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FIG.7. The CD16" CD56" PBMCs mediate antibody-dependent cellular cytotoxicity (ADCC) in the presence of LAT-
27 or HAM-IgG. (A) 51Cr-labeled HTLV-1-infected cells were cocultured in vitro with autologous fresh PBMCs at various
E/T ratios in the presence or absence of 10 ug/ml of LAT-27 or F(ab”), LAT-27, or 100 pg/ml of normal human or HAM-

IgG for 24 h. Each coculture was performed in triplicate, and

the amount of radioactivity in the culture supernatants was

determined. Data shown are representative of three independent experiments. (B, C) Effector PBMCs before or after
depletion of CD14*, CD16", CD19*, or CD56™ cells were assayed for ADCC activity against autologous HTLV-1-
infected cells in the presence of LAT-27 (10 ug/ml) or HAM-IgG (100 ug/ml) in triplicate wells in the 24 h SlCrrelease
assay. Data shown are representative of two independent experiments.

against activated autologous T cells.** Further studies are in
progress to address this mechanism.

- Based on the data presented herein, it is suggested that
humanized LAT-27 mAb might have potential as a passive
vaccine against HTLV-1 infection for HTLV-1-uninfected
individuals at high risk of HTLV-1 infection, including
babies born to HTLV-1 carriers and drug abusers who are
also at high risk of HIV infection, and for HTLV-1 carriers
whose anti-HTLV-1 neutralizing and ADCC-inducing
antibody titers are low. One concern is the potential inter-
ference of LAT-27 activity by other nonneutralizing or non-
ADCC-inducing antibodies that may interfere with the
binding of LAT-27 to gp46. We have performed some ex-
periments and obtained data showing that LAT-12, which
blocked the binding of LAT-27 to HTLV-1-infected cells,
did not interfere with either LAT-27-mediated syncytium
blocking?® and/or the eradication of HTLV-1-infected cells
with autologous PBMCs (Supplementary Fig. S4). It seems
likely that the binding affinities of neutralizing antibodies to
gp46 expressed on actively living cells are higher than those
of nonneutralizing antibodies. Thus, validation of human-
ized LAT-27 in animal models is currently one of our
objectives.
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SUPPLEMENTARY FIG. S1. Flow cytometry of Tax and HTLV-I gp46 antigens. (A) Tax-specific and nonspecific
staining by Cy5-labeled Lt-4. HTLV-I-negative Jurkat cells and HTLV-I-positive MT-2 cells were stained with either Cy5-
labeled Lt-4 or Cy5-labeled mouse isotype control (IgG3) in the presence or absence of a 500 times excess of nonlabeled
Lt-4 (blocking Ab). (B) Typical dual staining of MT-2 and another HTLV-I-immortalized T cell line (YT/cM1) with FITC-
LAT-27 and Cy5-Lt-4. Negative controls for the two mAbs were obtained from cells stained in the presence of a 500 times
excess of nonlabeled homologous blocking mAbs as explained above.



A HTLV-i-coated gelatin particle
agglutination assay
(SERODIA®HTLV-I)

B  Western blot analysis
(PROBLOT HTLV-1)

Sample (1 mg/mi) Titer
Normal-1gG <8x
HAM-IgG 4,096 x

Normal HAM
lgG lgG

SUPPLEMENTARY FIG. S2. Characterization of anti-HTLV-I antibody profile of HAM-IgG. (A) Purified HAM-IgG at
1 mg/ml was serially diluted and subjected to a commercial anti-HTLV-I agglutination assay (SERODIA®HTLV-I, Fu-
jirebio Inc.). Titers were expressed as the reciprocal dilution that showed a positive reaction. (B) Using a commercial anti-
HTLV-I western blot assay, IgG (10 ug/ml) from pooled plasma of normal donors and HAM patients was examined for

HTLV-I antibodies.
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SUPPLEMENTARY FIG. S3. Titration of HTLV-I-neutralizing antibody titers of LAT-27 and HAM-IgG. Two-fold
diluted IgG samples were added to the coculture of ILT-M1 and Jurkat cells, and the minimum IgG concentration required
for complete blockade of syncytium formation was determined. Note that the control rat isotype (rat IgG anti-HCV) and
contro] IgG from pooled normal human plasma did not neutralize even a 200 pg/ml (final concentration). Arrows indicate
small syncytia escaped from neutralization.
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SUPPLEMENTARY FIG. S4. Lack of interference by nonneutralizing anti-gp46 mAb in LAT-27 mediated HTLV-1
suppression in the presence of autologous PBMCs. (A) Binding of FITC-labeled LAT-27 to ILT-M1 cells in the presence of
a 10 times higher concentration of competing mAb was analyzed by flow cytometry (FCM). Dotted line, binding of FITC-
isotype control; thick and thin lines, bindings of FITC-LAT-27 in the absence and presence of competitors, respectively. (B)
As shown in Fig. 6, the IL-2-dependent HTLV-1-infected CD4™ T cells were exposed to autologous PBMCs with 10 pg/ml
of isotype control (control) or LAT-27 in the presence or absence of 100 ug/ml of LAT-12 or LAT-25 twice at 3 day
intervals. Two days after the second exposure, the absolute Tax ™ cell number/culture and HTLV-1 p24 levels produced in
the culture supernatants were quantitated by FCM and ELISA, respectively. In the absence of PBMCs, the numbers of Tax ™
cells were 47,200+ 5,200, which was not affected by the addition of only LAT-12, LAT-25, or LAT-27 (data not shown)
(n=4).
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Abstract

