Swoboda et al., 2009; Tiziano et al., 2010; Kissel et al., 2011).
However, all clinical trials reported so far failed to show
significant effectiveness of the therapeutic approaches, which
may indicate the difficulties of designing clinical trials for this
disorder. An adequate design should take into account the
rarity of the patients, clinical disease heterogeneity (subtypes,
onset age, sex, stage of disease progress, timing of enrollment,
and intervention relative to disease progression), treatment
plans (selection of the drug with possible ameliorating effects
on the clinical symptoms, sufficient dose, and duration to see
some measurable effects) and outcome measures [laboratory
biomarkers including SMN transcript and SMN protein
amounts, muscle mass and strength, motor function testing,
respiratory function testing, MUNE, questionnaires for
quality of life (QOL)] (Swoboda et al., 2007; Kissel et al.,
2011). Clinical endpoints, i.e., the target outcome of the
clinical trials: such as extension of the survival period in the
patients with SMA type 1 (which will be discussed again
below), improvement of motor function in the patients with
SMA type 2, and extension of the walking period in the
patients with SMA type 3, need to be specified. However,
great subtlety may be required for the accurate evaluation
of these outcomes. Even if a therapeutic approach could
ameliorate the symptoms in some patients, these outcomes
may not be detected if the trials are not adequately designed.

To address the challenges due to the rarity of SMA,
Mercuri’s group (2012) called for clinical trials to be carried
out as large multicenter international trials. Such large-scale
collaborations would increase the numbers of patients
enrolled and would enable randomized placebo studies to be
carried out. This approach could also overcome the problems
due to clinical heterogeneity as a stratification method
could be used to provide a fair evaluation of the treatments
(Mercuri et al., 2012).

The selection of appropriate outcome measures to test the
efficacy of a therapy remains one of the most difficult prob-
lems to be resolved. As for laboratory biomarkers, only SMN
transcript or SMIN protein levels have been established. How-
ever, determination of SMN transcript or SMN protein levels
may not be enough, because these cannot be used to eval-
uate treatments targeting biochemical reactions downstream
of SMN-related signaling (Crawford et al., 2012). Recently,
metabolomics studies have suggested that some proteins and
metabolites can be used as laboratory biomarkers to reflect re-
sponsiveness to treatment (Finkel et al., 2012). Further studies
are still required for future clinical usage.

The Hammersmith Functional Motor Scale (HFMS) (Main
et al., 2003), Modified HEMS (MHEMS) (Krosschell et al.,
2006), and gross motor function measure (GMFM) (Nelson
et al., 2006) have been established as standard measures of
functional ability in children with SMA types 2 and 3 for
use in longitudinal multicenter clinical trials. The Children’s
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Hospital of Philadelphia Infant Test of Neuromuscular Disor-
ders (CHOP INTEND) may also be used for the evaluation
of children with SMA type 1 (Glanzman et al., 2010). How-
ever, it is difficult to evaluate the actual change in motor
scales in SMA patients with any motor function measure-
ments. Thus, it is necessary for investigators in multicenter
networks to share the test skills and scoring criteria in order
to improve inter-rater reliability and objectivity. For that pur-
pose, training of test skills and collaboration in the scoring
criteria should be implemented across centers with different
expertise (Mercuri et al., 2012).

In an SMA mouse model, extension of lifespan has been
considered to reflect the effectiveness of therapeutic ap-
proaches. However, lifespan cannot be simply applied to
evaluate the therapeutic approaches in human SMA patients
because not only the administered therapy, but the type of
supportive care including respiratory management can also
change the lifespan of patients. In addition, the use of an
artificial respirator in SMA type 1 management is still contro-
versial. Such differences in clinical care may hamper simple
comparison using lifespan outcomes in international clini~
cal trials. The occurrence of death and the requirement for
an artificial respirator may be considered as equivalent events
when evaluating the efficacy of clinical trials in patients with
SMA type 1 because improvement of motor scale cannot be
expected from these patients (Oskoui et al., 2007; Mercuri
et al., 2012). Currently, using lifespan as the only available
outcome measure, is not ideal anymore. If it is possible to
measure improvements in respiratory function or restoration
of motor function, alternative outcome measures for SMA
type 1 may become achievable. Highly effective therapies
which will improve motor scale of patients with SMA type 1
can then be sought.

Conclusions

SMA is an incurable motor neuron disease with autosomal
recessive inheritance. Molecular biology studies of SMA have
been greatly advanced in two directions, namely diagnostic
applications and pathophysiological studies, since the discov-
ery of the SMN genes in 1995. Molecular diagnostics has
enabled us not only to diagnose SMA in patients, but has
also provided the ability to carry out carrier and newborn
screening of SMA for populations. Pathophysiological studies
have provided an improved understanding of the underly-
ing pathogenesis of SMA, including alternative splicing of
SMN?2, aberrant splicing due to the defect of snRNPs, im-
pairment of motor circuit formation and/or NMJ develop-
ment, and dysregulation of cytoskeleton dynamics. To date,
there has been no successful therapy for SMA, but an in-depth
understanding of the pathophysiology underlying the disease
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can offer useful insights for development of effective treat-
ment approaches. Some therapeutic strategies have already
been devised based on current pathophysiological knowledge
of the disease, namely SMN2-targeting, SMNI-introduction
and non-SMN targeting strategies. With multiple approaches
in therapeutic strategies for SMA being pursued, some of
which are already in clinical trials, it is expected that some
candidate compounds may emerge as potential therapeu-
tic agents in the near future. These exciting developments
offer promising outcomes for SMA patients in overcoming
this debilitating disease.
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Abstract

