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with our findings that vascular density was significantly
enhanced, and myocardial apoptosis and fibrosis was sig-
nificantly attenuated in the co-cultured group, it is possible
that the co-cultured cell-sheet transplantation induced an-
giogenesis partially through the Jak/STAT signaling path-
way'® and that it prolonged cell survival by preventing
apoptosis through PI-3K/Akt-mediated signaling, which is
partially modulated by HGF.*!

Although we emphasized combining SMBs with h-MSCs,
some investigators have focused on different combinations
of various cell sources. Sekine et al.** reported that cardio-
myocytes co-cultured with endothelial cells induce greater
numbers of capillaries, due to increased secretion of angio-
genic growth factors.”> Another report showed that a dermal
fibroblast sheet co-cultured with endothelial progenitor cells
was more effective than either single cell-type sheet for im-
proving damaged heart function, accompanied by the inhi-
bition of fibrotic tissue formation and the acceleration of
neovascularization in the infarcted myocardium.* Thus, the
paracrine effect may be improved by combining different cell
sources; however, further investigation focused on deter-
mining the optimal combinations of cell sources is needed.

Regarding h-MSCs as a cell source, bone marrow-derived
or adipose tissue-derived stem cells are reported to differ-
entiate into mature endothelial cells and participate in blood
vessel formation in the recipient heart.** The presence of
endothelial capillary networks improves the survival and
organization of implanted cells by maintaining a minimum
intercapillary distance to provide oxygen and nutrients.
Therefore, the presence of endothelial capillary networks
may be partially correlated with cardiac function.

For future tissue engineering for cardiac therapy, the cre-
ation of thick cell-dense constructs with functional vessels
may be essential. Capillary formation occurs via two basic
vessel-constructing processes: angiogenesis, that is, the for-
mation of new capillaries via sprouting or intussusception
from pre-existing vessels, and vasculogenesis, which occurs
in the developing embryo.”” Here, the morphology of the
vessel formation within myocardial tissues, including the
diameter, composition, and fragility of vessel walls, sug-
gested that improper vascularization may occur under
pathological conditions. It is likely that not only biological
factors but also physical stimuli such as flow and shear stress
are required to mimic the in vivo environment and enable the
formation of mature vascular networks.

A potential limitation of this study is that the exact
number of transplanted cells was different in each group
in vivo. Clinically, open-chest surgery is unlikely to gain easy
acceptance except in certain situations; however, less inva-
sive methods (e.g., intracoronary catheter-based procedures)
might be technically difficult for carefully placing the cell
sheets. Additionally, further studies that include longer
timeframe than 8 weeks are needed to examine a longer term
restoration of heart function post-ML It is likely that the
source of HGF is the transplanted SMB; however, it is un-
clear whether the source of other therapeutic cytokines is the
transplanted cells, such as SMBs, MSCs, or both, or native
cardiac cells.

In conclusion, we found that h-MSCs enhanced the para-
crine effects of r-SMB sheets, thus enhancing angiogenesis,
lowering fibrosis, inhibiting cellular hypertrophy, improving
cardiac function, and prolonging cell survival in MI model

SHUDO ET AL.

rats. These observations of improved effects from this co-
cultured cell sheet may lead to new regeneration therapies
for heart failure following advanced cardiomyopathy that
are superior to the conventional SMB-only cell-sheet tech-
nique.
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Abstract