Background: Human T-cell leukemia virus type 1 (HTLV-1) causes both neoplastic and inflammatory diseases,

including adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Because
these life-threatening and disabling diseases are not yet curable, it is important to prevent new HTLV-1 infections.

Findings: In this study, we have established a simple humanized mouse model of HTLV-1 infection for evaluating
prophylactic and therapeutic interventions. In this model, HTLV-1-negative normal human peripheral blood
mononuclear cells (PBMCs) are transplanted directly into the spleens of severely immunodeficient NOD-SCID/ycnull
(NOG) mice, together with mitomycin-treated HTLV-1-producing T cells. Using this model, we tested the efficacy of
monoclonal antibodies (mAbs) specific to HTLV-1 as well as human IgG isolated from HAM/TSP patients (HAM-lgG)
in preventing HTLV-1-infection. One hour before and 24 h after transplantation of the human cells, each antibody
sample was inoculated intraperitoneally. On day 14, human PBMCs isolated from the mouse spleens were tested for
HTLV-1 infection. Whereas fresh CD4-positive and CD8-positive T cells isolated from untreated mice or mice treated
with isotype control mAb, HTLV-1 non-neutralizing mAbs to envelope gp46, gag p19, and normal human IgG

were all infected with HTLV-1; the mice treated with either HTLV-1 neutralizing anti-gp46 mAb or HAM-IgG did not

become infected.

against HTLV-1 infection.

Conclusions: Our data indicate that the neutralizing function of the antibody, but not the antigen specificity, is
essential for preventing the in vivo transmission of HTLV-1. The present animal model will also be useful for the
in vivo evaluation of the efficacy of candidate molecules to be used as prophylactic and therapeutic intervention

Keywords: HTLV-1, NOG mice, Intrasplenic injection, Neutralizing antibody, Envelope gp46

Findings

Human T cell leukemia virus type-1 (HTLV-1) has been
linked to the development of adult T-cell leukemia
(ATL) and a chronic inflammatory disease called HTLV-
1-associated myelopathy/tropical spastic paraparesis
(HAM/TSP) [1]. However, the mechanism of disease
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pathophysiology is still incompletely understood, and
the treatments available are still unsatisfactory. Therefore,
studies should be conducted to develop an effective
method for preventing the occurrence of new infections,
as well as to identify the mechanism of disease develop-
ment and effective treatment following infection. This will
require the development of a small animal model that can
be exploited as a tool for the screening and evaluation of
HTLV-1 infection. However, although HTLV-1 consist-
ently infects rabbits [2,3], some non-human primates
[4,5], and to a lesser extent, rats [6,7], the virus does not

© 2014 Saito et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any mediumn, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.
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efficiently infect murine cells. Previous studies have
indicated that viral transmission in mice, using typical
methods of infection, results in inconsistent infections
and limited virus expression in tissues [8-10].

Here we established a novel mouse model to evaluate
primary HTLV-1 infection of human lymphocytes in vivo.
In this model, HTLV-1-negative healthy human peripheral
blood mononuclear cells (PBMCs) (2 x 10%/mouse) were
transplanted directly into the spleens of severely immuno-
deficient NOD-SCID/yenull (NOG) mice, together with
cells from the mitomycin C (MMC)-treated HTLV-1-
infected cell line ILT-M1 (1 x 10%/mouse), which is an IL-
2-dependent CD8+ T cell line derived from a HAM/TSP
patient (kindly provided by Prof. Kannagi of Tokyo Med-
ical and Dental University). Cell suspensions in a final vol-
ume of 50 pl were administered by intrasplenic injection
(hereafter called hu-PBMC-NOG-spl mice). As previously
reported [11], the severe immune deficiency of the NOG
strain enables efficient engraftment of the human T cells,
and a reduction in mouse death caused by severe
graft-versus-host disease (GVHD), compared to those
inoculated into the peritoneal cavity, which is the more
common route of administration. In fact, all mice grew
normally without piloerection or weight loss until 14 days
after transplantation (i.e., the time of sacrifice).

