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Fig. 2. Changes in HO-1 expression after NC. A-D: Normal retina. E-H: One day after NC. I-
L: Four days after NC. M—P: Seven days after NC. HO-1 immunoreactivity was detected in the
GCL 4 days and 7 days after NC. Arrows indicate HO-1 in the GCL. Scale bar = 50pm.

NC, immunostaining showed that HO-1-positive cells
were present in the GCL (Fig. 2E,ILM). Double staining
for HO-1 and C38 protein showed that the cells express-
ing HO-1 were all RGCs, although not all RGCs
expressed HO-1 (Fig. 2H,L,P). We also found that, over
time, the ratio of C38 protein-stained RGCs to DAPI-
stained RGCs slowly decreased (P < 0.05; Fig. 3A). The
proportion of HO-1 positive cells, however, rose signifi-
cantly in the GCL after NC (P<0.05; Fig. 3B). This
tendency did not change near the optic nerve (500 pm)
and far from it (1,000 pm).

CoPP Upregulated the Expression of HO-1
Protein

It is difficult to collect cells including protein because
of their scarcity in the retina, especially after NC. We
could not obtain enough protein in purified RGCs for
immunoblot analysis, so we tried gPCR and immunoblot
analysis in the retina. The levels of Ho-1 mRNA in the
retina did not increase after 1 or 2 days of CoPP adminis-
tration (data not shown). However, 3 days of CoPP
administration resulted in increased Ho-1 mRINA expres-
sion. We therefore chose a CoPP treatment without NC
lasting for 6 days. The levels of HO-1 protein in the retina
also increased significantly 3 days after the injection of
CoPP (P<0.05; Fig. 4B). Additionally, immunofluores-
cence analysis showed that IP injection of CoPP induced
expression of HO-1 in the GCL (Fig. 4C).

Effects of CoPP on Protection of RGCs From NC

Before NC, there was no significant difference in
the density of FG-labeled RGCs in mice treated with

vehicle (3,160 * 435 cells/mm®), CoPP (3,549 * 475
cells/mm?), or a combination of CoPP and SnPP (3,156
+ 658 cells/mm?). Seven days after NC, the density of
FG-labeled RGCs in the mice treated with CoPP was
significantly higher than in those treated with vehicle
(1,313 = 137 cells/mm? and 868 * 253 cells/mm?,
respectively, P<0.01, P<0.05), whereas the mice
treated with a combination of CoPP and SnPP (808 =
262 cells/mm?) did not show a significant difference from
those treated with vehicle (Fig. 5).

DISCUSSION

It is well known that axonal damage induces significant
R GC death, but a small number of RGCs are neverthe-
less able to survive 7 days after NC. To search for new
treatments for retinal diseases, we tried to identify patterns
of change in the gene expression of these axonal-damage-
resistant RGCs. A microarray assessment of sorted post-
NC RGCs revealed that the expression of HO-1, in par-
ticular, increased significantly. Immunofluorescence anal-
ysis also revealed that a significantly higher proportion of
HO-1-positive cells was present in the RGCs 1, 4, and 7
days after NC and that the ratio of HO-1-positive cells in
the RGCs gradually increased during that time. Finally,
an examination of retinas pretreated with CoPP, which is
a nonsubstrate HO-1 inducer, revealed a higher density
of surviving RGCs after NC, whereas retinas pretreated
with both CoPP and SnPP showed no difference in
RGC survival from the untreated group. These data
strongly suggest that molecules expressed in surviving
RGCs, especially HO-1, contribute to the survival of
R GCs through a neuroprotective eftect.
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Fig. 3. Quantitative analysis of HO-1 positive cell numbers in the GCL after NC. The left and right
graphs represent measurements in arcas 500 um and 1,000 pm from the center of the optic nerve,
respectively. A: The ratio of C38 protein-stained RGCs to DAPI-stained RGCs (n =4 in cach
group). B: The proportion of HO-1 positive cells to C38 protein-stained RGCs (n =4 in cach

group). *P < 0.05.

RGCs represent only a small fraction of the total
retinal cell population, so it is easy to overlook responses
specific to them. To overcome this obstacle, we used
FACS, a technique capable of identifying RGC-specific
changes that has recently been introduced (Fischer et al.,
2004). FACS functions by isolating RGCs from other
cells and examining gene expression in them exclusively.
Our experience indicates that a combination of sorting by
retrograde fluorescent labeling and cell size is most useful
in isolating the RGCs and allows us to obtain the purest
samples. Moreover, in our previous research, cell sorting
very clearly revealed markers specifically expressed by
RGCs (Himori et al., 2013). The ratio of 4Di-10ASP
RGCs to 4-6-diamino-2-phenylindole (DAPI)™ cells
rose from only 0.2% to 96.4% with sorting (as shown in
Fig. 1). This high level of purity gave us exceptionally
large sample sizes for both the microarray and the qQPCR
analyses and allowed us to perform very effective statistical
analyses of biological variations and obtain highly reliable
results. The possibility remains, however, that our analysis
was affected by the exclusion of small RGCs. Therefore,
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further experiments may be required to provide more
precise results.

