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Introduction

The nuclear receptor family is a large group of ligand-dependent or ligand-indepen-
dent transcription factors with 48 genes identified in the human genome. There is
accumulating evidence that nuclear receptors are very fascinating components in
terms of biological relevance to human diseases such as cancer, heart diseases, dia-
betes, and other lifestyle-related diseases or regulatory functions by natural and
synthetic ligands. However, because of the multifunctional properties of individual
nuclear receptor, the precise molecular behavior of nuclear receptors under physi-
ological circumstances 1s still far from being completely understood. In addition,
nuclear receptors have long been attractive drug targets and provide an enormous
body of knowledge about the medicinal chemistry of their small molecule modula-
tors. Importantly, many of the nuclear receptors are druggable targets, which is why
numerous natural and synthetic nuclear receptor ligands, mostly composed of the
steroid structural class, are on the market. The huge economic impact of those
ligands is represented by their estimated share of 10-15% of the global pharmaceu-
tical market. Many nuclear receptors are known as intrinsic components of immune
responses including glucocorticoid receptor (GR), retinoic acid receptors (RARS),
vitamin D receptor (VDR), peroxisome proliferator-activated receptors (PPARS),
and retinoid orphan receptors (RORs). Herein, we discuss our recent findings that
orphan nuclear receptor NR4A?2 is profoundly involved in the development of
autoreactive T cells and to be added to the list of beneficial molecular targets for
autoimmune diseases such as multiple sclerosis.

Functions of NR4A2 Orphan Nuclear Receptor

The members of the NR4A subfamily are expressed mostly at low levels in a wide
variety of metabolically demanding and energy-dependent tissues such as skeletal
muscle, adipose tissue, heart, kidney, liver, and brain [1]. On certain stimuli, how-
ever, they are induced to express at very high levels, reminiscent of immediate/early
genes. The diversity of signals leading to their expression suggests that they function
in a highly cell-type and context-dependent manner. NR4A?2 is mainly expressed in the
central nervous system (CNS), especially in the cortex, ventral midbrain, brainstem,
and spinal cord.

In general, nuclear receptors are composed of several conserved functional
domains including DNA-binding domain (DBD) with two zinc fingers in the
N-terminal region of the molecule and ligand-binding domain (LBD) in the
C-terminal region with less conserved structures. In the absence of specific ligands,
most of the nuclear receptors are inactive through interacting with co-repressor protein.
Upon ligand binding to a hydrophobic cleft in the LBD, a conformational reposi-
tioning occurs at the C-terminal amphipathic a-helix (H12) of the LBD that provide
a well-defined surface (activation-function 2, AF-2) recognized by co-activator
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Table 1 NR4A2 expressed in autoreactive T cells mediates production of inflammatory cytokines
and autoinmmune response

Intervention Target Readout IL-17
Transfection of NR4A2  EL4 Promoter activity (luciferase assay) 1
plasmid
Infection of NR4A2- Murine CD4 T cell ~ Protein expression 0
encoding retrovirus
NR4A2-specific sSiRNA  Murine CD4 T cell ~ Protein expression ]
NR4A2-specific siRNA ~ Human CD4 T cell Protein expression 1
NR4A2-specific siRNA ~ PLP-reactive T cell ~ Experimental autoimmune il
encephalomyelitis induction
(passive EAE)