First, we isolated the bulk spleen cells from hu-PBMC-
NOG-spl mice sacrificed 14 days post inoculation/infec-
tion. Using flow cytometry (FCM), live cells were gated
on their forward and side light scatter characteristics,
and cell surface markers within the HLA-class I-positive
population (i.e., human cells) were analyzed (Figure 1A).
The numbers of recovered human cells (i.e. HLA-class [
positive cells) from the mouse spleens were 148 x 107
(Donor #1), 1.29 x 107 (Donor #2) and 1.92 x 107 (Donor
#3), respectively, which are much higher than the num-
bers of inoculated human cells, suggesting successful
engraftment. The increased numbers of human T cells in
the mouse spleens within two weeks after inoculation may
have been caused by xenoreactive lymphocyte prolifera-
tion, since recent report by Sendergaard et al. suggested
that injection of human PBMCs into NOG mice cause
polyclonal expansion and activation of functional
human T cells [12]. Meanwhile, human T cell expansion
due to HTLV-1 is unlikely, since there is no clear differ-
ence in numbers of human T cells in the mouse spleens
between mice treated with PBS (i.e., HTLV-1-infected)
and mice treated with neutralizing antibodies (i.e.,
HTLV-1-uninfected) (data not shown). There tended to
be higher frequencies of CD4-positive cells than CD8-
positive cells (Figure 1B). Next, in order to confirm
HTLV-1 infection, we isolated human CD4- and CD8-
positive T cells by positive immunoselection from the
bulk spleen cells, and then amplified a fragment of the
HTLV-1 pX region by genomic PCR (Figure 1C). As
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shown in Figure 1C, similar to the naturally HTLV-1-
infected PBMCs from healthy carriers and HAM/TSP
patients, an HTLV-1 proviral DNA band was detected
in all the isolated human CD4- and CD8-positive cell
samples tested. We also performed RT-PCR in order to
detect viral mRNA (tax and HBZ) in these human CD4-
and CD8-positive T cells. As shown, all of the CD4 and
CD8 cells tested expressed both tax and HBZ mRNA
(Figure 1D). The poor visibility of tax mRNA bands of
CD8 cells suggest that the possible contamination of
residual ILT-M1 cells, which are positive for CD8 and
strongly express tax mRNA, is unlikely. To further rule
out the possible contamination of residual ILT-M1 cells,
inverse PCR amplification was carried out to determine
the sequences adjacent to HTLV-1 LTRs (both 3'- and
5'-LTR) using the DNA extracted from ILT-M1 cells, as
previously described [13]. Next, integration site-specific
PCR was carried out using primer pairs that encompass
HTLV-1 LTRs (both 3'- and 5'-LTR) and flanking host
sequences (Additional file 1: Table S1). As shown in
Additional file 2: Figure S1, no integration site-specific
bands were observed except for ILT-M1 cells, suggesting
that the possible contamination of HTLV-1 genome de-
rived from the residual ILT-M1 cells is unlikely. The me-
dian proviral DNA copy numbers (proviral load: PVL) in
1 x 10* of both the human CD4 and human CD8 cells re-
covered from three hu-PBMC-NOG-spl mice, each inocu-
lated with human PBMCs from different donors, were
9,533 and 4,546, respectively (ie., 0.95 and 0.45 copies/
cell, respectively), suggesting highly efficient cell-to-cell
transmission of HTLV-1 from infected to uninfected
human lymphocytes in vivo. Although a previous study
also showed the successful engraftment of an HTLV-1-
transformed cell line and uninfected PBMCs in NOG
mice, the HTLV-1 PVL in spleen was very low and less
than 1% of cells were infected with HTLV-1 [14]. In this
previous study, 10”7 uninfected human PBMCs were
injected intraperitoneally, and those PBMCs were
infected with HTLV-1 by intraperitoneal inoculation of
MMC-treated HTLV-1-infected MT-2 cells (10° or 10%
cells/mouse) [14]. The different infection efficiencies be-
tween the previous and present studies clearly indicate that
the efficient engraftment of the human T cells in vivo could
be achieved by this route of inoculation. As shown in the
present study, an intrasplenic transfer of human PBMCs
can reduce the number of PBMCs required for the initial
inoculation by approximately 1 log unit for the generation
of more than 107 human T cells within two weeks, prob-
ably because human lymphocytes directly inoculated
into the mouse spleen are efficiently activated, and thus
HTLV-1 could efficiently infect human T cells in vivo. The
microanatomic environment of the secondary lymphoid
organs, such as the spleen, might also play an important
role in the efficient cell-to-cell transmission of HTLV-1.
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Figure 1 In vivo infection of HTLV-1 in engrafted human PBMCs in hu-PBMC-NOG-spl mice. A. Live cells were gated on their forward and
side light scatter characteristics, and then cell surface markers within the HLA-class I-positive population were analyzed. B. There tended to be
higher frequencies of CD4-positive cells than CD8-positive cells. The numbers represent the percentage of the cell population within the
HLA-class I-positive gate. C. Genomic PCR to confirm HTLV-1 infection. Genomic DNA was extracted from human CD4 and CD8-positive T cells
recovered from the spleens of hu-PBMC-NOG-spl mice sacrificed 14 days post infection, and then a fragment of the HTLV-1 pX region was
amplified. B-actin was used as a control. The lower limit of detection was one copy of HTLV-1 tax per 10* PBMCs. D. RT-PCR to confirm HTLV-1
infection. RNA was extracted from human CD4 and CD8-positive T cells recovered from the spleens of hu-PBMC-NOG-spl mice sacrificed
14 days post infection. cDNA was synthesized and amplified from HTLV-1 tax and the HBZ region as described previously [15]. GAPDH was used
as a control.