Purpose Myocardial infarction (MI) remains a major
cause of mortality because of the limited regenerative
capacity of the myocardium. Transplantation of somatic
tissue-derived cells into the heart has been shown to
enhance the endogenous healing process, but the magni-
tude of its therapeutic effects is dependent upon the
cell-source or cell-delivery method. We investigated the
therapeutic effects of C-Kit positive cardiac cell (CSC)
cell-sheet transplantation therapy in a rat model of MI.
Methods and results CSCs of human origin were sorted
and cultured to generate scaffold-free CSC cell-sheets.
One-layered or 3-layered cell-sheets were transplanted into
nude rats 1 h after left coronary artery ligation. We
observed a significant increase in the left ventricular
ejection fraction and a significant decrease in left ventric-
ular systolic dimension at 2 and 4 weeks in the 3-layer
group, but not in the 1-layer or sham groups. Consistently,
there was less accumulation of interstitial fibrosis in the
3-layer group than in the 1-layer or sham groups. More-
over, capillary density was significantly greater in the
3-layer group than in the 1-layer or sham groups.
Conclusions The 3-layered cell-sheet improved cardiac
function associated with angiogenic and anti-fibrotic
effects. Thus, CSC is a promising cell-source to use with
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the cell-sheet method for the treatment of cardiac failure, as
long as a sufficient number of cells are delivered.

Keywords Cardiac - Stem cell - Myocardial infarction

Introduction

The limited regenerative capacity of the myocardium accounts
for the fact that cardiac failure related to myocardial infarction
(MI) remains a major cause of morbidity and mortality
worldwide, despite major advances in medical and/or inter-
ventional treatments [ 1]. The treatment of cardiac failure relies
on strategies that are designed to target and/or limit residual or
persistent myocardial ischemia, additional myocardial dam-
age, pathological cardiac remodeling, and hemodynamic
impairment, including cardiac dyssynchrony [2]. On the other
hand, the transplantation of somatic tissue-derived stem/pro-
genitor cells into the heart has been shown to enhance the
endogenous healing process of the damaged myocardium,
while the magnitude of the therapeutic effects are dependent on
the cell-source, cell-number, cell-delivery method, and target
cardiac pathology [3-5]. It has been shown that the trans-
plantation of C-kit-positive heart-derived cells into the MI
heart yields functional recovery, mediated by proliferation and
differentiation into the heart-composing cells in situ, and by
releasing cardioprotective factors that activate native healing
processes [6]. However, the optimal preparation and delivery
method of CSCs into the heart has not been established.

The cell-sheet method, in which aggregated cells in a
sheet shape cultured under a thermoresponsive dish are
attached to the epicardial surface [7], has been shown to
deliver a large scale of cultured cells with minimal damage
to the cells or native cardiac tissues [&]. This enhances its
therapeutic effects and minimizes inflammation-related
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complications, representing a promising cell-delivery
method in CSC transplantation therapy [¥]. However, there
are concerns about potential ischemia of the implanted cell-
sheet, which would limit cellular function, survival, and
therapeutic potential. According to a previous study, a
3-layered cell-sheet generated by skeletal myoblasts
showed greater therapeutic effects than a 1-layered cell-
sheet, while a 5-layered cell-sheet did not enhance the
effects, possibly because of ischemia in the implanted cell-
sheet [10]. Based on the hypothesis that the therapeutic
potential of CSC cell-sheet treatment might be dependent
on the number of layers of the cell-sheet, we investigated
the therapeutic effects of CSC cell-sheet transplantation
therapy on MI hearts using a rat model.

Methods

All studies using human tissues and experimental animals
were carried out under approval of the institutional ethical
committee. Human tissues were collected only after
obtaining written informed consent. This investigation
conforms to the Principles of Laboratory Animal Care
formulated by the National Society for Medical Research
and the Guide for the Care and Use of Laboratory Animals
(US National Institutes of Health Publication No. 85-23,
revised 1996). All experimental procedures and evaluations
were carried out in a blinded manner.

