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Abstract

by controlling the localization of catalase.

* E-mail: kakizuka@lif.kyoto-u.ac.jp

Catalase is a key antioxidant enzyme that catalyzes the decomposition of hydrogen peroxide (H,0,) to water and oxygen,
and it appears to shuttle between the cytoplasm and peroxisome via unknown mechanisms. Valosin-containing protein
(VCP) belongs to the AAA class of ATPases and is involved in diverse cellular functions, e.g. cell cycle and protein
degradation, etc. Here we show that VCP and PEX19, a protein essential for peroxisome biogenesis, interact with each other.
Knockdown of either VCP or PEX19 resulted in a predominantly cytoplasmic redistribution of catalase, and loss of VCP
ATPase activity also increased its cytoplasmic redistribution. Moreover, VCP knockdown decreased intracellular ROS levels in
normal and H,0,-treated cells, and an oxidation-resistant VCP impaired the ROS-induced cytoplasmic redistribution of
catalase. These observations reveal a novel feedback mechanism, in which VCP can sense H,0, levels, and regulates them
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Introduction

Reactive oxygen species (ROS), e.g. superoxide radicals,
hydrogen peroxide, etc., are natural byproducts of the aerobic
metabolism of foods, and they have been shown to play
important roles in several physiological functions, e.g. transcrip-
tional regulation, mitogen signaling, integrin signaling, Wnt
signaling, etc. (see refs in [1 3]). On the other hand, ROS are
also produced by UV and X-ray exposure or inflamation, and
excess ROS can damage cellular functions by oxidizing proteins,
lipids, and DNA, leading to cell aging as well as cancer (see refs
in [4]). Among ROS, the superoxide radical is enzymatically
converted by superoxide dismutases (SODs) to hydrogen
peroxide (H,O,), which, in turn, is converted by catalase or
peroxidases to HoO and O,. Mammalian cells typically possess
three SODs, several peroxidases, and one catalase. Among these
ROS-scavenging enzymes, only catalase resides in peroxisomes.
In certain conditions, such as aging, catalase also resides in the
cytoplasm  [5], which is believed to be due to its weak
peroxisome-targeting signal (PTS). Two types of PTS, PTSI
and PTS2, are known [6]. Typically, PTS1 consists of three
sequential amino acids, SKL, and it is present in peroxisome-
localized proteins such as peroxisomal Acyl-CoA thioesterase,
PTEI. Catalase has a unique PTS]1, consisting of four sequential
amino acids, KANL. Both PTSls are recognized by PEX5
(Peroxisome biogenesis factor 3); however, PEX5 binds to SKL
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more strongly than to KANL [7], and thus it is believed that
PEX5 can transfer SKL-containing proteins more effectively
than catalase to peroxisomes. In aged cells, cellular levels of ROS
increase, and it is thought that such ROS may weaken PEX5
functions, with transport of catalase to peroxisomes being
preferentially compromised, as opposed to transport of SKI-
possessing proteins [8]. However, no clear evidence has been
provided supporting this speculation.

VCP belongs to the AAA class of ATPases and has been
shown to function in many cellular events, including ERAD
(endoplasmic reticulum-associated degradation), cell cycle con-
trol, membrane fusion, maintenance of Golgi apparatus, protein
aggregate formation and clearance, etc. (see refs in [9]). VCP
has also been shown to play important roles in several human
neurodegenerative disorders [10-12]. We have shown that VCP
is modified post-translationally at 60 amino acids, at least,
including 18 serines, 14 threonines, 6 tyrosines, and 22 lysines
[13]. To investigate the role of post-transcriptional modifications
of VCP, we created several modification-mimic forms of VCP,
and characterized them [12 14]. These analyses have revealed
novel VCP functions and have led us to speculate that VCP
may have unidentified functions. In this study, we report a
novel VCP function in regulation of intracellular HoOq levels
via the control of catalase localization.
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Materials and Methods
Antibodies

The following antibodies were purchased: anti-actin (Chemi-
con), anti-catalase (Calbiochem), anti-PTE! (ACOTS8) (Santa
Cruz), anti-FLAG M2 (Sigma), anti-PMP70 (Zymed), anti-HA
(Santa Cruz), and anti-PEX19 (BD PharMingen). The affinity-
purified rabbit polyclonal ant-VCP antibody was described
previously {13].