It is well known that viral gene transcription of HTLV-1
in vivo is suppressed in the PBMCs of most HTLV-1-
infected individuals [16]. To test whether this phenomenon
occurs even in hu-PBMC-NOG-spl mice, we examined
HTLV-1 transactivator Tax protein expression in fresh and
cultured human lymphocytes recovered from the spleens
of infected hu-PBMC-NOG-spl mice by FCM. Similar to
naturally HTLV-1-infected cells from healthy carriers and
HAM/TSP patients [16], the fresh human lymphocytes

recovered from the mouse spleens expressed very low
levels of Tax protein (Figure 2A, upper panel). However,
Tax expression was rapidly induced after short-term
(16 h) cultivation ex vivo (Figure 2A, lower panel). Fur-
thermore, these Tax-expressing CD4-positive cells were
more frequently positive for chemokine (C-C motif)
receptor 4 (CCR4) than Tax-negative CD4-positive cells
(Figure 2B), as previously reported in natural HTLV-1
infections [17,18]. However, although most of the CD4-
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Figure 2 Characteristics of HTLV-1-infected human T cells recovered from hu-PBMC-NOG-spl mice. Tax protein expression in human
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positive T cells recovered from mouse spleens were
infected with HTLV-1, the number of Tax positive cells
after ex vivo culture appeared to be small. This observa-
tion might be attributed to the culture conditions of this
experiment. Specifically, we cultured whole cells iso-
lated from the recipient mouse spleens, indicating the

mixed cultures of inoculated human PBMCs and mouse
cells including stromal cells. Recently, Kinpara et al.
reported that expression of HTLV-1 in HTLV-1-infected
T cells is markedly suppressed at both the mRNA and
protein levels upon co-culture of human cells and
mouse stromal cells, in part via the type I interferon
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(IFN) response [19]. It is therefore plausible that the
observed small number of Tax-expressing cells after
ex vivo culture is likely due to co-culture with mouse
stromal cells derived from the spleen. Meanwhile, we
observed that the percentage of Tax-expressing cells in
the same culture conditions varies from one patient to
another even in HAM/TSP patients with similar PVL
(Saito et al., unpublished data). Furthermore, the severely
immune-deficient NOG mice used in this study do not
have any acquired immune response against inoculated
HTLV-1 infected cells, such as HTLV-1-specific Abs,
helper T cells, and cytotoxic T lymphocytes. These obser-
vations suggest that not only culture conditions but also
cellular factors might be involved in the number of Tax-
expressing cells. It also needs to be clarified whether the
small number of Tax-expressing cells can be explained by
multiple infection of single cell. Further investigations of
such factors would be important for controlling HTLV-1
infection and disease development in vivo.