Background: Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by deletion or intragenic
mutation of SMNI. SMA is classified into several subtypes based on clinical severity. It has been reported that the copy number of
SMN2, a highly homologous gene to SMNI, is associated with clinical severity among SMA patients with homozygous deletion of
SMNI. The purpose of this study was to clarify the genotype-phenotype relationship among the patients without homozygous dele-
tion of SMNI. Methods: We performed molecular genetic analyses of SMNI and SMN2 in 112 Japanese patients diagnosed as hav-
ing SMA based on the clinical findings. For the patients retaining SMNI, the PCR or RT-PCR products of SMNI were sequenced
to identify the mutation. Resuits: Out of the 112 patients, 106 patients were homozygous for deletion of SMNI, and six patients were
compound heterozygous for deletion of one SMNI allele and intragenic mutation in the retained SMNI allele. Four intragenic
mutations were identified in the six patients: p.Ala2Val, p.Trp92Ser, p.Thr274TyrfsX32 and p.Tyr277Cys. To the best of our knowl-
edge, all mutations except p.Trp92Ser were novel mutations which had never been previously reported. According to our observa-
tion, clinical severity of the six patients was determined by the type and location of the mutation rather than SMN2 copy number.
Conclusion: SMN2 copy number is not always associated with clinical severity of SMA patients, especially SMA patients retaining
one SMNI allele.
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1. Introduction

Spinal muscular atrophy (SMA) is a common neuro-
muscular disease characterized by degeneration of lower
motor neurons, leading to the axial and limb weakness
associated with muscle atrophy. The incidence of the
disease has been estimated at 1 in 10,000 newborns, with
an expected carrier frequency of 1 in 50 [1]. Based on
molecular epidemiological analysis using SMNI copy
number, the worldwide carrier frequency of SMA is
1 in 40-70, suggesting a disease incidence of 1 in
6000-20,000 [2].

SMA is classified into four subtypes depending on the
age of disease onset and the achievement of motor mile-
stones [3]: namely, type 1 (severe form; onset age of
0-6 months old, unable to sit unaided), type 2 (interme-
diate form; onset age of <18 months old, unable to
stand or walk unaided), type 3 (mild form; onset age
of >18 months old, able to stand or walk unaided),
and type 4 (milder form; onset age of >21 years old, able
to stand or walk unaided).

All SMA subtypes have been mapped to chromo-
somal region 5q11.2-13.3 [4-7] and the survival motor
neuron gene (SMN) and neuronal apoptosis-inhibitory
protein gene (NAIP) were cloned as SMA-causing gene
candidates [8,9]. The SMN gene exists as two highly
homologous copies, SMNI (the telomeric copy) and
SMN?2 (the centromeric copy) [8]. It is now established
that SMA is caused by deletions or intragenic mutations
of SMNI. SMNI is homozygously deleted in more than
90% of SMA patients [8,10], and deleteriously mutated
in the remaining patients [8,11]. On the other hand,
NAIP-deletion has been found only in 50% of type 1
patients, and much less frequently in type 2 and 3
patients. The presence or absence of NAIP may be asso-
ciated with the clinical severity of SMA [9,10].

Increased SMN2 copy number is related to improved
survival outcomes and maintenance of motor function
[12-16]. Both SMN genes, SMNI and SMN2, differ by
only five nucleotides [§]. Of the five nucleotide differ-
ences between the two SMN genes, only one is present
in the coding region at position +6 of exon 7 in
SMNI (c.840C) and SMN2 (c.840T). Although this
mutation is translationally silent, the C-to-T transition
alters the splicing pattern in SMN2 exon 7 [17]. SMNI
exclusively produces full-length (FL) SMNI transcripts,
while SMN2 produces ~90% of exon7-lacking (A7)
SMN?2 transcripts and ~10% of FL-SMNZ2 transcripts
[18]. It is expected that high SMN2 copy number may

produce a large amount of FL-SMN2 to compensate
for the loss of SMNI to some degree.

However, most phenotype-genotype correlation stud-
ies have been conducted only in SMA patients with a
complete loss of SMNI. The relationship between
SMN?2 copy number and clinical severity are yet to be
clarified in SMA patients retaining one SMNI allele.
In this study, to understand the modifying factors in
determining the clinical phenotype of SMA patients
retaining one SMNI allele, we conducted a mutation
analysis and investigated the contribution of SMN2
copy number to the clinical severity in such patients.

2. Patients and methods
2.1. Patients

All 112 Japanese patients (51 males and 61 females)
fulfilled the diagnostic criteria defined by the Interna-
tional SMA Consortium [19]. Here, patients with onset
before 20 years old was classified into type 3, and those
with onset after 21 years old was classified into type 4
[3]. Informed consent was obtained from these patients
and/or their parents. This study project including
genetic analysis was approved by the Ethical Committee
of the Kobe University Graduate School of Medicine,
Japan.