Plasmids and siRNAs

The cDNAs for PEX5, PEXI19, catalase, and PTS2 signal
sequences of ACAAL (acetyl-CoA acyltransferase 1) were ampli-
fied by RT-PCR from total RNA isolated from HeLa cells, and
their sequences were confirmed. The VCP. cDNAs (wtVCP,
VCP[K251A], VCP[K524A] [16]) or PEXS5 cDNA was subcloned
into pmCherry vector (Clontech). The PEX19 cDNA was
subcloned into pCMV-HA vector (Clontech).

The targeting sequences of siRNAs for VCP and PEX5 mRNAs
were as follows:

VCP(uc), 5'-CGGGAGAGGCGCGCGCCAT-3';

VCP(286), 5'-GGTTAATTGTTGATGAAGCCATCAA-3;

PEX5(192), 5'-CAAGCCTTTGGGAGTAGCTTCTGAA-3;

PEX5(955), 5'-GACCTTACGTCAGCTACCTATGATA-3".

Control, 5'-CGGACGCGTCAGGAGCCGGTT-3".

The siRNAs for PEX19 were purchased from Invitrogen
(Stealth Select RNAI, HSS108913 and HSS108914, respectively).

Cell Culture and Cell Lines

HeLa cells and HEK293A cells were grown at 37°C in
Dulbecco’s modified Eagle’s medium supplemented with 10%
fetal bovine serum. HeLa cell lines stably expressing organelle-
targeted GFPs were created by transfection of organelle-targeted
GFP expression vectors, and selected in the presence of 2.5 pg/ml
of puromycin (Invivogen). The HEK293A cell line stably
expressing GFP-catalase, was also created by similar methods.

Transfection and Immunostaining

Plasmid transfection was carried out using Lipofectamine plus
(Invitrogen), and siRNA transfection was carried out using
Oligofectamine (Invitrogen) according to the manufacturer’s
protocol. In co-transfection experiments, cells were transfected
with siRNA and plasmid using Lipofectamine 2000 (Invitrogen).

Cells were fixed with 4% formaldehyde for 10 min at room
temperature. Fixed cells were permeabilized with 0.5% Triton X-
100 in PBS for 10 min at room temperature and blocked with
blocking buffer (0.1% bovine serum albumin and 0.1% skim milk
in PBS) for 1 h. Cells were then incubated 1h at room
temperature with primary antibodies. Subsequently, cells were
treated with Alexa Fluor 488-conjugated secondary antibodies
(Invitrogen). To detect PMP70, fixed cells were permeabilized with
25 ug/ml digitonin in PBS for 5 min at room temperature, and
cells were processed for immunostaining as describe above.

Subcellular Fractionation and Immunoprecipitation

Cells were fractionated into cytosol, membrane/organelle, and
nucleus, using a Subcellular Proteome extraction kit (Calbiochem),
according to the manufacturer’s protocol. Immunoprecipitation
assays were performed as described previously [16]. Briefly,
samples were lysed on ice and debris was removed by centrifu-
gation for 30 min at 15,000 xg at 4°C. The supernatant was mixed
with an anti-HA or anti-FLAG antibody and rotated at 4°C
overnight after addition of protein G-Sepharose beads (Amersham
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Biosciences). After washing of beads, bound proteins were
analyzed by Western blot.

Intracellular ROS Detection

Cells were washed twice with HBSS and incubated with 5 pM
CM-HyDCFDA, a ROS-detection reagent (Invitrogen), in HBSS
at 37°C for 30 min. Subsequently, cells were washed twice with
HBSS and incubated with growth medium at 37°C for 30 min
with or without HyOs. Then cells were analyzed by FACScan flow
cytometer (BD Biosciences) or LSM510 confocal microscopy (Carl
Zeiss).