Isolation and culture of C-Kit-positive human cardiac
cells and cell-sheet generation

Discarded cardiac tissue samples were taken from the left
ventricular apex of a 31-year-old man with dilated car-
diomyopathy, requiring daily cardiovascular procedures in
Osaka University Hospital. Cardiac cells were dissociated
from the tissues, cultured, and then sorted for C-kit using
FACSAria (BD Biosciences) to yield C-Kit positive car-
diac cells, which were then cultured for expansion with
multiple passages. The cells were then incubated in ther-
moresponsive dishes (35 mm UpCell, CellSeed, Tokyo,
Japan) at 37 °C for 2 days prior to transplantation, when
the cells were incubated at 25 °C to induce their sponta-
neous detachment, to yield a mono-layered scaffold-free
CSC cell-sheet that included 1.5 x 10° cells (Fig. 1a). The
3-layered cell-sheet was generated by filling up the mono-
layered cell-sheet, as described previously [10].

Generation of AMI model and CSC cell-sheet
transplantation

Thirty-nine athymic female nude rats, 8 weeks of age, were
subjected to permanent ligation of the left coronary artery

Fig. 1 A mono-layered cell-sheet was generated by c-kit positive
cardiac cells of human origin on thermoresponsive dishes in vitro (a).
A mono-layered or 3-layered cell-sheet was transplanted over the left
ventricular free wall of the rat heart, which had been subjected to
ischemia by permanent ligation of the corresponding coronary artery,
1 h prior to the treatment (b)

(LCA) under general anesthesia with endotracheal intuba-
tion and isoflurane inhalation, as previously described [10].
LCA ligation-related death occurred prior to treatment in
16 %. The rats that survived for 50 min after the ligation
were randomly assigned to the following three treatment
groups: transplantation of a 3-layered cell-sheet (n = 12),
transplantation of a I-layered cell-sheet (n = 10), or a sham
operation (n = 11). In the two transplantation groups, the
cell-sheet was attached directly to the epicardial surface of
the ischemic/infarct area (Fig. 1b) [10]. The cell-sheet was
large enough to cover all of the ischemic or infarcted area.
By 20 min after the transplantation, when the cell-sheets
were properly fixed to the cardiac surface, the chest was
closed and the rats were allowed to recover in individual
temperature-controlled cages until they were killed 28 days
after the treatment.

Transthoracic echocardiography
Transthoracic echocardiography was performed under
isoflurane inhalation, using a system equipped with a

12 MHZ transducer (GE Healthcare). Diastolic and sys-
tolic dimensions of the left ventricular diastolic and
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systolic dimensions (LVDD and LVDS, respectively) were
measured at the papillary muscle level by the M-mode,
while the LV ejection fraction (LVEF) was calculated by
the following formula: (LVDD*-LVDS?*/LVDd® x 100
[ig, 11].

Histology

The ventricles were immerse-fixed in 4 % paraformalde-
hyde, embedded in paraffin, and cut into 5 micrometres
using a microtome for histological studies. The sections
were stained by hematoxylin—eosin (HE) or Masson tri-
chrome (MT) and assessed by optical microscopy (Olympus,
Tokyo, Japan). Metamorph software was used to separate
stained and non-stained myocardium by MT staining and to
quantitatively calculate each area. The sections were labeled
immunohistologically by polyclonal anti-von Willebrand
factor antibody (vWF, DAKO, Glostrup, Denmark), and
visualized by the LSABTM kit (DAKO), which is an auto-
mated immunostaining system based on the LSAB Lepto
strept avidin—biotin-peroxidase method. The sections were
labeled immunohistologically by the anti-human-specific
HLA antibody or anti-cardiac troponin (cTn) I antibody,
visualized by corresponding secondary antibodies that were
counterstained by DAPI, and assessed by confocal micros-
copy (Olympus).

Statistics

Values are expressed as mean = SEM. The three groups
were compared with 1-way or 2-way ANOVA as appro-
priate, followed by the Fisher protected least-significant
difference test, or the Kruskal-Wallis test, followed by the
post hoc pairwise Wilcoxon-Mann—Whitney U test, as
appropriate. Differences were considered significant at
P < 0.05. All analyses were performed using SPSS for
Windows (SPSS, Chicago, IL, USA).

