midpoint potential for half-maximal activation
of I, [Vi,] and shallower slope factor [k]). Together, these
data demonstrate that the coexpression of WT largely cor-
rected the loss of function caused by I235N-Kv7.1.

Cells coexpressing WT and 1235N-Kv7.1 generate
PKA-insensitive Iy

An important functional role of I is to shorten the ventricu-
lar AP in response to p-adrenergic stimulation. B-adrenergic
stimulation activates PKA, which increases Ix, by phosphor-
ylating Kv7.1 at S27.%*' We previously showed that the
KCNQ!I mutation R231H-Kv7.1, which is 4 amino acid

1.

residues upstream of 1235, is insensitive to PKA activation.'®
Therefore, we tested whether cells coexpressing WT and
1235N-Kv7.1 might also generate PKA-insensitive Ix,. We
used a similar voltage protocol as in Figure 2C and measured
ks before and after the perfusion of forskolin and IBMX
(Figure 3A). All these experiments were performed with the
coexpression of KCNE1 and A-kinase anchoring protein 9
(Yotiao; AKAP9), which is the A-kinase anchoring protein
important for coupling PKA to the Ik, channel com-
plex.>?!"*? The peak g, amplitude recorded at the start of
the tail pulse was plotted as a function of the step pulse pote-
ntial and described with a Boltzmann equation (Table 2B and
Figures 3B-3C). These data show that PKA activation in
cells expressing WT increased Iyax. However, it did not
increase Ipax in cells coexpressing WT and 1235N-Kv7.1.
I1235N-Kv7.1 appears to prevent the upregulation of Ik
through PKA activation.
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Table 2  Electrophysiological properties of 1235N-Kv7.1 described by using the Boltzmann equation

Kv7.1 (n) Tuax (PA/pF) Vi, (mV) k (mV/e-fold A)
A.Basal

WT (11) 83.53 * 5.82 20.00 *+ 3.68 13.61 + 1.61
WT and 1235N-Kv7.1 (12) 57.03 * 8.26 36.36 *+ 5.57 19.70 = 2.20"
B.Before (-) or after (+) forskolin & IBMX

WT () (6) 73.99 *+ 6.67 13.21 + 3.82 9.55 + 1.37
WT (+) 112.70 + 12.46° 3.62 * 6.13 12.72 = 1.29
WT and 1235N-Kv7.1 (-) (6) 48.55 + 7,471 28.83 = 3.10f 17.32 * 1.87
WT and 1235N-Kv7.1 (+) 58.11 + 10.75¢ 30.25 * 4.791 20.95 = 1.65
C. Phosphomimetic

S27A (5) 83.42 * 7.79 20.73 *+ 4.55 11.12 * 1,52
527D (5) 140.8 + 7.86" 22.68 * 3.40 13.33 * 0.96
S27A and S27A/1235N (7) 69.18 + 10.977 39.00 *+ 2.81 15.74 = 0.91
$27D and S27D/1235N (9) 92.83 + 9.58¢ 38.12 *+ 5.84 16.76 * 1.88

A: To determine Iyay, Vi, and k, the peak tail Iy;-V relations were described by using the Boltzmann equation for cells expressing WT or WT and I235N-Kv7.1
(gray line; Figure 2E; P < .05 vs WT). Bz Cells expressing WT or WT and I235N-Kv7.1 (gray line; Figures 3B and 3C) before (—) or after (+) perfusion of forskolin
and IBMX ("P < .05 vs WT before perfusion; TP < .05 vs WT after perfusion). C: Cells expressing S27A-Kv7.1, 527D-Kv7.1, S27A- and S27A/I235N-Kv7.1, or
$27D- and S27D/1235N-Kv7.1 (gray line; Figures 4B and 4C; *P < .05 vs 527A; 1P < .05 vs S27D).