Statistical Analysis

Each experiment was conducted at least three times with
consistent results. The gel or blot representative of each
experiment is presented in this study. The statistical significance
was analyzed using Student’s ¢ test.

Results

Involvement of VCP in Intracellular Localization of
Catalase

In order to visualize organelle in live cells, we generated several
HelLa cell sublines in which GFP was expressed as a fusion protein
with a peroxisomal (PTS1 or PTS2)-, nuclear (NLS)-, ER (KDEL)-
, or mitochondrial (mito)-targeting signal. Among these, we
observed clear mislocalization of GFP-PTSI (namely, GFP-SKL
and GFP-KANL) into the cytoplasm when the cells were treated
with VCP siRNAs but not a control siRNA. VCP siRNAs
perturbed GFP-KANL localization much more severely than
GFP-SKL localization (Fig. 1A and B). By contrast, VCP siRNAs
did not induce clear mislocalization of PTS2-GFP, mito-GFP,
GFP-ER, or GFP-NLS (Fig. S1). We observed similar mislocaliza-
tion of GFP-KANL by expressing ATPase-negative or dominant-
negative VCP mutants, e.g. VCP{K251A] and VCP[K524A] [16]
(Fig. 82). In addition, treating cells with DBeQ), a VCP inhibitor
[17], also induced cytoplasmic localization of GFP-catalase
(Fig. 1C). These results suggest that the ATPase activity of VCP
is necessary for proper localization of catalase.

We then examined the effects of VCP knockdown on
intracellular localization of endogenous PTED or catalase. In
more than 50% of cells treated with VCP siRNAs, endogenous
catalase was diffusely observed in the cytoplasm. In contrast, PTEL
localization was not apparently affected by VCP knockdown
(Fig. 1D). These results were confimed by cell fractionation
experiments. VCP siRNA treatments increased the amounts of
catalase but not PTEl in the cytoplasmic fraction (Fig. 1E).
Mislocalization of catalase as well as GFP-KANL decreased in
cells treated with VCP siRNA together with cycloheximide (Fig.
S3), supporting the idea that newly synthesized catalase is
transported into peroxisomes with the help of VCP.

Interaction between VCP and PEX19

In order to obtain insights for molecular mechanisms underlying
VCP-mediated regulation of catalase localization, we searched for
VCP-interacting proteins using an immunoprecipitation method
followed by a very sensitive MS/MS analysis [18], and identified
PEX19 as a potential VCP-interacting protein. Indeed, we could
observe a physical association between VCP and PEXI19 via
immunoprecipitation and western blotting (Fig. 2). This interac-
tion appeared very weak, suggesting the possibility that vet-
unknown VCP modification may enhance this interaction. This
possibility remained to be clarified.
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Figure 1. VCP siRNAs induce cytoplasmic localization of catalase. (A) Cytochemical analysis of intracellular localization of GFP-KANL. Hela
cells continuously expressing GFP-KANL were treated with control siRNA (control) or VCP siRNAs (nc and 286). Seventy-two hours later, GFP images
were analyzed by confocal microscopy. Arrows indicate cells with cytoplasmic localization of GFP-KANL. (B) Quantification of cytochemical analysis on
GFP-KANL in (A) and on GFP-SKL. More than 200 cells were examined in each sample, and the fraction (%) of cells with diffuse GFP signals in the
cytoplasm were scored. **p<0.01, *p<<0.05. (C) Fluorescence microscopy analysis of intracellular localization of GFP-catalase. HEK293A cells
continuously expressing GFP-catalase were treated with 1 pM or 5 uM DBeQ, a VCP inhibitor [17], or DMSO for 24 hours, and then GFP signals were
detected. Arrows indicate cells with cytoplasmic localization of GFP-catalase. (D) Immunocytochemical analysis of intracellular localization of catalase
and PTE1. Hela cells were treated without (—) or with control siRNA (control), or VCP siRNAs (nc and 286). Seventy-two hours later, catalase and PTE1
were detected with anti-catalase and anti-PTE1 antibodies, respectively. Arrows indicate cells with cytoplasmic localization of catalase. (E) Western
blot analyses of protein levels of VCP, catalase, and PTE1 in different cell compartments. Hela cells were treated without (=) or with control siRNA
(control) or VCP siRNAs (nc and 286). Seventy-two hours later, cells were fractionated as described in Methods. Fractionated samples equivalent to
7.5 ug total protein of whole cell lysates were separated by SDS-PAGE and analyzed by western blotting using specific antibodies. Actin served as a
loading control.