In this study, six patients (Patients 1-6) retaining one
allele of SMNI exon 7, were found to carry intragenic
mutations in SMNI. Patients 1 (female) and 2 (male)
were type | patients reported previously to have one
SMNTI allele [20]. Patient 3 was a 19-day-old male with
SMA type 1, referred to us because of respiratory
insufficiency and swallowing difficulties. Patient 4 was
a 7-year-old female with type 2 SMA. She was first diag-
nosed as having SMA type 2 close to type 3 because she
could sit unaided and stand while holding onto some-
thing (such as a wall or table) for support. However,
she rapidly lost such abilities at 2 years old. Finally,
she was bound to artificial ventilator because of respira-
tory insufficiency at 3 years old. Patient 5 was a 13-year-
old male with type 3 SMA, who had pain and heaviness
in legs during exercise since the age of 11 years. He later
developed symptoms including waddling gait, muscle
weakness and atrophy in quadriceps, and attenuated
patellar tendon reflex. Patient 6 was a 19-year-old
female with type 3 SMA, who had noticed muscle weak-
ness during swimming exercise at the age of 13 years.
She gradually lost her running ability and could no
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longer run as fast as the other classmates in her high
school days.

2.2. SMN and NAIP deletion test

Genomic DNA was extracted from 3 ml of whole
blood using a DNA extraction kit, SepaGene (Sanko
Junyaku, Tokyo, Japan). For the SMN and NAIP dele-
tion test, PCR and enzyme digestion reactions were per-
formed according to the method of van der Steege et al,
[21]. Exon 5 of the NAIP gene was detected using the
PCR method of Roy et al. [9]. Here we adopted “exon
5” as a widely accepted exon number, although this exon
has been denoted as “exon 4” by Chen et al. {22].

2.3. Copy number analysis of the SMN genes using real
time PCR method

We determined the copy numbers of the SMN genes
based on the real-time PCR method of Tran et al. [23].
Cystic fibrosis trans-membrane regulator gene (CFTR
gene) was used as a reference gene for the relative quan-
tification of copy numbers.

2.4. Messenger RNA analysis

For the assignment of the mutation to SMNI or
SMN2, mRNA analysis was performed. Total RNA
was extracted from leukocytes using the acid guani-
diumthiocyanate-phenol-chloroform method. SMNI
and SMN2 mRNA species were amplified by reverse
transcriptase (RT)-PCR method [16,24]. A new primer,
ex1-F (5-TGC GCA CCC GCG GGT TTG CT-3)),
was designed for this study. The mRNA species encom-
passing exons 1-8 were amplified using primers ex1-F
and 541C1120 [8], and the mRNA species encompassing
exons 1-7 were amplified using primers exl-F and
541C770 [8].

2.5. Nucleotide sequencing

The amplified PCR or RT-PCR products of SMN
exons were purified and sequenced directly or after sub-
cloning. The sequencing reaction was performed using a
dye terminator cycle-sequencing kit (Life Technologies
Corporation, Carlsbad, CA). The reaction product was
electrophoresed on an ABI PRISM® 310 Genetic Ana-
lyzer (Life Technologies Corporation, Carlsbad, CA).

2.6. Computational algorithms

We predicted the mutation effects on the protein func-
tion using three computational algorithms: Sorting Intol-
erant from Tolerant amino acid substitutions (SIFT) [25],
Polymorphism Phenotyping-2 (PolyPhen-2) [26], and
Grantham score difference (Align-GVGD) [27].

2.7. Statistics

The correlation of copy number of SMN2 with the
clinical subtypes was compared by chi-square test and
t-test. P-value of less than 0.05 was considered to indi-
cate a significant difference. The software used for statis-
tical analysis was Statistical Program for Social Science
(SPSS) Version 16 (IBM Corporation, Paulo Alto, US).

3. Results
3.1. SMNI and NAIP deletion test

SMNI exon 7-deletion (herein after referred to as
SMNI-deletion) was found in almost all SMA patients,
regardless of clinical subtypes: 106 out of 112 (95%)
patients with SMA in this study had SMNI-deletion
and 6 patients (5%) had subtle mutations in SMNI.
Out of 106 SMN/-deleted patients, 48 (45%) were type
1, 35 (33%) were type 2, 19 (18%) were type 3, and 4
(4%) were type 4 (Table 1).

In our study, 96 of 106 (91%) SMNI-deleted patients
had deletion of SMNI exon 8. However, the other 10
patients (9.0%) retained SMNI exon 8. We confirmed
that these patients had at least one copy of the hybrid
gene with SMN2 exon 7 and SMNI exon § using direct
sequencing analysis of the PCR fragment amplified with
the common primers for SMNI and SMN2.

NAIP exon S5-deletion (herein after referred to as
NAIP-deletion) was always accompanied by SMNI-
deletion (Table 1). In addition, NAIP-deletion was much
more frequent in SMA type 1 than SMA non-type 1.
NAIP-deletion was found in 29 out of 48 (60%) patients
with SMNI-deleted SMA type 1, while it was found in
only 8 out of 58 (14%) patients with SMNI-deleted
SMA types 2, 3 and 4.

3.2. SMN2 copy number and clinical severity in patients
with SMNI-deletion

We determined the SMN2 copy numbers of all the
patients enrolled in this study using the real-time PCR
method. For the analysis of SMN2 copy number and
clinical severity, the“SMN2 exon 7-SMNI/ exon 8§
hybrid” gene is regarded as SMN2.