Our previous work showed that expression of Ho-
1 had increased 1 day after NC (Himori et al., 2013).
Four days after NC, Ho-1 continued to have a high level
of expression. Seven days after NC, moreover, expres-
sion of Ho-1 had increased still further. This study
included a microarray analysis of the purified RGCs,
which clearly showed high HO-1 expression in the sur-
viving RGCs 7 days after NC. Approximately 7 days
after NC, even though almost all the RGCs were dis-
rupted by the apoptotic reaction, a fraction of cells sur-
vived. Although factors other than HO-1 might rise
after injection of CoPP, we focused on HO-1 because
many researchers have suggested that HO-1 has a strong
cellular protective effect in RGCs and in Miller cells
(Arai-Gaun et al., 2004; Sun et al.,, 2010). Increased lev-
els of HO-1 protein have been observed in RGCs
exposed to hydrostatic pressure in vitro and in mouse
retinas exposed to acute elevated IOP (Liu et al., 2007).
Hypothesizing that the neuroprotective factor after NC
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Fig. 4. A: The left graph shows qPCR data on Ho-1 mRINA expres-
sion changes. B: Representative immunoblotting data, with antibodies
for HO-1 and B-actin (top and bottom), on retinal HO-1 induction
in mice pretreated with either vehicle or CoPP. The right graph
shows the band intensities of HO-1 relative to B-actin, measured with
densitometry (n = 3—4 in cach group). *P < 0.05. C: Immunofluorcs-
cence images showing the localization pattern of HO-1 protein. HO-
1 was detected only in the CoPP-pretreated retina without NC. Scale
bar = 20pum.

was stronger in these surviving RGCs than in the apo-
ptotic cells, we performed the microarray analysis, which
revealed the high expression of HO-1. Additionally,
experimental studies showed that free-radical scavengers
effectively prevented glaucomatous tissue injury, includ-
ing glutamate- and IOP-induced RGC death (Inomata
et al., 2006; Munemasa et al., 2009). Oxidative stress is
one of the most common stress signals inducing HO-1
expression, and it has been suggested that it plays a role
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Fig. 5. Eftect of HO-1 on RGC protection after NC. A: Representa-
tive photographs of RGCs in flat-mounted retinas. B: Quantitative
data on the density of RGCs after NC (n=4-7 in each group).
*P < 0.05, **P < 0.01. Scale bar = 50pum.

in signaling RGC death in glaucoma (Tezel, 2006; Guo
et al., 2011).

HO-1 belongs to the heat shock family of proteins,
a group that can function as antioxidants, antiapoptotics,
cytoprotectors, or anti-inflammatory agents in different
pathologic conditions. The induction of HO-1 is regu-
lated at the level of transcription by HSF1, AP-1, NFkp,
and Nrf2. Nrf2, in particular, has an important role in the
expression of HO-1 (Naidu et al., 2009; Koriyama et al.,
2010). Nrf2 normally resides in the cytoplasm bound by
its cytosolic inhibitor, Keapl, which targets it for proteo-
somal degradation (Itoh et al., 1997, 1999). Our previous
work suggested that the large quantity of ROS induced
by NC disrupts the association of Nrf2 and Keapl, which
leads to nuclear translocation of Nrf2 and the transcrip-
tional activation of cytoprotective genes (Himori et al.,
2013). We believe that mitochondrial dysfunction can
induce the generation of ROS and that HO-1 is a key
part of the antioxidant enzymes that form in response.
Additionally, members of the Bcl2 gene family, including
Bcl2, Belxl, and Bax, play an important role in regulating
RGC death in glaucoma (Nickells et al., 2008). Cell
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apoptosis stands out as one of the key parts of this biologi-
cal process. In this study, microarray and qPCR analyses
revealed that HO-1 is upregulated in the RGCs after NC.
Although this might reflect only the nature of NC injury,
pharmacological induction of HO-1 with CoPP has also
been shown, in a previous study, to contribute to the
reduction of RGC death and to play a beneficial role in
retinal protection after ischemia—reperfusion injury (Sun
et al., 2010). Sun et al. found that HO-1 was related to a
reduction in the recruitment of macrophage infiltration in
the retina through the suppression of monocyte chemoat-
tractant protein. A different study showed that a combina-
tion of astrocytes and microglia could prevent excessive
inflammatory responses in the brain by regulating micro-~
glial expression of HO-1 and production of ROS (Min
et al., 2006). Similarly, HO-1 probably has a role in the
inflammatory pathways involving NF-xB and MAPK sig-
naling, which are present in a commonly used model of
high-IOP-induced retinal ischemia. Previous reports have
shown that HO-1 overexpression can suppress inflamma-
tory responses such as NF-kB protein expression, inflam-
matory  cytokine  upregulation, and  macrophage
infiltration after high-IOP-induced retinal ischemia. We
have also reported, from our previous research, that the
upregulation of antioxidants via the Keap1-INrf2 pathway
was a very important part of the mechanism of cytoprotec-
tion (Himori et al., 2013). Building on our microarray
analysis, our future rescarch will include an ingenuity
pathway analysis to determine the most closely related oxi-
dative pathway involving HO-1.

In summary, microarray and qPCR. data analyses
indicated that RGC gene responses were closely linked to
optic nerve injury in our mouse NC model. Neuropro-
tective strategies have been proposed and are being inves-
tigated as new goals for glaucoma therapy. Effective
neuroprotection, aimed at salvaging functional RGCs and
their axons before they are irreversibly damaged, requires
early intervention and targeting of upstream events. Iden-
tification of the early clinical molecular events in RGCs
would add to our understanding of the nature of glauco-~
matous injury and provide potential targets for neuropro-~
tective strategies. This study demonstrates that inducing
the overexpression of HO-1 may have promise as a neu-
roprotective treatment for glaucoma, and in particular for
NTG, which is the most prevalent type of glaucoma in
Asian countries.
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