proteins, leading to the formation of a multiprotein complex mediating gene activation
such as histone acetylation and other chromatin modifications. However, NR4A2
would encode unusual and atypical LBDs that lack canonical ligand-binding prop-
erties. Therefore, NR4A2 is believed to be a ligand-independent and constitutively
active receptor, and its activity is tightly controlled at the level of gene expression,
posttranscriptional modification, and multivalent complex formation with other
molecules. The DNA-binding motif for the NR4A family members is the octanucle-
otide 5'-A/TAAAGGTCA (NGFI-B response element, NBRE) where NR4A2 binds
as monomers and homodimers. The pro-opiomelanocortin gene promoter contains
another class of transcriptional target of homodimers (Nur-responsive element,
NurRE) with an inverted repeat of the NBRE-related octanucleatide, AAAT(G/A)
(C/T)CA.NR4A1 and NR4A2 also bind as heterodimers with the retinoid X receptor
(RXR) and bind a motif called DR-5. In addition, multivalent complex formation
of NR4A2 with other transcription factors enables it to show noncanonical DNA
binding. ’
NR4A2-deficent neonates die at birth because of a severe defect in respiratory
function even with having intact NR4A1/3 genes, suggesting the unique functional
property of NR4A2. Because of the selective expression of NR4A2 in the CNS,
most of the target genes of NR4A2 known to date are limited to this region. For
instance, NR4A2 is shown to play a role in the transcriptional activation of tyrosine
hydroxylase involved in the synthesis of dopamine. Another group of NR4A?2 tar-
get genes resides in those relevant to bone formation, such as osteopontin and
osteocalcin. NR4A1 (also known as Nur77) and NR4A3 (NOR-1) are suggested to
be expressed in thymus and mediate T-cell receptor-mediated T-cell apoptosis;
however, distribution and function of NR4A2 in immune cells is not well eluci- .
dated. Meanwhile, there is accumulating evidence suggesting the pivotal roles of
NR4A family members on inflammatory responses and that they are aberrantly
expressed in inflamed synovial tissue of rheumatoid arthritis, psoriatic skin, and
atherosclerotic lesions. Therefore, NR4A receptors may contribute to the cellular
processes that control inflammatory disorders including autoimmunity (Fig. 1).
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Fig. 1 Versatile function of NR4A2 on various biological responses. NR nuclear receptor

NR4A2 in Autoimmunity

Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS, accompany-
ing multiple foci of inflammatory demyelinating lesions. MS is thought to have an
autoimmune pathogenesis, which is mediated by autoimmune T cells reactive to
myelin antigens such as myelin basic protein (MBP), myelin oligodendrocyte gly-
coprotein (MOG), and proteolipid protein (PLP). Development of inflammatory
processes within the CNS is triggered by proinflammatory cytokines and chemokines
produced by the autoimmune T cells after their entry into the CNS. Notably, the
encephalitogenic T cells need to be preactivated in the periphery before they pene-
trate into the CNS parenchyma. A large portion of the pathogenic Th cells that
mediate autoimmunity secrete proinflammatory cytokines and chemokines after
recognizing self-antigen in a major histocompatibility complex (MHC) class
II-restricted manner. Previously it was thought that CD4* IFN-y-secreting Th1 cells
played a central role in causing autoimmune diseases, but the discovery of Th17
cells with a significant pathogenic activity in autoimmunity has opened the gate for
new directions of research [2, 3]. Although interleukin (IL)-12 controls Th1 differ-
entiation from naive CD4* T cells, transforming growth factor (TGF)-f3 in combina-
tion with IL-6 is appreciated as the classical Th17 cell-differentiating cytokine
milieu. Th1 cells express the lineage marker transcription factor T-bet; Th17 cells
express another transcription factor, ROR-yt. There is now a consensus that both.
Th1 and Th17 cells contribute to the development of autoimmune disease, including
MS, and that the relative contributions of either of these different helper T-cell pop-
ulations might explain diversity in clinical and pathological manifestations of auto-
immune diseases as well as in their response to therapy.

Experimental autoimmune encephalomyelitis (EAE) is a prototype autoimmune
disease model that has greatly contributed to elucidating the pathogenesis of MS.
EAE can be induced in laboratory animals by active immunization with myelin anti-
gens or by passive transfer of myelin antigen-specific T cells. Because Th1 cell clones
reactive to MBP, PLP, or MOG are capable of inducing clinical and pathological

— 50 —
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manifestations of EAE in naive mice, Thl cells producing interferon (IFN)-y have
long been believed to play a central role in the pathogenesis of MS. However, the “Th1
disease” dogma has been challenged by contradicting results obtained from rodent
models of MS. Namely, despite obvious lack of Th1 cells, gene-targeted mice deficient
for IFN-y or IFN-y receptor are still susceptible to EAE. Furthermore, mice deficient
for IL-12 signaling were found to develop EAE. Subsequent studies have clarified that
IL-23 rather than IL-12 is essential for the development of EAE. Lately, it was revealed
that the IL.-23-dependent pathogenic T cells would represent Th17 cells, a novel helper
T-cell subset characterized by production of IL-17. Currently, it is widely appreciated
that Th17 cells play an important role in the development of inflammatory autoim-
mune diseases, either independently or collaboratively with Th1 cells.