A significant relationship between SMN2 copy
number and clinical severity was observed in this
study (Table 2). 38 out of 48 (79%) patients with
SMNI-deleted SMA type 1 showed one copy or two
copies of SMN2, 34 out of 35 (97%) patients with
SMNI-deleted SMA type 2 showed three copies of
SMN2, 18 out of 19 (95%) patients with SMNI-deleted
SMA type 3 showed three or four copies of SMN2, and
3 out of 4 (75%) patients with SMNI-deleted SMA type
4 showed four copies of SMN2.



mutations,  p.Ala2Val, p.Thr274TyrfsX32  and
p.Tyr277Cys, are novel ones which have never been pre-
viously reported.

We predicted the effect of the missense mutations on
the protein function using three computational algo-
rithms: SIFT [25], PolyPhen-2 {26], and Align-GVGD
[27]. All three types of missense mutation were predicted
to damage the protein function.

Interestingly, the observed phenotype of patients car-
rying an intragenic mutation deviated from the expected
correlations with the SMN2 copy number (Table 3 and
Fig. 1): type 3 patients with p.Ala2Val (Patients 5 and 6)
carried only a single copy of SMN2, while type 1
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Table 1
SMNI and NAIP deletion test (n = 112).
SMNI NAIP Type 1 Type 2 Type 3 Type 4 Total
Exon 7 Exon § Exon 5
Del Del Del 29 6 1 1 37
Del Del Non-del 17 24 15 3 59
Del Non-del Non-del 2 5 3 0 10
Non-del Non-del Non-del 3 I 2 0 6
Total 51 36 21 4 112
Table 2
Clinical severity and SMN2 copy number in patients with homozygous SMNI-deletion (rn = 106).
1 copy 2 copies 3 copies 4 copies Mean (SD)
Type 1 1 37 10 0 2.18 (0.44)
Type 2 0 1 34 0 2.97 (0.17)
Type 3 0 1 13 5 3.18 (0.51)
Type 4 0 0 1 3 3.80 (0.40)
Total 1 39 58 8
Table 3
Clinical severity and SMN2 copy number in patients retaining one SMNI allele (n = 6).
Sex Onset Type  SMN2 copy number  Nucleotide change (exon)  Amino acid change  Domain References
Patient 1 F Sm 1 3 ¢.275 G > C (exon 3) p.Trp92Ser Tudor [20]
Patient 2 M 6m 1 3 ¢.275 G > C (exon 3) p.Trp92Ser Tudor [20]
Patient 3 M Om 1 2 ¢.819_820 insT (exon 6) p.Thr274Tyr fsX32  C-terminal  This study
Patient 4 F 12m 2 1 ¢.830 A> G (exon 6) p-Tyr277Cys C-terminal  This study
Patient 5 M 11y 3 1 ¢.5C>T (exon 1) p.-Ala2Val N-terminal ~ This study
Patient 6 F 13y 3 1 ¢.5C>T (exon 1) p.Ala2Val N-terminal ~ This study
3.3. SMN2 copy number and clinical severity in patients .
retaining one SMNI allele
35 BType 1|
In this study, we identified four different intragenic ; BType 2
mutations in SMNI of six patients without SMNI-dele- OType 3
tion (Patients 1-6) (Table 3). All of them were com- 2.5 OType 4.
pound heterozygous for deletion of one SMNI allele , o EEmill] |
and an intragenic point mutation of the other SMNI
allele. The intragenic mutations included three missense 15 -
mutations and one frame-shift mutation: c¢. 5C>T 1
(p.Ala2Val) in exon 1, c. 275G > C (p.Trp92Ser) in exon
3, ¢.819_820insT (p.Thr274TyrfsX32) in exon 6, and 05 ~—fmmmmal] [ nny
c.830 A>G (p.Tyr277Cys) in exon 6. Three of the 0 -

SMA patients with SMN1-
deletion (n=106)

SMA patients retaining one
SMN1 allele (n=6)

Fig. 1. Mean SMN2 copy numbers in SMA patients. Patients with
SMNI-deletion (n=106) carried zero copies of SMNI. Patients
retaining one SMNI allele (n = 6) which harbored intragenic muta-
tions: p.Ala2Val, p.Trp92Ser, p.Thr274TyrfsX32 and p.Tyr277Cys.

patients with p.Trp92Ser (Patients 1 and 2) carried as
many as 3 copies of SMN2. These findings suggested
that intragenic mutations in SMNI influence the clinical
phenotype more significantly than SMN2 copy numbers
in some patients.
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4. Discussion

The identification of intragenic mutations, especially
missense mutations, may help us to further elucidate
the function of SMN and the pathogenic mechanism
of SMA. In this study, we identified four different intra-
genic SMNI mutations in six SMA patients without
SMNI-deletion. These intragenic mutations were
p-Ala2val, p.Trp92Ser, p.Thr274TyrfsX32, and
p. Tyr277Cys.

The p.Ala2Val mutation, which is located in the
N-terminal domain, has never been reported until
now. Our two patients with p.Ala2Val were unrelated.
However, another mutation in the same location,
p.Ala2Gly, has previously been reported in three SMA
patients; these patients were also unrelated individuals,
but had the possibility of sharing an ancestral origin
[28]. All patients with p.Ala2Gly carried only one
SMN?2 copy, and two of them showed mild phenotype
(type 3). The mutation effect of p.Ala2Val, as well as
p.Ala2Gly, may be much less deleterious than other mis-
sense mutations identified in this study. However,
SMN2 may not be dispensable in these patients. The
mild SMA mutation, p.Ala2Gly, by itself cannot rescue
Smn~/~ mice, suggesting that homomer of the mutant
SMN is not functional [29]. According to the Workman
et al. [30], the heteromer of mutant SMN and FL-SMN
from a single copy of SMN2 must have some function.