It is well established that the HTLV-1 virions are not
very infectious, and thus cell-to-cell transmission is more
efficient both in vivo and in vitro [20,21]. The surface
glycoproteins of HTLV-1, which are recognized by neu-
tralizing antibodies, play important roles in cell-to-cell
transmission [22,23]. Indeed, previous reports have indi-
cated that passive transfer of HTLV-1 Env-specific-
neutralizing antibodies is effective in preventing in vivo
infection in macaques [5,24] and rabbit [25,26] models.
However, these studies evaluated the in vivo transmis-
sion of HTLV-1 to non-human cells, which are more
resistant to HTLV-1 infection than human cells are. In
this study, we tested the protective efficacy of various
anti-HTLV-1 antibodies against HTLV-1 transmission
into human lymphocytes in vivo in the hu-PBMC-NOG-
spl mouse model. The mice immunized with the anti-
HTLV-1 gp46 neutralizing mAb (clone LAT-27) were
completely protected against HTLV-1 infection whereas
other non-neutralizing antibodies such as anti-gp46 mAb
(clone LAT-25), anti-Gag (clone GIN-7), anti-HCV (clone
MO-8), and anti-OX40 mAb (clone B-7B5) did not pro-
tect against infection (Figure 3A). The HTLV-1 proviral
DNA was not detected by quantitative real-time PCR in
the human lymphocytes recovered from hu-PBMC-NOG-
spl mice that received passive transfer of LAT-27, indicat-
ing that the neutralizing function is an essential factor in
preventing in vivo HTLV-1 transmission. Furthermore,
passive immunization with human polyclonal anti-HTLV-
1 IgG from HAM/TSP patients (HAM-IgG) can also pro-
tect against HTLV-1 infection in vivo, whereas human
immunoglobulin isolated from HTLV-1-negative donors
(NC-1gG) did not (Figure 3A). Consistent with the
results of the quantitative real-time PCR, FCM studies
also showed that the human CD4-positive cells recov-
ered from mouse spleens immunized with either
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LAT-27 or HAM-IgG, express only trace amounts of Tax
protein after short-term (16 h) cultivation ex vivo, which
may be the result of background false-positive staining. In
contrast, a significant amount of Tax protein was expressed
in human lymphocytes recovered from non-immunized
mouse spleens (PBS-injected) or mouse spleens immu-
nized with NC-IgG (Figure 3B). These results demonstrate
the requirement for the neutralizing function of the anti-
HTLV-1 antibody in preventing in vivo transmission. It is
noteworthy that neutralizing anti-Env gp46 clone LAT-27
and HAM-IgG completely blocked the in vivo transmis-
sion of HTLV-1 in human lymphocytes, even in the con-
ditions that permit the vigorous proliferation of human
lymphocytes that enables HTLV-1 to rapidly spread by
cell-to-cell contact. However, antibody injection only once
after PBMC transplantation did not block the HTLV-1
infection in vivo, suggesting that the pre-existing neutral-
izing anti-Env Abs are critical for preventing HTLV-1
infection (Additional file 3: Figure S2). This result also
suggests that in vivo transmission is established within
24 hours after transfer of HTLV-1-infected cells. Im-
portantly, although neutralizing Abs used in this study
displayed antibody-dependent cell-mediated cytotoxicity
(ADCC) activity in vitro in our previous study [27], such
neutralizing and ADCC activities of anti-Env Abs are not
crucial for the elimination of HTLV-1-infected cells once
HTLV-1 infection is established in vivo. Indeed, titers of
existing neutralizing and ADCC Abs did not correlate
with HTLV-1 PVL (i.e., numbers of HTLV-1-infected cells
in vivo) (Saito et al., unpublished data). Moreover, HAM/
TSP patients also showed high titers of such Abs, indi-
cating that these Abs are not potent in preventing the
onset of HAM/TSP in infected individuals. These data
also indicate the importance of passive immunization
before infection.

Recently, we reported that both LAT-27 and HAM-
IgG, but not non-neutralizing LAT-25 and NC-IgG, are
capable of depleting and/or eliminating HTLV-1-infected
cells in the presence of autologous PBMCs in vitro. This
occurs in part via ADCC, preventing the spontaneous
immortalization of T cells [27]. Thus, the neutralizing ac-
tivity is essential for preventing HTLV-1 infection as well
as malignant transformation. In the present study, al-
though non-neutralizing anti-Env gp46 {(clone LAT-25)
and anti-Gag p19 (clone GIN-7), as well as control anti-
bodies (anti-HCV clone MO-8, anti-OX40 clone B-7B5),
and normal human IgG (NC-IgG) did not completely
block the infection, we observed that non-neutralizing
LAT-25 mAb and anti-OX40 mAb decreased the number
of HTLV-1 infected cells to some extent (Figure 3A). Since
OX40 is a cell-surface molecule specifically expressed on
HTLV-1-infected and activated T cells [28], and LAT-25
recognizes the HTLV-1 Env protein, these data may
suggest a novel effect of IgG specifically reacting with a
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Figure 3 HTLV-1 infection in hu-PBMC-NOG-spl mice was completely inhibited by neutralizing, but not non-neutralizing, antibodies. In
vivo transmission of HTLV-1 and protective efficacy of various monoclonal antibodies was evaluated using quantitative real-time PCR analysis of
HTLV-1 proviral DNA. Genomic DNA was extracted from the human lymphocytes recovered from hu-PBMC-NOG-spl mice. A. All of the mice
immunized with neutralizing mAbs against Env (clone LAT-27) were completely protected against HTLV-1 infection, whereas non-neutralizing
mAbs against Env (clone LAT-25), anti-Gag (clone GIN-7), anti-HCV (clone MO-8), or anti-OX40 mAb (clone B-7B5) did not protect against infection.
The mice immunized with human immunoglobulin isolated from HAM/TSP patients (HAM-IgG) were also protected against HTLV-1 infection,
whereas human IgG isolated from normal uninfected controls (NC-IgG) did not protect against infection. Results are shown as mean = SE. To test
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test. The lower limit of detection was one copy of HTLV-1 tax per 10° PBMCs. B. Flow cytometric studies indicated that the human lymphocytes
recovered from mouse spleens immunized with anti-Env neutralizing mAbs or HAM-IgG express only a trace amount of Tax protein after
short-term (16 h) cultivation ex vivo, which may be a background false-positive staining artifact. In contrast, a significant amount of Tax protein
was expressed in human lymphocytes recovered from non-immunized mouse spleens (PBS-injected) or mouse spleens immunized with NC-IgG.
The numbers represent the percentage of the cell population within the HLA-class I-positive/CD4-positive gate.