1235N-Kv7.1 blunts the increase in Iy caused by the
phosphomimetic substitution of 527D

[235N-Kv7.1 might prevent PKA stimulation of Iy, by
inhibiting phosphorylation at $27. To test this, we introduced
amino acid residue substitutions at S27 in WT or I235N-
Kv7.1 that prevent or mimic S27 phosphorylation (S27A
or S27D, respectively).s’22 We recorded Ig, from cells

expressing S27A-Kv7.1 or S27D-Kv7.1 and from cells
coexpressing S27A- and S27A/1235N-Kv7.1 or S27D- and
S27D/I235N-Kv7.1 by using the same voltage protocol as in
Figure 2C (Figure 4A). Boltzmann analyses of the tail Ix-V
relations showed that as compared with cells expressing
"S27A-Kv7.1, cells expressing S27D-Kv7.1 had a larger Iyax
but did not alter Vy, or k (Table 2C and Figures 4B—-4C).
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Figure 3  1235N-Kv7.1 generates PKA-insensitive Kv7.1 channels. (A) Representative traces of whole-cell Iy measured from cells transfected with WT or
WT and 1235N-Kv7.1 complementary DNA before and after extracellular perfusion of 10 pM of forskolin and 0.2 mM of IBMX. The mean peak tail Ixs-V
relations are plotted for cells expressing (B) WT (n = 6) before (black squares) and after (black open squares) perfusion or (C) WT and [235N-Kv7.1 (n = 6)
before (triangles) and after (open triangles) perfusion. Ixs = slowly activating delayed rectifier K+ current; PKA = protein kinase A; WT = wild-type Kv7.1.
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In contrast, cells coexpressing S27D-Kv7.1 and S27D/
1235N-Kv7.1 blunted the increase in Iyyax as compared with
cells coexpressing S27A- and S27A/I235N-Kv7.1. These
data suggest that S27D does not upregulate Ik, in channels
with the 1235N-Kv7.1 mutation.

Since the phosphomimetic mutation did not rescue the
upregulation of I, we tested whether I235N-Kv7.1 prevents
the necessary conformational changes in Kv7.1 channels
required to upregulate Ixs after PKA activation. Previous
studies by Yang and colleaguesz*”’24 showed that PKA-
stimulated Kv7.1 channels or S27D-Kv7.1 reduce quinidine
block of I, compared with nonstimulated Kv7.1 channels.
These data suggest that the PKA phosphorylation of S27 or
S27D cause conformational changes in Kv7.1 channels that
increase Ik, and restricts the access of quinidine to its binding
site.” In other words, the relative sensitivity of Ik to
quinidine block is a good indicator of the conformational
changes associated with S27 phosphorylation and the
phosphomimetic substitution of S27D. We compared the
% block of Ik, caused by quinidine from cells expressing
S27A-Kv7.1, S27D-Kv7.1, or S27D- and S27D/I235N-
Kv7.1 (Figure 5). Similar to what was shown previously,
cells expressing S27D-Kv7.1 conducted Ik, that was less
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Figure 5  1235N-Kv7.1 preserves the sensitivity of Ik, to quinidine block.
Representative Ik, traces before (black) and after the perfusion of 100 pM
quinidine (Quin; red) measured from cells transfected with S27A-Kv7.1,
S27D-Kv7.1, or S27D- and S27D/1235N-Kv7.1 complementary DNA. I
was recorded by applying a step pulse to 50 mV for 5 seconds followed by
applying a tail pulse to —50 mV for 5 seconds. The mean % block of the
peak tail I, are plotted (*P < .05). Ix, = slowly activating delayed rectifier
K™ current.
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sensitive to quinidine block than cells expressing S27A-
Kv7.1. However, cells coexpressing S27D- and S27D/
1235N-Kv7.1 conducted I, and demonstrated sensitivity to
quinidine block similar to that shown by cells expressing
S27A-Kv7.1. Together, these data suggest that [235N-Kv7.1
prevents the PKA upregulation of Ig, by limiting the
conformational changes in Kv7.1 channels associated with
S27 phosphorylation.