We previously reported the p.Trp92Ser mutation in
two unrelated patients [20]. This mutation is located in
the Tudor domain to which other proteins bind. [31].
Many of them are involved in small nuclear ribonucleo-
protein (snRNP) biogenesis. SMN Tudor domain pref-
erentially binds symmetric dimethylated arginine
(sDMA) of Sm proteins which constitute Sm core of
snRNP [32]. We have already reported that the binding
ability of the mutated SMN with p.Trp92Ser to SmB
and fibrillarin was reduced to half of normal levels
[20]. Most recently, Tripsianes et al. [33] examined the
relationship between mutated Tudor domain and the
binding capacity to sDMA in vitro. According to them,
p-Trp92Ser mutant was unfolded, as judged by finger-
print NMR spectra analysis, and did not bind sDMA
[33)

The p.Thr274TyrfsX32 mutation is a frameshift
mutation arising from a single nucleotide insertion in
exon 6 and results in a truncated SMN protein lacking
the C-terminal domain of SMN. A new isoform of
SMN, axonal SMN (a-SMN), is expected to be pro-
duced in the patient, because a-SMN is a truncated,
alternatively spliced isoform of SMNI, originating from
the retention of intron 3 [37.38]. Although the role of
a-SMN in the pathogenesis of SMA has not been clari-
fied yet, the disease severity of the patient with this muta-
tion suggests that a-SMN functions were not enough to
fully compensate for the deleterious mutation.

The p. Tyr277Cys mutation is located in the C-termi-
nal domain of SMN known as the YG box, which is
essential for oligomerization or self-association of
SMN [31]. Oligomerization defect destroys the function
of SMN and correlates with clinical severity of SMA
[34]. Many other mutations in the same domain have
been frequently reported [35,36], although the
p.Tyr277Cys mutation has not been reported up to now.

An interesting question arises as to which factor con-
tributes more significantly to clinical phenotype in
SMA, SMNI intragenic mutation or SMN2 copy num-
ber. According to our analysis of the patients with
homozygous SMNI-deletion (Table 2 and Fig. 1),
increased SMN2 copy number was associated with
milder phenotype, which was compatible with previous
reports [12-16]. However, the phenotype of patients
without SMNI-deletion was not related to their SMN2
copy number (Table 3 and Fig. 1). In our study,
p.Ala2Val was found in two type 3 patients with one
SMN2 copy, p.Trp92Ser in two type | patients with
three SMN2 copies, p.Thr274TyrfsX32 in one type 1
patient with two SMN2 copies, and p.Tyr277Cys in
one type 2 patients with one SMN2 copy. According
to our findings, SMNI intragenic mutations appear to
contribute much more significantly to clinical severity
than SMN2 copy numbers in some patients.

Since our patients carry various intragenic
SMNImutations, the next question is whether SMN2
copy number effect is present or absent among the
patients with the same SMNI mutation. Using the data
of the SMA patients with missense mutations described
in a review paper of Sun et al. [36], we analyzed the rela-
tionship between SMN2 copy number and clinical sever-
ity in eleven patients with p.Tyr272Cys in SMNI. We
observed that higher SMN2 copy number was corre-
lated with reduced disease severity: patients with three
SMN2 copies showed milder phenotype than the
patients with one SMN2 copy number. Thus, we specu-
late that SMN2 copy number effect is present when the
SMNI mutation is the same in the patients.

In conclusion, SMN2 copy number is not always
associated with clinical severity of SMA patients, espe-
cially SMA patients without SMNI-deletion. In these
patients, clinical severity in SMA caused by SMNI
mutations may be determined by the type and location
of the intragenic mutation. Intragenic mutations in
SMNI may contribute more significantly to clinical
severity than SMN2 copy numbers in some spinal mus-
cular atrophy patients.
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Abstract

Background: More than 90% of spinal muscular atrophy (SMA) patients show homozygous deletion of SMNI (survival motor
neuron 1). They retain SMN2, a highly homologous gene to SMNI, which may partially compensate for deletion of SMNI.
Although the promoter sequences of these two genes are almost identical, a GCC insertion polymorphism has been identified at
c.-320_-321 in the SMNI promoter. We have also found this insertion polymorphism in an SMN2 promoter in an SMA patient
(Patient A) who has SMA type 2/3.

Purpose: The aims of this study were to determine the frequency of the GCC insertion polymorphism in SMA patients, and to
evaluate its effect on SMN transcription efficiency.

Patients and methods: Fifty-one SMA patients, including Patient A, were involved in this study. SMN2 transcript levels in white
blood cells were measured by real-time polymerase chain reaction. Screening of the GCC insertion polymorphism was performed
using denaturing high-pressure liquid chromatography. The transcription efficiency of the promoter with the insertion mutation was
evaluated using a reporter-gene assay.