number of membrane receptors on HTLV-1-infected and/  of action of injected IVIg is not fully understood, several
or activated T cells in vivo. As shown in Figure 3A, human  pathophysiological mechanisms such as suppression of
IgGs isolated from uninfected people also suppressed the idiotypic antibodies, saturation of Fc receptors on mac-
PVL, indicating that the administered non-specific IgGs  rophages, modulation of complement activation, and
also can help to eliminate the inoculated HTLV-1-infected  suppression of various immunomodulators such as cy-
cells (ie, ILT-M1 cells). It is well established that the tokines, chemokines, and metalloproteinases have been
intravenous immunoglobulins (IVIg) therapy is effective in  proposed [29]. It is therefore possible that the adminis-
various diseases including autoimmune diseases and life-  tered non-specific immunoglobulin in our mouse model
threatening infections. Although the precise mechanism  also can help to eliminate the inoculated HTLV-1-infected
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cells (i.e. ILT-M1 cells) via unknown mechanisms, result-
ing in a decreased efficiency of in vivo infection.

In conclusion, we have established a novel and simple
small animal model to study primary HTLV-1 infection
in vivo. Although our mouse model is not the animal
models of HAM/TSP or ATL, the present study has
demonstrated an important rational basis for passive
immunization against HTLV-1 infection in humans.
Using our mouse model, in vivo evaluation of the
efficacy of drug candidates could also be investigated in
future studies.

Additional files

Additional file 1: Table S1. Sequences flanking the integration site of
HTLV-1 provirus in ILT-M1 cell and primer sequences used for integration
site-specific PCR.

Additional file 2: Figure S1. To rule out the possible contamination

of residual ILT-M1 cells, inverse PCR amplification was carried out to
determine the sequences adjacent to HTLV-1 LTRs (both 3'- and 5-LTR)
using the DNA extracted from ILT-M1 cells, as previously described [13].
Then, integration site-specific PCR was carried out using primer pairs that
encompass HTLV-1 LTRs (both 3’ and 5" LTR) and flanking host sequences
(Additional file 1: Table S1). As shown, no integration site specific bands
were observed except for ILT-M1 cells, suggesting that the possible
contamination of HTLV-1 genome derived from the residual ILT-M1 cells
is unlikely.

Additional file 3: Figure S2. Flow cytometric studies showed that the
human lymphocytes recovered from mouse spleens express the amount
of Tax protein after short-term (16 h) cultivation ex vivo, indicating that
the neutralizing anti-Env Ab (clone LAT-27) injection once after PBMC
transplantation did not block the in vivo transmission of HTLV-1.
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Supplemental Table 1

Sequences flanking the integration site of HTLV-1 provirus in ILT-M1 cell and primer sequences used for

integration site-specific PCR.

5'-genomic region 5-LTR

3-LTR 3’-genomic region

TGCTTTGTCATCTGTGCGTTCAGTTCATGACAATGACCATGAGCCCCAAATATC

TCCAGGAGAGAAACTTAGTACACAAGTTCACAGAGTTTCACCTTTCTCTTCA

Forward Primer for the 5'-genomic region ~ Reverse Primer for the 5-LTR

Forward Primer for the 3-LTR Reverse Primer for the 3’-genomic region

5-TGCAGATTTCAAGCGCTTCTAGG-3' 5-TTAGTCTGGGCCCTGACCTTTTCA-3

5-CAACTCTACGTCTTTGTTTCGT-3 5-GTAAATGAGAAATCCCGCTTCCA-3

Flanking sequences of 5’- and 3'-LTR were determined by inverse-PCR.

HTLV-1 proviral sequences are shown in boldface.
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To rule out the possible contamination of residual ILT-M1 cells, inverse PCR amplification was carried
out to determine the sequences adjacent to HTLV-1 LTRs (both 3'- and 5"-LTR) using the DNA
extracted from ILT-M1 cells, as previously described [13]. Then, integration site-specific PCR was
carried out using primer pairs that encompass HTLV-1 LTRs (both 3" and 5’ LTR) and flanking host
sequences (Additional file 1: Table S1). As shown, no integration site specific bands were observed
except for ILT-M1 cells, suggesting that the possible contamination of HTLV-1 genome derived from the
residual ILT-M1 cells is unlikely.
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Flow cytometric studies showed that the human lymphocytes recovered from mouse
spleens express the amount of Tax protein after short-term (16 h) cultivation ex vivo,
indicating that the neutralizing anti-Env Ab (clone LAT-27) injection once after PBMC
transplantation did not block the in vivo transmission of HTLV-1.
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Human T-cell leukemia virus type 1 (HTLV-1) is a delta-type ret-
rovirus that induces malignant and inflammatory diseases during
its long persistence in vivo. HTLV-1 can infect various kinds of cells;
however, HTLV-1 provirus is predominantly found in peripheral
CDA4 T cells in vivo. Here we find that TCF1 and LEF1, two Wnt
transcription factors that are specifically expressed in T cells, inhibit
viral replication through antagonizing Tax functions. TCF1 and
LEF1 can each interact with Tax and inhibit Tax-dependent viral
expression and activation of NF-xB and AP-1. As a result, HTLV-1
replication is suppressed in the presence of either TCF1 or LEF1. On
the other hand, T-cell activation suppresses the expression of both
TCF1 and LEF1, and this suppression enables Tax to function as an
activator. We analyzed the thymus of a simian T-cell leukemia
virus type 1 (STLV-1) infected Japanese macaque, and found a neg-
ative correlation between proviral load and TCF1/LEF1 expression
in various T-cell subsets, supporting the idea that TCF1 and LEF1
negatively regulate HTLV-1 replication and the proliferation of
infected cells. Thus, this study identified TCF1 and LEF1 as Tax
antagonistic factors in vivo, a fact which may critically influence
the peripheral T-cell tropism of this virus.