DNA microarray analysis previously revealed upregulation of IL-17 as well as the
downstream transcripts in the brain lesions of MS. More recently, a pathological study
has demonstrated that IL-17-secreting T cells are present in active rather than chronic
lesions of MS. These results indicate that Th17 cells actively participate in the autoim-
mune inflammation in the MS brain. Gene expression profiling for brain lesions of
MS provided a number of potential candidate molecules that might be appropriate as
a therapeutic target. Similarly, microarray analysis of peripheral blood could help
characterize a disease signature of MS, leading to an identification of potential thera-
peutic targets. We have previously characterized gene expression profile of peripheral
blood T cells derived from Japanese MS patients and found that expression of the
nuclear orphan receptor NR4A2 is most significantly augmented in MS compared
with healthy subjects [4]. Quantitative reverse transcriptase-polymerase chain reac-
tion (RT-PCR) analysis consolidated the overexpression of NR4A2 in the peripheral
T cells of MS, and expression of NR4A2 in T cells from MS showed an approxi-
mately fivefold increase compared to those from healthy donors. NR4A2 mutations
are well known to cause familial Parkinson’s disease, reflecting its essential role in the
development and survival of substantia nigra neurons. In contrast, much less attention
has been paid to its functional role in T cells. More than a decade ago, NR4A1 and
NR4A3 were shown to mediate apoptotic processes of mature as well as immature T
cells. However, these studies do not give insights into the functional implication of
upregulated expression of NR4A2 in T cells from MS. Therefore, we have begun
functional analysis of NR4A?2 as an important molecule regulating the Th1/Th17 cell
function through expression of key cytokines including I1.-17 and IFN-y in the patho-
genesis of MS. Although NR4A?2 is a transcription factor of the steroid/thyroid recep-
tor family and has been implicated in various cellular responses such as steroidogenesis,
neuronal development, atherogenesis, and cell-cycle regulation, the physiological role
of NR4A2 in the development or regulation of T-cell-mediated autoimmune diseases
is unknown. Therefore, we have explored the functional involvement of NR4A2 in
EAE, a representative rodent model of MS. To explore the possible involvement of
NR4A2 in EAE induced in B6 mice by immunization with MOG peptide, T-cell
expression of NR4A2 was measured by quantitative RT-PCR. NR4A2 expression in
peripheral T cells gave a maximum value on day 21, and the entire expression pattern
of NR4A2 in peripheral blood mononuclear cell (PBMC) T cells was well correlated
with the clinical severity of EAE. Meanwhile, remarkable expression of NR4A2 was
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observed in the CNS-infiltrating T cells on day 9, when an early sign of EAE becomes
evident. NR4A2 expression was induced in EAE T cells, but the kinetics of expression
- significantly differs between PBMC T cells and CNS-infiltrating T cells. Recent stud-
ies have indicated that autoimmune Th17 rather than Thl cells would play a central
role in causing autoimmune inflammation, and a major proportion of the CNS-
infiltrating cells were found to produce IL-17 or IFN-y. Therefore, T cells accumulat-
ing in the CNS are characterized by massive production of inflammatory cytokines
with an intensive expression of NR4A2. The concomitant expression of inflammatory
cytokines and NR4A2 in the CNS-infiltrating T cells has guided us to investigate
whether NR4A2 directly affects gene expression of inflammatory cytokines as a tran-
scription factor in T cells. Luciferase assay for IL-17 promoter has revealed that trans-
duction of NR4A2 gene would result in upregulation of promoter activity for IL-17 in
the ELA4 cell line. In addition, NR4A2 transduction by retroviral infection containing
NR4A2 gene fragment with GFP into CD4 T cells showed an enhancement of 1L-17
expression. Intriguingly, when the small interfering RNA (siRNA) specific for NR4A2
was introduced into encephalitogenic T cells induced after immunization with PLP
peptide into SJL mice, progression of clinical disease and histological severity of EAE
passively induced by the encephalitogenic T cells was significantly prevented in
the siRNA-treated group as compared with control RNA-treated group. Furthermore,
evaluation of cytokines in the supernatant has revealed that the siRNA treatment
significantly reduced the production of IL-17 by T cells from both healthy donors and MS
patients. These results support the important role of NR4A?2 in the regulation of cytokine
production in pathogenic T cells and modulation of NR4A2 expression by specific
siRINAs or putative chemical compounds might be a promising treatment for intervention
of active MS that are harboring more potent IL-17-producing T cells [5] (Table 1).

