We should mention several limitations of the present study. First, we could not show

a-SMN expression in Patient1, not only in the fetal period but also in the postnatal period. The
a-SMN expression is down-regulated after birth.® According to our experience, it is impossible

to detect a-SMN expression in the peripheral blood cells of human infants and childreriif\See’Qnd,

we examined only a set of SMA patients with the same genotypic backgro nd except

axonal-SMN. To formulate general concepts about axonal-SMN, we need more sefs of SMA

patlents with the same genotypic background except axonal-SMN. At 1ast we did test only two

genes modifying the SMA phenotype, SMN2 and NAIP. These genes have‘ already been proved

to modify the SMA phenotype. However, it has not been,clarlﬁed until now what genes are

critically involved in modifying mechanism of the SMA. phenotype

In conclusion, in Patient 1, the C-tenmnw omam of FL-SMNI1 determined the

severity, rather than the a-SMN, one copy of h""‘ could be present and intact, although its -

generalization may be premature. Our study suggested that SMA disease severity may be

determined by C-terminal defects of FL- SMN 1 irrespective of presence or absence of a-SMN

expression. However, it should‘beenotedi"that this study focused on disease progress, including

respiratory dysfunction, anyd,,if‘yi‘ﬁs neceyssary to further study the role of a-SMN in axonal growth

of motor neurons, as a-SMN may have roles in fine tuning of neural circuit formation.
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Spinal muscular atrophy (SMA) is caused by mutations within the survival motor neuron 1 (SMN1) gene.
These mutations result in the reduction of survival motor neuron (SMN) protein expression and SMN
complex in spinal motor neurons and other tissues. SMN protein has been used as a therapeutic bio-
marker in recent SMA clinical studies using enzyme-linked immunosorbent assay (ELISA). Here, we
investigated whether imaging flow cytometry can be a viable source of quantitative information on
the SMN protein. Using a FlowSight imaging flow cytometer (Merck-Millipore, Germany), we demon-
strated that imaging flow cytometry could successfully identify different expression patterns and subcel-

Keywords:
Spinal muscular atrophy
Survival motor protein

?rlr(: ;;?;:eﬂro W cytometry lular localization of SMN protein in healthy human fibroblasts and SMA patient-derived fibroblasts. In
Valproic acid addition, we could also evaluate the therapeutic effects of SMN protein expression by valproic acid treat-

ment of SMA patient-derived cells in vitro. Therefore, we suggest that imaging flow cytometry technology
has the potential for identifying SMN protein expression level and pattern as an evaluation tool of clinical

studies.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Spinal muscular atrophy (SMA) is an autosomal recessive disor-
der caused by mutations of the survival motor neuron 1(SMN1)
gene, leading to progressive limb and trunk muscle weakness asso-
ciated with muscle atrophy [1,2]. SMN protein is ubiquitously
expressed in mammalian tissues; it plays a critical role in RNA
metabolism, participating in small ribonucleoproteins (sRNPs) bio-
genesis and in pre-mRNA splicing [2]. Two SMN genes translate
SMN proteins: a telomeric copy (SMN1) and an inverted centro-
meric copy (SMN2). The SMN2 gene is present in all patients, but
is not able to compensate for SMN1 gene defects completely,
resulting in low levels of the full-length SMN protein in order to
have a single point mutation in exon7 of the SMN2 gene [3,4]. In
SMA clinical specimens, reduction of SMN has been assessed by
several methods. Typically, immunocytochemistry and Western
blotting have been used on primary dermal fibroblasts and leuko-
cyte cell lines, leading to a correlation between healthy human
controls and SMA patients in preclinical studies [5,6]. However,

* Corresponding author at: Institute of Microbial Chemistry (BIKAKEN), Tokyo, 3-
14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan. Fax: +81 3 3441 7589.
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this method is not sufficiently reliable for clinical and diagnostic
use. Recently, enzyme-linked immunosorbent assay (ELISA) has
also been used in preclinical and clinical studies of SMA [7-10];
nevertheless, SMN protein levels in human peripheral-blood
mononuclear cells (PBMC) were not correlated between healthy
controls, carriers, and SMA phenotypic severity in clinical trials
[9.,10]. These methods should be optimized to allow detection of
SMN protein in human cells for SMA clinical studies.