Results

Functional recovery following CSC cell-sheet
transplantation

Scaffold-free CSC cell-sheet was prepared from primary
C-kit positive cardiac cells of human origin, cultivated in
thermoresponsive dishes. We transplanted the 1-layered or
3-layered cell-sheets onto the epicardial surface of the nude
rat 1 h after the permanent LCA ligation. A sham operation
was performed for the control group. Cardiac performance
was serially assessed by transthoracic echocardiography
just after the treatment (baseline), and then 1, 2, and
4 weeks after the treatment.

@ Springer

Before any intervention, the LVEF, LVDD, and LVDS
did not differ significantly among the groups (Fig. 2).
However, for 4 weeks after treatment, the LVEF showed a
significantly progressive reduction, while the LVDD and
LVDS showed a significantly progressive increase in the
sham group and the 1-layer group. Conversely, in the
3-layer group, the LVEF showed a significant increase, and
the LVDS showed a significant decrease 2 and 4 weeks
following the transplantation, while the LVDD did not
change significantly in this group over the 4 weeks.
Notably, the LVEF in the 3-layer group was significantly
greater than that in the 1-layer group or sham group, while
the LVDS in the 3-layer group was significantly lower than
that in the 1-layer group or sham group. The LVDD did not
differ significantly among the groups at any time.

Histological reverse LV remodeling following CSC
cell-sheet transplantation

We assessed gross structure, interstitial fibrosis and capil-
lary distribution in the myocardium 4 weeks after the CSC
cell-sheet transplantation to qualitatively and semi-quanti-
tatively explore the degree of L'V remodeling in each group
by HE staining, Masson Trichrome staining, and immu-
nohistolabelling for von Willebrand factor, respectively.
The infarcted area, in which the cell-sheet was trans-
planted, was clearly thicker in the 3-layer group than in the
1-layer or sham groups, as assessed by the HE staining
(Fig. 3a—c). In addition, the myocardial structure in the
peri-infarcted area was better preserved in the 3-layer
group than in the 1-layer group or the sham group. There
seemed to be less accumulation of interstitial fibrosis in the
peri-infarcted and infarct-remote myocardium of the
3-layer group than in the 1-layer group or sham groups
(Fig. 3d-f). In fact, computer-based morphometry con-
firmed significantly less fibrosis in the 3-layer groups than
in the 1-layer group or sham group (Fig. 4a). Capillary
density in the peri-infarcted myocardium was significantly
greater in the 3-layer group than in the 1-layer group or
sham group (Fig. 4b).

Phenotypic fate of the transplanted CSCs in the heart

The transplanted CSCs in the heart were phenotypically
assessed by immunohistolabelling for human-specific
HLA, which clearly dissected the transplanted cells in the
native cardiac tissue. While the transplanted cells were
rarely present in the 1-layer group 4 weeks after trans-
plantation, the 3-layer group showed abundant human-
specific HLA-positive transplanted cells in the tissues
epicardially attached to the native cardiac tissue, which
were assumed to consist of the remaining transplanted cell
sheet and accumulated cells of native origin (Fig. Sa).
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Notably, some human-specific HLA-positive transplanted
cells were present in the native myocardium, suggesting the
migration of transplanted cells into the native cardiac tissue
(Fig. 5b—d).

Discussion

This study demonstrated clearly that the transplantation of
CSC cell-sheets to treat the MI heart yielded significant
recovery of cardiac performance in a cell-sheet layer
dependent manner. Consistently, the hearts transplanted
with the multi-layered cell-sheet showed significantly more
preserved gross myocardial structure, reduced interstitial
fibrosis, and increased capillary density than the hearts
transplanted with a mono-layered cell-sheet. Moreover, the
differentiation of heart-composing cells, including cardio-
myocytes, endothelial cells, and vascular smooth muscle
cells, was greater in the hearts transplanted with the multi-
layered cell-sheet than in those transplanted with the mono-
layered cell-sheet.