Direct and Indirect Modulators of NR4A2

As summarized in the previous section, we have identified NR4A?2 as the most
highly upregulated gene among circulating T cells in MS patients. In addition, we
observed increased expression of NR4A?2 transcripts in the blood and CNS of mice
following EAE induction. Forced expression of NR4A2 led to enhanced Thl and
Th17 responses whereas reducing NR4A?2 expression decreased the encephalitoge-
nicity of autoimmune T cells in a model of passive EAE. Therefore, NR4A?2 has
been implicated as a promising molecular target for MS therapy. Intriguingly, the -
NR4A subfamily of nuclear receptors has been implicated not only in MS but also
in theumatoid arthritis, psoriasis, atherogenesis, Parkinson’s disease, schizophrenia,
manic depression, Alzheimer’s disease, and cancer, which has led to great interest
in the identification of selective low molecular weight modulators that is helpful for
analyzing the mode of action of the NR4A subfamily [6].

An antineoplastic and antiinflammatory drug, 6-mercaptopurine, has been shown
to activate NR4A2, possibly by modulating the cellular content of purine nucleotides.
NR4A2 expression is induced by forskolin through the activation of Erk1/2. A num-
ber of typical and atypical antipsychotic drugs such as haloperidol, chlorpromazine,
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and clozapine induce the transcription of NR4A2. In contrast, methotrexate
significantly suppresses expression of NR4A2 in patients with active psoriatic arthri-
tis. Interestingly, the expression level of NR4A2 after treatment with methotrexate is
well correlated with disease activity score. In addition, glucocorticoid has been shown
to inhibit NR4A?2 expression. Although growing numbers of modulators have been
described, all these indirect modulators are selective enough to intervene NR4A2
activity. Therefore, the therapeutic utility of NR4A2 will depend on whether novel
modulators directly interacting with NR4A2 can be developed.

Using a NR4A2 luciferase reporter gene assay, a number of micromolar acti-
vators of NR4A2 has been identified in a combinatorial library of benzimidazole,
which has a structural overlap with known nuclear receptor ligands [7]. After
screening of substituents having a structurally different moiety, a couple of potent
NR4A2 activators (EC, =8-70 nM) was developed based on this benzimidazole
scaffold. Another approach using a similar reporter gene assay identified a novel
class of NR4A2 activators, isoxazolo[4,5-c]pyridin-4-one [8]. After screening of
substituents having a structurally different moiety, a couple of very potent
NR4A2 activators (EC, =0.8-3.9 nM) were developed based on this scaffold.
Through pharmacokinetic experiments, some of these compounds have been
shown to have excellent oral bioavailability and rapid distribution in mice. Even
though most of these compounds are NR4A2 agonists, there is another class of
NR4A?2 modulators, 1,1-bis(3'-indolyl)-1-(p-substituted phenyl) methanes, that
provide both NR4A?2 agonist and antagonist [9] (Fig. 2). Ligands for RXR are

OH "

Benzimidazole derivatives

X

Isoxazolo(4,5-c)pyridin-4-one

O

N
b N
1,1-Bis(3"-indolyl)-1-(p-substitutedphenyl) methanes

Fig. 2 Known chemical structures directly modulating NR4A2 function. R represents alkyl side
chain; X is either H, OH, OMe, or CF3
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another class of potent NR4A2 modulators as RXR potentially forms a heterodimer
with NR4A2. The weak RXR agonist HX600 was found to activate NR4A2-RXR
heterodimers [10].

Conclusion

We have demonstrated that NR4A2 may represent a promising target for MS and
other autoimmune diseases. There were some clinical trials for MS of neutralizing
the relevant cytokines IL-17 and IL-23 by specific antibodies, neither of which
revealed significant beneficial effects on MS symptoms. Our results demonstrated
that NR4A?2 acts as an early event in the differentiation of pathogenic T cells, and
thus modulating NR4A?2 activity may allow a more complete inhibition of effector
responses of pathogenic T cells compared with cytokine neutralization.
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