In this study, we focus on the imaging flow cytometry tech-
nique as a new assay method of SMN protein evaluation. Usually,
standard flow cytometry cannot be used to assess the localization
of molecules within specific cellular compartments. However,
imaging flow cytometry can evaluate intact proteins, using a digital
microscope system, and immunological technologies [11,12]. SMN
proteins are localized intracellularly throughout the cytoplasm and
nucleus, as a multi-protein complex. Specifically, SMN proteins
form SMN complexes in the nucleus, where they accumulate in
structures called Gemini of Cajal bodies (Gems) that play an essen-
tial role in the assembly of spliceosomal snRNPs and biogenesis
during mRNA processing [13,14]. The predicted outcome of
decreased snRNPs assembly is an alteration in gene splicing, con-
taining minor introns due to reduced snRNPs levels [2,15]. In
SMA-derived cells, gems formation is clearly decreased compared
to that of healthy controls [16].
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At present, there is no effective treatment for SMA. Some ther-
apeutic approaches are recently under investigation; therapies aim
at increasing the amount of full-length SMN protein levels pro-
duced by SMN2 promoter activation, while reducing SMN2 exon7
alternative splicing, using small molecules, and antisense oligonu-
cleotides [6,17-20]. Therefore, a new method to accurately mea-
sure SMN protein levels is needed, to assess disease severity and
response to treatment.

The aim of this study was to evaluate SMN protein expression
and to qualitatively assess its cellular localization using imaging
flow cytometry. We therefore explored the applicability of this
new technology for evaluating SMN protein as a biomarker in
SMA clinical trials.

2. Materials and methods
2.1. Materials

Human fetal dermal fibroblasts (from healthy controls) were
obtained from Cell Applications, Inc., SMA patient-derived dermal
fibroblasts were obtained from skin biopsies of SMA patients. The
patient having SMA type 1 was a 7-month-old female who had
not acquired head control with SMNT deletion and two copies of
SMN2, as assessed by molecular diagnoses. Ethical approval for tis-
sue collection was granted by the Institutional Review Board of
Tokyo Women's Medical University, Japan. For immunocytochem-
ical analyses, we used a mouse monoclonal FITC-conjugated anti-
SMN, (clone 2B1, Merck Millipore, Germany), and a mouse mono-
clonal anti-SMN antibody (BD Transduction Laboratories, San
Diego, USA).

2.2. Cell culture and valproic acid treatment

Human dermal fibroblasts (from healthy controls) and type I
SMA patient-derived dermal fibroblasts were cultured in Dul-
becco's modified Eagle’s medium (DMEM, Sigma) including 1.0 g/
L glucose and supplemented with 20% fetal bovine serum (FBS)
without antibiotics. These fibroblasts were cultured in six-well
plates for 24 h and then treated with the histone deacetylase inhib-
itor, valproic acid (VPA: 0, 0.1, 1, 10 mM) diluted in PBS for 24 h at
37 °C with 5% CO,.

2.3. Immunocytochemical staining

After cells were cultured for 48 h, 1.5 x 10° cells were rinsed
twice with cold PBS, fixed with 4% paraformaldehyde in PBS for
10 min, and then rinsed three times for 5 min with PBS. The cells
were then treated with 0.2% TritonX-100 in PBS for 10 min at room
temperature. The cells were incubated in blocking buffer (10% nor-
mal goat serum in PBS) for 60 min at room temperature. Following
blocking, the cells were incubated with a mouse monoclonal anti-
SMN antibody (1:100, BD) at room temperature for 60 min and
then cells were then visualized using an Alexa Fluor 488-conju-
gated goat anti-mouse (1:400, Molecular Probes) for 60 min at
room temperature. The cells were treated with Hoechst 33342
(0.5 pg/mL) to stain the cell nuclei for 5 min at room temperature.
Image photographs were taken using a Leica fluorescent micro-
scope system.