Results: All SMA patients in this study were homozygous for SMNI deletion. Patient A retained two copies of SMN2, and
showed only a small amount of SMN2 transcript in white blood cells. We detected a GCC insertion polymorphism at ¢.-320_-
321 only in Patient A, and not in 50 other SMA patients. The polymorphism had a slight but significant negative effect on transcrip-
tion efficiency.

Discussion and conclusion: Patient A was judged to be an exceptional case of SMA, because the GCC insertion polymorphism
rarely exists in SMNI-deleted SMA patients. The GCC insertion polymorphism did not enhance the transcriptional efficiency of

* Corresponding author at: Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine,
7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan. Tel.: +81 78 382 5540; fax: +81 78 382 5559.
E-mail address: nishio@med.kobe-u.ac.jp (H. Nishio).
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SMN2. Thus, this GCC insertion polymorphism in the SMN2 promoter may not be associated with the milder phenotype of the
patient. Patient A suggests that there are other unknown factors modifying the clinical phenotype of SMA.
© 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Spinal muscular atrophy (SMA) is an autosomal
recessive neuromuscular disorder characterized by prox-
imal muscular atrophy of the limbs and trunk, resulting
from degeneration of motor neurons in the anterior
horn of the spinal cord. The incidence of the disease
has been estimated at 1 in 6000-10,000 newborns, with
an expected carrier frequency of 1 in 40-50 [11.

SMA is classified into three clinical subtypes depend-
ing on the age of disease onset and the achievement of
motor milestones [2]: type 1 (severe form, Werdnig-Hofl-
mann disease; age of onset 0-6 months, unable to sit
unaided), type 2 (Dubowitz disease, intermediate form;
age of onset <18 months, unable to stand or walk
unaided), and type 3 (mild form; Kugelberg-Welander
disease; age of onset >18 months, able to stand or walk
unaided). Additionally, two other forms of the disease,
with the most severe having prenatal onset and the mild-
est type manifesting after 20 years of age, have been
reported as SMA type 0 (prenatal form) and SMA type
4 (adult form) [3].

Using linkage analysis, all clinical subtypes of SMA
have been mapped to chromosome 5q11.2-13.3. The
survival motor neuron (SMN) gene has been identified
as a candidate for SMA [4]. SMN is in fact two highly
homologous genes, SMNI (the telomeric copy) and
SMN2 (the centromeric copy) [4]. SMNI and SMN2
encode the same protein; however, SMN! is now consid-
ered to be responsible for the development of SMA,
because its homozygous deletion has been found in
>90% of SMA patients, and subtle but deleterious intra-
genic SMNI mutations have been identified in non-dele-
tion patients [4,5]. It has been accepted that SMN2 may
be a modifier gene of SMA. Owing to a single nucleotide
difference between SMNI and SMN2, exon 7 of SMN2
is alternatively spliced (more precisely, skipped) result-
ing in the production of an SMN transcript lacking exon
7 (A7-SMN transcript) and an unstable A7-SMN pro-
tein [6]. The single nucleotide change in SMN2 exon 7,
which is a C-to-T transition located at codon 280,
increases A7-SMN transcript levels and, correspond-
ingly, decreases full-length SMN (FL-SMN) transcript
levels [7]. Even so, SMN2 is also able to generate a small
amount of full-length transcript, and thus it can par-
tially compensate the loss of SMNI [8].

Generally, the clinical severity of SMA patients is
inversely correlated with SMN2 copy number. A high

copy number of SMN2 is associated with a milder phe-
notype, and a low copy number with a more severe phe-
notype. SMA type | patients typically have two copies
of SMN2, SMA type 2 patients have three copies, and
SMA type 3 patients typically have three or more copies
[91. More than four SMN2 copies are associated with a
milder phenotype of SMA type 3 [10]. However, the clin-
ical severity cannot always be determined by the SMN2
copy number alone.

The expression level of SMN2 may also be correlated
with the clinical severity of the disease and, therefore,
analysis of the SMN2 promoter is important. Echaniz-
Laguna et al. and Boda et al. reported that the promoter
sequences of SMNI and SMN2 are identical, providing
strong evidence for similar transcriptional regulation of
these genes [11,12]. However, Monani et al. found more
than 10 nucleotide differences between the promoter
regions of these two genes [13,14]. One of them, a
GCC insertion polymorphism, was specifically identified
at ¢.-320_-321 in the SMNI promoter, leading to GCC
duplication at c.-324-c.-318. Polymorphisms in the pro-
moter region may have some effect on transcriptional
activity.

We found the GCC insertion polymorphism in an
SMN2 promoter in a Japanese boy diagnosed as having
SMA type 2/3 (Patient A). The location of the GCC

- insertion in the SMN2 promoter in Patient A was corre-

sponding to that of the GCC in the SMNI promoter
reported by Monani et al. [14]. It is notable that the clin-
ical phenotype of the patient was much milder than
expected based on his SMN2 copy number. In this
study, we determined the frequency of the GCC inser-
tion polymorphism in controls and SMA patients. We
also evaluated the effect of the GCC insertion polymor-
phism on SMN2 transcriptional activity.

2. Patients and methods
2.1. Patients

All 50 Japanese patients in this study fulfilled the
diagnostic criteria defined by the 59th ENMC Interna-
tional Workshop [2]; 26 patients (aged 1-34 years) were
type 1, 16 type 2, and eight type 3. The molecular genetic
analysis was approved by the Ethical Committee of the
Kobe University Graduate School of Medicine, Japan.
Informed consent was obtained from the patients or
their parents. Fifty healthy Japanese adults (aged 21—
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70 years) volunteered to participate in the study as con-
trol subjects.