Computational simulations of ventricular AP with or
without p-adrenergic stimulation suggest that Iy
insensitivity to PKA is primarily responsible for a
ventricular AP prolongation

Next, we wanted to test how [235N-Kv7.1 might alter the
duration of a ventricular AP over a wide range of cycle
lengths with or without B-adrenergic stimulation by using
computational modeling.'® To mimic the effects that I235N-
Kv7.1 has on Ik, the Iy, component was reduced by 30%
and made insensitive to PKA. We compared these simu-
lations with control simulations or simulations that simply
reduced the Ix; component by 30% (without changing PKA
sensitivity). The steady-state action potential duration at 90%
repolarization (APDyy) at cycle lengths ranging from 300 to
1000 ms was calculated. In the absence of B-adrenergic
stimulation, a 30% reduction in Iy, resulted in a 1%—2%
prolongation of the APDg, between 300 and 1000 ms
(Figures 6A—6C). The presence of p-adrenergic stimulation
indicated that reducing the Ix, component by 30% still
increased the APDog by only 1%—2%. However, reducing
the Ixs component by 30% and making it PKA-insensitive
increased the APDgy from 6% to 10% at cycle lengths
between 300 and 1000 ms. These computational data suggest
that the PKA insensitivity of I235N-Kv7.1 is primarily
responsible for the concealed LQT1 phenotype.

The data from the LQTS patient registry indicate that
dominant-negative LQT1 mutations, which decrease total Ik
by >50%, are an independent risk factor for life-threatening
events.”® We used computational modeling to assess the
pathological/clinical relevance of PKA-insensitive vs
dominant-negative Kv7.1 mutations. We compared simula-
tions in which Ix, was PKA-insensitive, a simulation that
mimicked a dominant-negative LQT1 mutation (the Ik
component was reduced by 70%), or a simulation that
mimicked a PKA-insensitive dominant-negative LQT1
mutation. During simulations in which the Ixs component
was only PKA-insensitive, the APDg, increased with -
adrenergic stimulation by 6%-8%. A dominant-negative Ixg
simulation increased the APDgy by 3%—4% in the basal
simulations and by 6%—8% in B-adrenergic simulations for
cycle lengths 300-1000 ms (Figures 6D—6E). Coupling the
PKA insensitivity with a dominant-negative reduction in I
increased the APDgy by 8%—12% for cycle lengths 300-
1000 ms. These data suggest that PKA-insensitive Kv7.1
mutations, which do not reduce basal Ik, can prolong the AP
as much as dominant-negative Kv7.1 mutations in conditions
of B-adrenergic stimulation. We conclude that assessing the

PKA sensitivity of seemingly normal functioning Kv7.1
mutations is critical to determine their pathological
significance.

Discussion

The increasing availability of clinical genetic testing for
LQTS promises to one day allow for the development of
personalized approaches to the prevention of life-threatening
arrhythmias in individuals afflicted with this genetic disor-
der. However, the probabilistic interpretation of LQTS
genetic testing results is complicated by the observation that
4%-8% of the ostensibly healthy individuals are expected to
harbor rare amino acid—altering genetic variants in 1 of 3
major LQTS-susceptibility genes (KCNQI, KCNH2, and
SCN5A).*" In addition, it is estimated that approximately
25% of the individuals with an LQTS-caunsative mutation fail
to manifest any abnormalities in their QTc interval on resting
ECG (ie, concealed LQTS).!! There remain few insights into
the genetic and/or electrophysiological mechanisms that
underlie concealed LQTS phenotypes.%’28 The fact that
individuals with a concealed LQTS phenotype still have a
> 10-fold higher relative risk of sudden cardiac arrest/death
than their genotype-negative relatives highlights the pressing
need to develop a deeper understanding of the mechanisms
underlying this phenomenon.27 Therefore, the purpose of
this study was to determine whether a specific molecular
mechanism contributes to the concealed LQT1 phenotype.

In this study, we identified a large LQT1 multigenera-
tional pedigree whereby the vast majority of individuals who
were genotype-positive for [235N-Kv7.1 displayed a con-
cealed LQT1 phenotype. The family was brought to clinical
attention owing to a near-drowning episode of the 1235N-
positive index case and the sudden unexpected death of her
genotype-positive father. Therefore, we directly evaluated
the functional properties of [235N-Kv7.1 in HEK293 cells.
While homomeric I235N-Kv7.1 caused a severe loss of
function, the coexpression of WT markedly improved the
dysfunctional Iy phenotype. These data contradict a recent
report by Henrion et al,” who previously suggested that
1235N-Kv7.1 causes dominant-negative suppression of WT
when expressed in Xenopus laevis oocytes. Although we
cannot completely account for this discrepancy, we suspect
that it might be due in part to the alternative expression
system used.*!