2.4. Quantitative RT-PCR analysis

Cells were cultured for 24 h after VPA treatment, and total RNA
was isolated using the RNeasy kit (QIAGEN Sciences, USA) accord-
ing to the manufacturer’s instructions. For reverse transcription
reactions, 500 ng of total RNA was used with PrimeScripts RT

Mix (Takara Bio Inc., Shiga, Japan) according to the manufacturer’s
instructions. Aliquots of ¢cDNA were mixed with SYBR Premix Ex
Taq Il (Takara Bio Inc., Shiga, Japan) each containing 400 nM prim-
ers. Quantitative PCR was performed on Thermal Cycler Dice Real
Time Systems (Takara Bio Inc., Shiga, Japan). Primers used in this
paper were as follows: glyceraldehyde-3-phasphate dehydroge-
nase (GAPDH): 5'-GCACCGTCAAGGCTGAGAAC-3' for forward and
5'-TGGTGAAGACGCCAGTGGA-3' for reverse; SMN2, 5-AACCTG
TGTTGTGGTTTACACTGGA-3 for forward and 5'-CAGATTTGGGCTT
GATGTTATCTGA-3' for reverse. All samples were assayed in
duplicate.

2.5, Western blotting

Cells were cultured for 24 h VPA untreatment or treatment and
then washed twice with PBS. Cells were homogenized on ice in
protein lysis buffer (ER4, Enzo Life Sciences, Farmingdale, NY).
After incubation on ice for 15 min, the samples were centrifuged
at 10,000 rpm for 10 min at 4 °C. Sample protein concentrations
were determined by the BCA method (Pierce, Rockford, IL). The
amount of total protein was adjusted to equal levels between sam-
ples with SDS sample buffer, and the samples (10 pg of protein)
were subjected to electrophoresis on 10% SDS polyacrylamide gels.
Proteins were transferred to a PVDF membrane (Millipore Corp.,
Billerica, MA) and treated with blocking buffer (5% skim milk in
0.1% Tween20 in TBS) for 1 h at room temperature. After blocking,
the membrane was treated with monoclonal anti-SMN antibody
(1:2000, BD) diluted in blocking buffer for 1 h at room temperature
and then incubated with an HRP-conjugated anti-mouse IgG anti-
body (1:2000, DAKO) for 1 h at room temperature. The membrane
was treated with a substrate (ECL plus substrate kit). To test for
equal amounts of loaded protein, membranes were stripped and
incubated with monoclonal anti-e~tubulin antibody (1:5000,
Sigma) as described above. Proteins were visualized using a lumi-
nescent image analyzer ImageQuant LAS-1000 (Fuji Photo Film,
Tokyo, Japan). All samples were assayed in duplicate.

2.6. ELISA

Cells were cultured for 24 h after VPA treatment, and then
washed twice with PBS. Cells were homogenized in protein lysis
buffer on ice as described above. Aliquots of protein extracts were
diluted with lysis buffer. SMN ELISA kit (Enzo Life Sciences, Farm-
ingdale, NY) was carried out according to the manufacturer’s
instructions. All samples were assayed in duplicate.

2.7. Immunostaining for the imaging flow cytometry

SMA patient-derived fibroblasts were rinsed twice with PBS and
trypsinized. Cells were then washed with PBS and fixed with 4%
paraformaldehyde in PBS for 10 min on ice. After they were
washed three times with PBS, we permeabilized the cells using
chilled BD Phosflow Parm buffer II for 30 min on ice. Cells were
washed with Stain buffer (BD) and counted; 10 pl FITC-conjugated
human SMN antibody (Millipore) or normal mouse Ig (Sigma) was
added in 1 x 108 cells/90 wi and incubated at room temperature for
45-60 min. After incubation, and a single wash with PBS, the cells
were treated with Hoechst 33342 (5 pg/mL) in PBS for 5 min at
room temperature.

2.8. Imaging flow cytometry analysis

Samples were analyzed on a FlowSight imaging flow cytometer
(Merck-Millipore, German). Data from a minimum of 10,000 cells
(counts) were acquired, utilizing the 405, 488, and 785-nm lasers
to calculate cell granularity, at a 20x magnification, using INSPIRE
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software. Compensation was performed using single-color staining
for all channels. Single cells were first identified based on a scatter
plot of bright field area versus the aspect ratio. A gate was drawn
around the population containing putative single cells based on
the criteria of the area being large enough to exclude debris, and
the aspect ratio being greater than ~0.6, which eliminates debris
and clusters. Focused-Single cells were plotted on the SMN-FITC
and Hoechst dye intensity. Both double positive population was
gated and confirmed by image gallery to determine correct gate.
Cellular localization of SMN protein was analyzed using the Bright
Detail Intensity (BDI) feature algorithm. Acquired data were ana-
lyzed using the IDEAS analysis software.