Patient A was a 2-year-old Japanese boy who was
clinically suspected as having a neuromuscular disorder
with decreased muscle tonus. He was born as the third
child to non-consanguineous and healthy parents. The
pregnancy and delivery were non-eventful. Early devel-
opmental milestones were slightly delayed: head control
was obtained at age 6 months, sitting without support at
age 8 months, crawling at age 9 months, and standing
and walking with support (ex. handrails) at age
18 months. However, he could never walk without sup-
port. He uttered his first word at 18 months, and a sim-
ple two-word sentence at 22 months. On admission, his
weight and height were 85.5 cm (—0.7 SD) and 11.5 kg
(—0.9 SD). His mental status was alert. Apparent facial
anomaly was absent, but high-arched palate was pres-
ent. Lung and heart auscultation revealed no abnormal
findings. Abdominal examination was normal. Tongue
fasciculation was absent. Muscle tonus was decreased:
scarf sign, heel-to-ear sign, and loose-shoulder sign were
observed. Muscle strength was also decreased especially
in the proximal region of the legs. Deep tendon reflexes
were absent or extremely diminished. Laboratory exam-
ination revealed no muscular damage (AST 28 IU/L,
ALT 10IU/L, CK 1191IU/L, ALD 71IU/L, lactate
13 mg/dL, pyruvate 0.8 mg/dL). Muscle biopsy findings
were compatible with those of SMA. Based on the mus-
cle biopsy findings, together with the clinical phenotype,
he was diagnosed as having SMA type 2/3.

2.2. SMNI1 deletion test and SMN2 gene dosage analysis

Genomic DNA was extracted from peripheral white
blood cells. The SMNI exon 7 deletion test was per-
formed by the PCR-restriction fragment length poly-
morphism method of van der Steege et al. [15]. SMN2
copy numbers were determined with a LightCycler 1.5
instrument (Roche Diagnostics GmbH, Mannheim,
Germany) using FastStart DNA Master SYBR Green
I (Roche Diagnostics) according to the method of Tran
et al. [16].

2.3. RNA extraction, cDNA synthesis, and quantitative
real-time PCR

Total RNA was isolated from peripheral white blood
cells. cDNA was synthesized from total RNA with
Transcriptor Reverse Transcriptase (Roche Diagnostics)
according to the manufacturer’s instructions.

Quantitative reverse-transcription-PCR was per-
formed with a LightCycler 1.5 instrument (Roche Diag-
nostics) using FastStart DNA Master SYBR Green 1
(Roche Diagnostics). To evaluate transcript levels of
the SMN genes, we amplified cDNA fragments of exons
1-2b, exons 7 and 8, and exons 5, 6 and 8. The cDNA

fragment including exons 1-2b represented total SMN
transcript, because the sequence of exons 1-2b is com-
monly included in all transcript isoforms. The cDNA
fragment containing exons 7 and 8 represented the
FL-SMN transcript, because it contained sequence
beyond exon 7. The cDNA fragment including SMN
exons 5, 6 and 8 represented the A7-SMN transcript,
because it did not carry the sequence of exon 7. We used
glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
as an endogenous reference gene, and the levels of
SMN were normalized relative to those of GAPDH.
The primers for the total-SMN, FL-SMN, A7-SMN,
and GAPDH transcripts have been described previously
[17,18]. Quantitation of the PCR products was per-
formed with the second derivative maximum method
of the LightCycler software.

2.4. Denaturing high-pressure liquid chromatography
(DHPLC) detection of GCC insertion polymorphism in
the SMN promoter

To screen for the GCC insertion polymorphism in
SMA patients and controls, DHPLC analysis of PCR
products was performed. PCR of the fragment including
the polymorphism site was carried out with the primer
set: 5'-tgcaatgagcegagatggtg-3' and 5'-cetcececttggaaaag-
taa-3'. The PCR products were then directly loaded into
the autosampler of an automated DHPLC system, the
WAVE Nucleic Acid Fragment Analysis System,
equipped with a DNASep cartridge (Transgenomic,
Omaha, NE, USA). The samples were run under par-
tially denaturing conditions at 54.6 °C (oven tempera-
ture). The buffer gradient conditions were the same as
previously reported [19].

2.5. Sequencing

Direct and/or subcloned sequencing analyses of
PCR-amplified products were performed. Sequencing
reactions were performed using a dye terminator cycle-
sequencing kit (Applied Biosystems/Life Technologies
Corporation, Carlsbad, CA, USA), according to the
supplier’s instructions. The reaction products were auto-
matically electrophoresed on an ABI PRISM 310
Sequencer (Applied Biosystems) and then analyzed
using the Sequencing Software Module provided with
the ABI PRISM 310 Sequencer.

2.6. Preparation of expression vectors

The PCR-amplified fragment containing GCCGCC
polymorphism or GCC polymorphism was inserted into
a firefly luciferase reporter plasmid, pGL2BTK (pGL2-
Basic with a minimal herpes virus 1 thymidine
kinase promoter). The GCCGCC and GCC fragment-
containing plasmids were designated as ‘pGCCGCC’
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and ‘pGCC’, respectively. The construct maps of
pGL2BTK, pGCCGCC, and pGCC are shown in
Fig. 1.