The activation of the f-adrenergic receptor initiates a
signaling cascade through G, proteins that activate adeny-
late cyclase to increase intracellular levels of cyclic adeno-
sine monophosphate cAMP. cAMP activates PKA, and PKA
phosphorylates several substrate proteins in cardiomyocytes,
specifically phosphorylating S27 on the N terminus of
Kv7.1, which upregulates I’ These data suggest that
patients with LQT1 who have dominant-negative LQT1
mutations (>50% reduction in Igs) that generate Kv7.1
channels insensitive to PKA activation are likely to manifest
a severe clinical phenotype. For example, Heijman et al*
and Barsheshet et al* reported several dominant-negative
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Figure 6  Computational simulations suggest that making the Ixs component insensitive to PKA selectively increases the ventricular AP duration with B-
adrenergic stimulation. The APDg, was plotted as a function of the cycle length. Shown are the APDy,, calculated at cycle lengths between 300 and 1000 ms for
control simulations (black squares), simulations in which the Ix; component was reduced by 30% (blue circles), and simulations in which the Ik, component was
reduced by 30% and made insensitive to PKA (red triangles) (A) for basal conditions or (B) with p-adrenergic stimulation. (C) Representative AP waveforms and
the corresponding I, for control simulations (black line), simulations in which the Ixs component was reduced by 30% (blue line), and simulations in which the
Ixs component was reduced by 30% and rendered PKA-insensitive (red line) for 300 or 1000 ms. The black and red AP waveforms are not visible for the basal
simulations because they are overlaid by the blue AP waveform, and the red Iy, is not visible for the basal simulations because it is overlaid by the blue Ig,. To
mimic dominant-negative lx, suppression, simulations were repeated for control I, (black squares) or in which the Ixs component was reduced by 70% (aqua
diamonds) for (D) basal conditions or (E) B-adrenergic stimulation. Also shown are simulations in which Ik, is only PKA-insensitive (orange open inverted
triangles) or is reduced by 70% and PKA-insensitive (gold triangles). AP = action potential; APDg, = steady-state action potential duration at 90%
repolarization; I, = slowly activating delayed rectifier K™ current; PKA = protein kinase A.

LQT1-linked mutations that generate PKA-insensitive Kv7.1
channels and associate with severe clinical phenotypes. Most
recently, Wu et al*® showed that a mildly dominant-negative
LQT1-linked mutation (G269S-Kv7.1) primarily contributes
to an adrenergic-induced LQTS phenotype. We now show
that 1235N-Kv7.1, which does not cause dominant-negative

effect on I, but generates PKA-insensitive Kv7.1 channels,
contributes to a high incidence of the concealed LQT1
phenotype. Computational ventricular AP simulations that
incorporate the functional effects of I1235N-Kv7.1 suggest
that the mild dysfunctional phenotype minimally alters the
AP duration in basal conditions, but f-adrenergic
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stimulation, especially at slow cycle lengths, unmasks AP
prolongation similar to a dominant-negative LQT1 mutation.
The exacerbated prolongation of the ventricular AP duration
at slower cycle lengths qualitatively mimics the changes in
the QTc interval during the exercise treadmill stress test for
patients with I235N-Kv7.1 (QTc prolongation was exacer-
bated as the heart rate slows during the recovery phase of the
ECG stress test).

Although an increasing number of LQT1-linked muta-
tions are being linked to PKA insensitivity, the molecular
mechanisms for most PKA-insensitive mutations have not
been fully elucidated. The suppression of Ix, upregulation
has previously been reported in an LQT1-linked mutation
G589D-Kv7.1, which disrupts the binding of AKAP9 to the
C terminus.” Heijman et al”> showed that A341V-Kv7.1
prevents Iy, upregulation through PKA activation by inhib-
iting the phosphorylation at S27. Unlike A341V-Kv7.1, the
phosphomimetic substitution of S27 in 1235N-Kv7.1 did not
increase Ix;. Moreover, phosphomimetic I235N-Kv7.1 gen-
erated Iy that maintained a high sensitivity to quinidine
block. Recently, Yang et al*> performed extensive Kv7.1
mutagenesis and molecular modeling to examine the mech-
anism for quinidine block. These studies suggest that
quinidine allosterically inhibits Ik, by binding to an intra-
cellular pocket generated by amino acid residues in the S4—
S5 linker and S6, which raises the intriguing possibility that
S27 phosphorylation causes a conformational change that
upregulates Ig, and alters the quinidine binding pocket to
decrease quinidine block. The presence of I235N-Kv7.1
prevents both PKA-induced conformational changes and Ik,
upregulation. These data identify a novel mechanism by
which LQT1 mutations generate PKA-insensitive Kv7.1
channels.