2.9. Statistical methods

Analysis of statistical significant between SMN levels between
the VPA-treated groups was done by Student’s t-test. Values are
presented as mean t standard deviation value (SD). Statistically
significant differences were defined as p < 0.05.

3. Results

3.1. Detection of SMN protein levels in healthy human fibroblasts, and
type I SMA patient-derived fibroblasts by immunocytochemistry and
Western blotting

In control fibroblasts from healthy individuals, endogenousv

SMN protein is expressed in the cytosol and nucleus, and accumu-
lates in discrete nuclear foci known as gems. In this study, we
checked SMN protein expression in human controls by immunocy-
tochemistry and Western blotting using a specific antibody (Fig. 1A
and B). On the other hand, type I SMA patient-derived fibroblasts
showed decreased SMN protein levels resulting from SMN1 gene
loss, compared to healthy controls (Fig. 1A and B).

3.2. Effects of valproic acid treatment on type I SMA patient-derived
fibroblasts

In our preclinical studies, we investigated the effects of VPA
(concentrations used were 0, 1, and 10 mM) on cell morphology,
full-length SMN2 mRNA transcription levels and changes in SMN
protein levels in SMA patient-derived fibroblasts (VPA; 0, 0.1, 1,
10 mM) at 24 h after treatment.

A

Nuclei

Control

SMA

Our results showed that 24 h VPA treatment did not cause any
changes in cell morphology or any toxicity (Fig. 2A). Moreover,
these treatments were dose-dependent. Thus, a 10 mM dosage of
VPA significantly increased full-length SMN2 mRNA transcription
levels, detected by quantitative RT-PCR method, compared to
non-treated SMA cells (p < 0.05, Fig. 2B). Quantification of full-
length SMN2 mRNA transcription levels was determined with
respect to a standard curve constructed using serial dilutions of
c¢DNA. We used mRNA transcription levels of a housekeeping gene,
GAPDH as internal control. On the other hand, SMN protein levels
were also increased when examined by two independent methods,
Western blotting (Fig. 2C), and ELISA (p < 0.05, Fig. 2D), after VPA
treatments.

3.3. Detection of SMN protein expression and cellular localization by
imaging flow cytometry

In this study, we report for the first time the use of imaging flow
cytometry to assess the intracellular expression and localization of
SMN protein in fibroblasts from healthy controls and SMA patients.
Cells were labeled with the same mouse monoclonal FITC-conju-
gated anti-SMN antibody (2B1), and Hoechst 33342 nucleic stain-
ing, as described in materials and methods. There were
significant differences in fluorescence intensity in the number of
FITC-labeled SMN-positive cells between SMA cells and healthy
controls (Fig. 3A). Moreover, the expression of SMN protein in
SMA cells was clearly lower, compared to healthy controls. None-
theless, at least 20-30% of cells were strongly positive for SMN
as identified by a plotted histogram of FITC-SMN-positive cells
(Fig. 3A). Furthermore, in order to investigate the accumulation
area of SMN protein in healthy control and SMA cells, we used
the BDI modulation to measure the distribution of SMN protein.
The BDI features compute the intensity of localized bright spots
within a masked area in the image where the background has been
removed around the spots. SMN proteins are generally known to
localize both within the cytoplasm and within nucleus, especially
in nuclei foci called gems, where the SMN complex is composed.
Our results from immunocytochemical analysis showed that the
SMN protein accumulated in the nucleus and cytoplasm, and
appeared as cellular dots in healthy controls (Fig. 1A). However,
we could not detect SMN complex like gems or accumulation in
our SMA cells under the fluorescent microscopic observation
(Fig. 1A). On the other hand, using imaging flow cytometry, we also