2.7. Transcription assay

The responses of the test plasmids (pGL2BTK,
pGCCGCC, pGCC) to dibutyryl cAMP (dbcAMP;
0.5 mM), forskolin (20 pM), and a combination of dibu-
tyryl cAMP and forskolin were determined in a human
neuroblastoma cell line, BE(2)-C cells. The neuroblas-
toma cell lines have been used as useful experimental
models of neuronal differentiation because the morpho-
logical, biochemical and electrophysiological properties
of neuroblastoma cell lines are similar to those of neu-
rons [20].

Neuroblastoma cells [2 x 10°cells in Minimum
Essential Medium (MEM)] were cotransfected with a
test plasmid (1.6 pg) and the phRL plasmid {(a sea pansy
luciferase reporter plasmid; Promega Corporation,
Madison, WI, USA) (0.5 ng) using Lipofectamine 2000
(Invitrogen/Life Technologies Corporation). Twenty-
four hours after transfection, dibutyryl cAMP, for-
skolin, or a combination of dibutyryl cAMP and for-
skolin was added to the MEM. The cells were
harvested after culture for an additional 24 h.

Transcriptional activity of the test plasmids was mea-
sured using the dual-luciferase reporter assay system, in
which sea pansy-luciferase activity was used as a control
for the transfection efficiency of the test plasmids. Each
transcriptional activity measurement was repeated three
times and the data are expressed as the mean 4 SD.

A. SMN promoter sequence (-432/-214)

~432 tgcaatgagccgagatggtgcecactgeactet o agagcga

-387 gactcoccgtctcaaaacaaacaacaaataagy LLiguugs
MZF-1

atcaaat

-342 Atcttctagtygtttaaggatct (yoao) gectteccttectgcec
trinucleotide Insersion

-305 cccatgtttgtettt gonigiiiytal ttatatagatcaageagg

b
HNF-3b
-260 ttttaaattcctagtaggagettacatttacttttccaagggggagy

B Construction map

poLetk  ~{ Fmini-T H — Lue |
pGCCGCC | GCCGCC I Mini-TK || LUC |
pGCC - GCC - Mini-TK | LuC |

Fig. 1. SMN promoter sequence (A) and construction map (B). The
SMN promoter sequence from c.-432 to c.-214 is shown in the upper
part of the figure (A). The numbering of nucleotide in the promoter
sequence is based on Monani et al. [14] Trinucleotide insertion at
¢.-320_-321 is parenthesized. Putative transcription factor binding sites
are underlined. Plasmid construction map is shown in the lower part of
the figure (B). All constructs have a firefly-luciferase reporter gene,
which is designated as LUC in the map. The pGL2BTK plasmid is a
basic plasmid served as control. The GCCGCC and GCC fragment-
containing plasmids were designated as ‘pGCCGCC’ and ‘pGCC,
respectively.

2.8. Statistics

Statistical analysis of the transcriptional activity data
was performed using Microsoft Excel 2003 software and
Statistical Package for the Social Sciences (SPSS Inc.,
Chicago, I, USA). The Student’s t-test was conducted to
evaluate differences between the plasmids. A probability
of less than 0.05 was considered statistically significant.

3. Results
3.1. SMNI deletion test and SMN2 gene dosage analysis

We performed an SMNI deletion test on Patient A,
who was suspected as having SMA type 2/3. The patient
carried zero copies of SMNI and two copies of SMN2.
Based on molecular analysis, he was diagnosed as hav-
ing SMA.

A nucleotide substitution in SMN2 exon 7,
¢.859G>C, has been reported as a positive modifier of
the SMA phenotype [21,22]. To check whether the
mutation is present in Patient A, we performed a
sequencing analysis of the exon 7. However, we did
not find any substitutions including ¢.859G>C.

3.2. SMN2 transcript levels

Our aim of this study was to compare the SMN2
transcript levels of Patient A to those of other SMA type
2 patients, because we hypothesized that SMN2 tran-
script expression was the key determinant of the SMA
phenotype. It would have been preferable to compare
Patient A with SMA type 2 patients cairying two copies
of SMN2. However, we did not have cDNA samples
from SMA type 2 patients with zero copies of SMNI
and two copies of SMN2. In this study, we determined
the baseline transcript levels of total SMN, FL-SMN,
and A7-SMN in the white blood cells of Patient A, five
disease controls (DCs 1-5; they were all SMA type 2
patients with zero copies of SMNI and three copies of
SMN2) and three healthy controls. All of the disease
controls were able to sit without support, but could
not stand or walk even with any support.

Total SMN transcript levels of Patient A, DCI1, DC2,
DC3, DC4, and DCS were 38%, 76%, 66%, 181%, 232%,
and 166% of the mean value of the healthy controls,
respectively. This finding suggested that SMN2 tran-
scription in Patient A was significantly reduced com-
pared with that of the disease controls.

The FL-SMN transcript levels of Patient A, DCI,
DC2, DC3, DC4, and DCS5 were 53%, 58%, 64%, 44%,
68%, and 95% of the mean value of the healthy controls,
respectively. The A7-SMN transcript levels of Patient A,
DCI1, DC2, DC3, DC4, and DC5 were 167%, 206%,
130%, 130%, 97%, and 145% of the mean value of the
healthy controls, respectively. These findings suggested
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