HTLV-1 | Tax | TCF1 | LEF1

uman T-cell leukemia virus type 1 (HTLV-1) causes a ma-
lignancy named adult T-cell leukemia (ATL) and several
inflammatory diseases including HTLV-1-associated myelopathy/
tropical spastic paraparesis (HAM/TSP) (1, 2). HTLV-1 encodes
a critical transactivator, Tax, that induces the activation and sub-
sequent clonal expansion of infected T cells in vivo (2, 3). Tax is
transcribed from the viral promoter 5’ long terminal repeat
(LTR), where it further enhances HTLV-1 viral transcription by
recruiting cellular CREB protein to Tax-responsive elements
(TRE). However, Tax expression is frequently silenced in ATL
cells due to genetic and epigenetic changes in the viral 5 LTR and
the tax gene (4-7), a possible consequence of host immune sur-
veillance (8). On the other hand, the viral 3’ LTR remains intact
and is responsible for consistent expression of the HTLV-1 bZIP
factor (HBZ), a negative strand encoded accessory gene, in all
ATL cells (9).
T-cell factor 1 (TCF1) and lymphoid-enhancer binding factor
1 (LEF1) are transcription factors of the Wnt pathway that bind
to B-catenin to coactivate the downstream cascade (10, 11). They
are predominantly expressed in T-lineage cells, with immature
thymocytes having the highest expression (12). Thymocyte de-
velopment was impaired in TCF1 knockout mice (13). Although
LEF1 knockout did not significantly affect T-cell development,
deficiency in both TCF1 and LEF1 resulted in a complete block
at the immature single positive stage, indicating a functional
redundancy of TCF1/LEF1 and their indispensible role in driving
T-cell development (14). In contrast, their functions in periph-
eral T cells remain poorly characterized although a quite dif-
ferent role has been suggested due to their reduced expression
upon T-cell receptor (TCR) engagement in CD8 T cells (15).
HTLV-1 is peripheral mature T-cell tropic. However, the
mechanism of this tropism remains to be elucidated. Here we

2216-2221 | PNAS | February 17,2015 | vol. 112 | no.7

find that TCF1 and LEF1 are T-cell intrinsic factors that sup-
press HTLV-1 replication via antagonizing Tax. They interact
with Tax and suppress its transactivating abilities. As a result,
viral transcription and replication are greatly suppressed by ei-
ther TCF1 or LEF]I, resulting in selective viral replication in
TCF1/LEF1 low-expressing T cells. At the same time, Tax is able
to down-regulate TCF1/LEF1 by inducing STATS5a expression.
We further demonstrate that thymocytes from a simian T-cell
leukemia virus type 1 (STLV-1) infected Japanese macaque have
low viral abundance and low 5 LTR activity, negatively corre-
lating with their high expression of TCF1 and LEF1.

Results

TCF1/LEF1 Are Expressed at Low Levels in HTLV-1-Infected T Cells.
Previously we reported that HBZ impaired the DNA-binding
ability of TCF1/LEF1 and thereby suppressed the canonical Wnt
pathway, shaping an HTLV-1 favorable host environment (16).
Interestingly, upon further study, we found that TCF1 and LEF1
mRNA and protein levels were invariably low in HTLV-1-
infected cell lines, in contrast to most HTLV-1-negative T-cell
lines except Kit225 (Fig. 1 4 and B). Fresh ATL cells exhibited
reduced expression of TCF1 and LEF1 compared with CD4
T cells from a healthy donor (Fig. 1C). Moreover, by analyzing
microarray data of HTLV-1-infected individuals including asymp-
tomatic carriers (AC), HAM/TSP, and ATL patients (GSE19080
and GSE33615), we observed similar down-regulation of TCF1 and
LEF1 (Fig. S1 A and B).
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Fig. 1. TCF1 and LEF1 are expressed at low levels in HTLV-1-infected T cells.
(A) TCF1 and LEF1 mRNA expression is invariably low in HTLV-1-infected cell
lines. Total RNA was extracted for each cell line and subjected to quantitative
real-time PCR (gPCR) analysis. Results are shown as relative mRNA expression
of TCF1 or LEF1 normalized to that of 18S rRNA. (B) TCF1 and LEF1 protein
expression of cell lines used in A. a-tubulin expression was used as a control.
(C) TCF1 and LEF1 mRNA expression is lower in fresh ATL cases. Peripheral CD4
T cells from a healthy donor (HD) and four ATL patients were subjected to RNA
extraction and following gPCR analysis. Results are shown as relative mRNA
expression of TCF1 or LEF1 normalized to that of 185 rRNA. “Fold exp.” indi-
cates fold expression of normalized mRNA level of TCF1 or LEF1.