B

Control

SMA

SMN
24h

Tubulin

Fig. 1. Detection of SMN protein in human fibroblasts from healthy controls and type I SMA patient-derived fibroblasts. (A) Micrographs showing SMN protein
immunocytochemistry. Cells were cultured for 24 h and then stained for SMN using a monoclonal anti-SMN antibody. SMN expression is reduced in SMA patient-derived
fibroblasts when compared to healthy controls. (B) Detection of SMN protein by Western blotting analysis, using the same antibody as described above, shows reduced SMN

expression in SMA patients.
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Fig. 2. Effects of VPA treatment on SMA patient-derived fibroblasts. (A) Effects on cellular morphology. Cells were treated with 0, 1, 10 mM VPA for 24 h, All treatments did
not cause any morphological changes and any toxicity. (B) Real-time PCR analysis of SMN2 mRNA expression after VPA treatment in SMA-derived fibroblasts. Cells were
treated with 0, 0.1, 1, 10 mM VPA for 24 h, and then total RNA was extracted and subjected to real-time PCR. GAPDH was used as internal control gene. (C) Western blotting
analysis of SMN protein expression after VPA treatment in SMA-derived fibroblasts. Cells were treated with 0, 0.1, 1, 10 mM VPA for 24 h and then total protein levels were
analyzed by Western blotting. (D) ELISA data showing SMN protein expression in SMA-derived fibroblasts treated with VPA. Cells were treated with 0, 0.1, 1, 10 mM VPA for
24 h and then total protein was analyzed using an ELISA kit (Enzo Life Sciences). Error bars represent the mean % S.D. obtained from three independent samples.

observed that the accumulation of SMN protein was significantly
decreased in SMA cells (Fig. 4A and B).

3.4. Evaluation of SMN protein expression and cellular localization in
VPA-treated SMA patient fibroblasts using imaging flow cytometry

To investigate the change of SMN protein expression and cellu-
lar localization in SMA patient-derived fibroblasts treated with
VPA, we used imaging flow cytometry technology to detect SMN
protein-positive cells by a specific anti-SMN antibody as described
above. In this technology, data from SMA cells exhibited a signifi-
cant increase in the total SMN protein amount, translated from
each SMN2 locus, under dose-dependent VPA-treatments
(Fig. 3B~-D). In addition, BDI analysis showed that VPA treated-cells
were not only increasing SMN protein levels, but also SMN was
accumulating in the nucleus and cytoplasm (Fig. 4C-E). Using
imaging flow cytometry, we could first detect significant increases
in SMN protein accumulation in discrete nuclear foci after VPA
treatment (Fig. 4C-E).

4. Discussion

In this study, we developed a new method of SMN protein eval-
uation using imaging flow cytometry. This method can be easily

and clearly detect SMN protein levels in healthy human fibroblasts
and type I SMA patient-derived fibroblasts. In our preclinical stud-
ies 24 h after VPA treatment, the endogenous full-length SMN2
mRNA and SMN proteins derived from full-length SMN2 mRNA
were significant increased in type 1 SMA patient-derived fibro-
blasts. VPA treatment may stimulate the transcriptional system
of SMN2. The SMN protein expression, therefore, increased in
VPA-treated SMA cells. These results indicate that VPA may serve
as a promising therapeutic candidate for SMA.

Using imaging flow cytometry analysis, we found that SMA
patient fibroblasts clearly expressed SMN protein at least at 20~
30% of normal levels. In mammalian neural cells and tissues,
SMN protein immunohistochemistry shows heterogeneous stain-
ing [21]. Therefore, the imaging flow cytometry analysis can be
used to examine the population of SMN protein-positive cells
acquired from SMA patients. Moreover, we first demonstrated that
VPA-dependent SMN protein expression was also significantly
increased, resulting in the accumulation of SMN to the cell nucleus
as shown by BDI analysis. Our results suggest that the imaging flow
cytometry system can play a role as a novel evaluation tool of SMN
protein analysis for clinical studies in SMA.

The SMN protein is considered as the most suitable and sensi-
tive molecular biomarker for SMA by many researchers. So far, sev-
eral techniques have been used for SMN protein quantification.
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Fig. 3. SMN protein analysis by imaging flow cytometry. (A) Cells were cultured for 48 h, and then trypsinized and stained for SMN protein using a monoclonal FITC-
conjugated anti-SMN antibody. Histogram represents the mean FITC intensity versus frequency (count). (B) Detection of SMN protein expression by imaging flow cytometry
analysis after treatment with VPA (0, 1, 10 mM) for 24 h. The SMN protein was increasing in a dose-dependent manner. (C) Evaluation of SMN protein expression after VPA
treatment. Values are represented as FITC-SMN normalized frequency (mean/count). (D) Cellular localization of SMN protein by imaging flow cytometry. FITC-SMN (green),
Hoechst 33342 (blue), side scatter (red) and bright-field digital images are shown for human healthy controls and SMA-derived fibroblasts untreated or treated with VPA.
SMN staining is clearly visible in the cytoplasm and nucleus. Error bars represent mean + S.D. obtained from three independent samples.