Study limitations

This study has several limitations. The data were obtained in
a widely used heterologous expression system that might not
completely recapitulate in vivo phenotypes. Additional
family specific factors, including KCNQI polymorphisms
in the 3’ allele, might contribute to the concealed LQT1
phenotype in this family.**

Conclusions

Our study suggests that the exercise treadmill stress test for
patients with concealed LQT1 might help identify patients
who harbor PKA-insensitive Kv7.1 channels. To our knowl-
edge, these are the first data that link PKA insensitivity to an
abnormal QT response during the ECG exercise treadmill
stress test. Future studies incorporating the exercise treadmill
stress test combined with mutation-specific risk assessment
will likely improve the treatment of each patient with LQT1.
We conclude that some PKA-insensitive LQT1 mutations,
which generate relatively mild dysfunctional phenotypes in
basal conditions, can contribute to a high penetrance of the
concealed LQT1 phenotype.
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A Kir3.4 mutation causes Andersen— T awil

syndrome by an inhibitory effect
on Kir2.1

ABSTRACT

Objective: To identify other causative genes for Andersen-Tawil syndrome, which is characterized by
a triad of periodic paralysis, cardiac arrhythmia, and dysmorphic features. Andersen-Tawil syndrome is
caused in a majority of cases by mutations in KCNJ2, which encodes the Kir2.1 subunit of the inwardly
rectifying potassium channel.

Methods: The proband exhibited episodic flaccid weakness and a characteristic TU-wave pattern,
both suggestive of Andersen-Tawil syndrome, but did not harbor KCNJ2 mutations. We performed
exome capture resequencing by restricting the analysis to genes that encode ion channels/associ-
ated proteins. The expression of gene products in heart and skeletal muscle tissues was examined by
immunoblotting. The functional consequences of the mutation were investigated using a heterolo-
gous expression system in Xenopus oocytes, focusing on the interaction with the Kir2.1 subunit.

Results: We identified a mutation in the KCNJ5 gene, which encodes the G-protein-activated
inwardly rectifying potassium channel 4 (Kir3.4). Immunoblotting demonstrated significant
expression of the Kir3.4 protein in human heart and skeletal muscles. The coexpression of
Kir2.1 and mutant Kir3.4 in Xenopus oocytes reduced the inwardly rectifying current significantly
compared with that observed in the presence of wild-type Kir3.4.

Conclusions: We propose that KCNJ5 is a second gene causing Andersen-Tawil syndrome. The
inhibitory effects of mutant Kir3.4 on inwardly rectifying potassium channels may account for the
clinical presentation in both skeletal and heart muscles. Neurclogy® 201.4;82:1058-1064

GLOSSARY
¢RNA = complementary RNA; LQT = long QT; SNP = single nucleotide polymorphism; SNV = single nucleotide variant.

Periodic paralysis is a heterogeneous disorder caused by mutations in several ion channel genes,
including sodium, calcium, and potassium channels.”* Andersen—Tawil syndrome is a form of
periodic paralysis that is characterized by a triad of periodic muscle weakness, cardiac arrhythmia,
and dysmorphic features.*> Although dominantly inherited, its phenotypes are highly variable and
its penetrance is low.®” The syndrome has been proposed as LQT7; however, the ECG features are
distinct from those of classic forms of long QT (LQT) syndrome, i.e., characteristic TU patterns,
including enlarged U waves, a wide TU junction, and a prolonged terminal T-wave downslope.**

KCNJ2 mutation, which encodes the Kir2.1 subunit, causes Andersen—Tawil syndrome.” Kir2.1
is predominantly expressed in the brain, heart, and skeletal muscles and forms an inwardly rectifying
potassium channel via the homo- or heteromeric assembly of 4 Kir2.x subunits.'” Most KCNJ2
mutations cause loss of function or dominant-negative suppression of the inwardly reciifying

*These 3 authors contributed equally to chis work.
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