TCF1 and LEF1 Interact with Tax and Impair its Transactivating Ability.
TCF family members have been recently reported to inhibit HIV
type 1 (HIV-1) basal transcription (17). Therefore, we analyzed
effects of TCF1 and LEF1 on transcription from the HTLV-1
LTR. As observed in HIV-1, we found that Tax-mediated acti-
vation of WT-Luc, which contains five tandem repeats of the
TRE from HTLV-1 5’ LTR, was inhibited by TCF1 or LEF1
(Fig. 24). Moreover, activation of the NFxB and AP1 pathways
by Tax was also suppressed by TCF1 or LEF1 (Fig. 24). Neither
the activator of the Wnt pathway p-catenin nor the inhibitor
Axin2 had such effects (Fig. S24), indicating that the effects of
TCF1 and LEF1 were mediated in a Wnt-independent manner.
Furthermore, neither TCF1 nor LEF1 could inhibit the activa-
tion of these reporters by other transcription factors (Fig. S2B),
suggesting that TCF1 and LEF1 specifically impair Tax function.
We performed coimmunoprecipitation (co-IP) and found that
TCF1 and LEF1 could each associate physically with Tax in vivo
(Fig. 2B). Using a series of deletion mutants of Tax, we found
that TCF1 and LEF1 predominantly bound to the C-terminal
region of Tax (Fig. S2C). The PDZ-binding motif (PBM) is
known to be localized in the C-terminal end of Tax (3). We
found that removal of the PBM greatly impaired Tax binding to
TCF1 or LEF1 (Fig. 2C), indicating that the PBM of Tax is
critical for its binding with TCF1/LEF1. However, Tax bound
to distinct regions of TCF1 and LEF1. The central regulation
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domain of TCF1 was indispensable for binding to Tax whereas
all three domains were required for LEF1 to bind to Tax prop-
erly (Fig. S34). Reporter assays with WT-Luc also functionally
verified this result (Fig. S3B).

Nevertheless, due to their broad-spectrum antagonism of Tax,
we suspected TCF1 and LEF1 might competitively bind to Tax
over other host factors that are hijacked by Tax for trans-
activation of the viral LTR. CREB is recruited by Tax for its
activation of the HTLV-1 5 LTR (3). We found that TCF1 or
LEF1 dose-dependently displaced CREB from Tax (Fig. 2D),
which suggests that TCF1 and LEF1 each hinder the interaction
between Tax and CREB. Thus, these data demonstrate that
TCF1 and LEF1 are Tax antagonists that likely execute their
inhibition via direct interaction with Tax.

TCF1 and LEF1 Inhibit HTLV-1 Replication by Antagonizing Tax. Next
we examined the biological effects of this antagonism on Tax.
HTLV-1 replication depends on Tax-driven transcription from
the 5’ LTR. To address whether TCF1 and LEF1 are detrimental
to HTLV-1 replication, we used an infectious clone of HTLV-1,
pXIMT-M (18). HTLV-1 virus production measured by pl19
ELISA was inhibited by TCF1 or LEF1 in a dose-dependent
manner (Fig. 34). Furthermore, expression of viral proteins that
rely on Tax, such as gp46, p19, p24, and even Tax itself, was
suppressed by TCF1 or LEF1 (Fig. 34). We also found that
endogenous TCF1 or LEFI is also able to suppress HTLV-1
replication (Fig. S4).

On the other hand, HBZ transcription, which is initiated from
viral 3' LTR and slightly enhanced by Tax (19), was not sup-
pressed but rather enhanced by TCF1 or LEF1 (Fig. 3B), in
sharp contrast to Tax (Fig. 3B). To see whether this was asso-
ciated with differential regulation of the HTLV-1 5" and 3' LTRs
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Fig. 2. TCF1 and LEF1 each interact with Tax and impair its transactivating
ability. (A) TCF1 and LEF1 each repress Tax-mediated activation of WT-Luc (Top),
NFxB-Luc (Middle), and AP1-Luc (Bottom). Reporter assays were performed in
Jurkat cells. (B) Physical interactions between TCF1 and Tax (Upper), and LEF1
and Tax (Lower). (C) A APBM mutant of Tax has impaired binding to TCF1
(Upper) and LEF1 (Lower) compared with WT Tax. (D) Physical interactions
between Tax and CREB are inhibited by TCF1 or LEF1 in a dose-dependent
manner. Tax-specific bands are denoted with an asterisk. All immunoprecipi-
tations were performed in 293FT cells. “Ls” indicates the whole cell lysate.
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