Western blot analysis, which was used in in vitro and in vivo stud-
ies, mainly aimed at evaluating possible variations of SMN protein
levels related to pharmacological treatments [6]. However, this
assay has several limitations, related to its semi-quantitative nat-
ure, thus requiring normalization versus housekeeping proteins,
whose levels are subject to wide variations.

Kolb et al. developed an immunoassay suitable for total SMN
protein quantification in PBMC, through which they could demon-
strate a correlation with the number of SMN2 copies [22]. However,
they found a reduction in SMN levels only in PBMC of type I SMA

patients, and they could not find any correlation between protein .

levels and phenotypic severity [22]. These findings clearly question
the meaning of quantifying SMN protein levels in clinical trials.

Generally, ELISA is considered more sensitive and adequate for

protein quantification since it does not require normalization to
other proteins, given that SMN levels are quantified with respect
to a standard curve constructed with serial dilutions of purified
protein. To date, these assays have been developed and validated
{7-10]. These authors showed that their assay is sufficiently sensi-
tive to measure SMN variations, related to a candidate drug treat-
ment, and found that SMN protein levels in PBMC of SMA patients
show a tendency to be reduced, compared to healthy controls {7~
10]. Although these results are promising, the small number of
samples analyzed, the absence of age-matched controls, of a pla-
cebo arm, and of clinical-molecular correlations, do not allow firm

conclusions to be drawn on the validity of SMN protein dosage in
clinical trials. SMA is a phenotypically heterogeneous disorder with
variable disease onset and severity, which creates a series of issues
in the design of clinical trials. Sensitive and accurate biomarkers
are, therefore, needed that can be used as predictive, prognostic,
and surrogate endpoint measures.

SMN protein, as a biomarker or surrogate outcome measure,
presents some technical issues that need to be taken under consid-
eration in the context of clinical trials. For example, the acquisition
of SMA patient fibroblasts is an invasive procedure. On the other
hand, obtaining peripheral whole blood cells and PBMC is a less
invasive process, and more suitable samples for imaging flow
cytometry, although peripheral blood draws are often hard to
obtain from very young patients.

Moreover, with the imaging flow cytometry analysis, quantifi-
cation of SMN accumulation could be considerably evaluated in
intact cells, by using an algorithm of bright detail intensity. Gener-
ally, increases in gem numbers related to SMN complexes, were
counted as gems per 100 cell nuclei [16]. In fact, our analysis
may not only be reliable and beneficial for the evaluation of SMN
protein expression, but also for the quantification of gems without
counting cell nuclei. Therefore, our results suggest that imaging
flow cytometry analysis can play a role as a novel tool for the eval-
uation of intact protein expression and localization of biologically
active molecules, like the SMN protein.
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VPA-treated SMA patient-derived fibroblasts. Cells were treated with VPA (0, 1, 10 mM) for 24 h and then subjected to imaging flow cytometry analysis. Histogram represents
cytosol spots or nuclear spots. (D) Accumulation of SMN protein in the nucleus of VPA-treated SMA patient-derived fibroblasts. Values are represented as FITC-SMN
normalized bright detail intensity (mean/count). (E) Fluorescent micrographs showing localization of SMN protein by imaging flow cytometry. FITC-SMN (green) and Hoechst
33342 (blue) merged digital images are exhibited in human healthy control and SMA-derived fibroblasts treated with VPA (0, 1, 10 mM) respectively. Error bars represent

mean + S.D. obtained from three independent samples.

The imaging flow cytometry technique is a novel approach to
qualitative and quantitative assessment of SMN protein expression
in healthy human controls and SMA patient fibroblasts. The addi-
tion of digital images to standard quantitative and statistical mea-
surements makes this the most sensitive flow cytometry method
available for the assessment of cellular SMN accumulation and
localization. We believe that imaging flow cytometry has a place

as a first-line technique to assess the molecular genetic phenotype
of cells acquired from SMA patients for clinical trials.
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