doi:10.1371/journal.pone.0056012.g001
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Figure 2. Immunoprecipitation assays to detect physical interactions between VCP and PEX19. (A) HEK293A cells were transfected with
expression vectors for FLAG-VCP and HA-PEX19. Twenty-four hours later, cells were harvested and the cell lysates were analyzed by western blots
with antibodies indicated in the panels. Actin served as a loading control. (B) The immunoprecipitation was performed on the cell lysates in (A) with
an anti-FLAG or anti-HA antibody. The precipitates were analyzed by western blots with antibodies indicated in the panels. See details in Materials

and methods.
doi:10.1371/journal.pone.0056012.g002

Involvement of PEX19 in Intracellular Localization of

Catalase

Given that VCP could potentially make a complex with PEX19
and that VCP knockdown apparently affected the transport of
catalase into peroxisomes, PEX19 knockdown could also affect the
intracellular localization of catalase. Indeed, PEX19 knockdowns
produced virtually identical distributions of intracellular catalase as
were observed in VCP knockdowns (Fig. 3A and B). Moreover,
in PEX19 knockdown cells, PTE] localization was not apparently
affected (Fig. 3A and B). PEX19 is reportedly involved in the
transport of membrane proteins, such as PMP70 (peroxisome
membrane protein 70), to peroxisomes. However, we could not
detect any clear mislocalization of endogenous PMP70 in VCP-
depleted Hela cells (Fig. S4).

Consistent with previous reports, PEX5 knockdown induced
mislocalization of both catalase and PTE] (Fig. S5). It is notable
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that over-expression of PEX5 and VCP could not rectify the
mislocalization of GFP-KANL in VCP and PEX5 knockdown
cells, respectively (Fig. S6). These results indicate that VCP/
PEX19 complexes are required for PEX) to transport catalase,
but not other typical PTSI1- or PTS2-possessing proteins, to
peroxisomes.

VCP Activity, Catalase Localization, and ROS Levels

We next examined the possibility that VCP-depleted cells have
a greater capacity to scavenge HoO, as compared with non-
treated cells, due to the presence of catalase in the cytoplasm. This
was indeed the case. Basal ROS levels were reduced in cells
treated with VCP siRNAs compared to those treated with control
siRNAs (Fig. 4A). Reduction of ROS levels was more pronounced
when cells were treated with HoO, (Fig. 4A and B). We have
previously shown that the ATPase activity of VCP was inactivated
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Figure 3. PEX19 siRNAs also induce cytoplasmic localization of catalase. (A) Immunocytochemical analysis of intracellular localization of
catalase and PTE1. Hela cells were treated with control siRNA (control) or PEX19 siRNAs (#1; HSS108913 and #2; HS55108914). Seventy-two hours
later, catalase and PTE1 were detected as in (Fig. 1D). Arrows indicate cells with cytoplasmic localization of catalase. (B) Western blot analyses of
protein levels of VCP, catalase, PTE1, and PEX19 in different cell compartments. HelLa cells were treated with control siRNA (control) or PEX19 siRNAs
(#1; HSS108913 and #2; HSS108914). Seventy-two hours later, cells were analyzed as in (Fig. 1E).

doi:10.1371/journal.pone.0056012.g003
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