The transplanted cell-source is known to be a major
determinant of the therapeutic effects of cell transplanta-
tion therapy for cardiac failure [10-12]. The transplantation
of skeletal myoblast transplantation predominates anti-
fibrotic effects, whereas that of bone marrow-derived cell

3‘%’;%7

transplantation predominates neoangiogenesis in the
ischemic/infarcted myocardium. These effects are medi-
ated by indirect effects, in which cell transplantation
upregulates a variety of cardioprotective factors to enhance
the native healing process, although differentiation of the
transplanted cells into the functional heart-composing cells,
such as cardiomyocytes or vascular cells rarely occur fol-
lowing the transplantation of skeletal myoblasts or bone
marrow-derived cells [13, 14]. In contrast, the transplan-
tation of CSCs has been shown to yield therapeutic effects
both directly and indirectly [15, 16]. This study showed
that the transplantation of CSCs induced both anti-fibrotic
and neoangiogenic effects in a transplanted cell number-
dependent manner, indicating that CSCs might have
released soluble factors to activate the anti-fibrotic and
angiogenic process of the native myocardium following the
transplantation. Moreover, the differentiation into the
cardiomyocytes and vascular cells, shown in this study,
suggests potential direct contribution of these cells to
functional recovery, although the magnitude of these direct
effects on the global cardiac function remains unclear.
The number of transplanted cells is also an important
contributor to the therapeutic effects. Although the cell-
sheet method has been shown to deliver more cells into the
heart than other delivery methods, such as intramyocardial
or intracoronary injection [10], ischemia in the transplanted
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Fig. 3 The gross structure of the heart 4 weeks after treatment was
assessed by H&E staining. The sham group (a) and the 1-layer group
(b) showed a large infarcted area in the left ventricular (LV) free wall,
but the 3-layer group (c) showed a better preserved LV free wall.
Interstitial fibrosis 4 weeks after the treatment was assessed by
Masson Trichrome staining, which showed more accumulated fibrosis
in the sham group (d) and the 1-layer group (e) than in the 3-layer
group (f)

cell-sheet might be a critical limiting factor to the effects.
In fact, it was reported that ischemia-related cell-necrosis
occurs in the transplanted cells in accordance with the
number of cell-sheets filled up [10, 17]. Furthermore, our
researchers reported previously that the therapeutic effects
of skeletal myoblast cell-sheets increased with the number
of layers, but plateaued at five layers, possibly because of
ischemia-related functional impairment of the transplanted
cell-sheet, although skeletal myoblasts are known to be
highly resistant to ischemic stimuli [10, 18, 19]. This study
showed that the therapeutic effects of the CSC cell-sheet
increased up until three layers, despite poor vascular sup-
port after acute infarction of the cell-sheet transplanted
area, warranting 3-layered CSC cell-sheet transplantation
for treating ischemia-related cardiac failure. Integration of
the transplanted CSC cell-sheet into the native myocardium
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Fig. 4 Masson Trichrome staining revealed a significantly lower
percentage of fibrosis 4 weeks after the treatment in the 3-layer group
than in the sham or 1-layer groups (P < 0.05 vs. the sham and the
1-layer group). Capillary density 4 weeks after treatment, assessed by
immunohistochemistry for von Willebrand factor, was significantly
greater in the 3-layer group than in the sham or 1-layer groups
(P < 0.05 vs. the sham and the 1-layer group)

is also a concern of this treatment, as the cell-sheet was
simply attached to the epicardial surface. However, this
study unveiled that the transplanted cells migrated into the
native myocardium and differentiated to heart-composing
cells, although the biological mechanisms of this migration
process remain unclear.

This study is limited by fact that we used a rodent model
transplanted with cells of human origin. The difference in
factors related to biological actions between the rat and the
human might have modulated the therapeutic effects of this
treatment, although a number of previous reports would
justify using this model to mimic the clinical scenario
[17, 20]. Moreover, using the cells from one patient in the
in vivo study might not be appropriate to investigate
the effects of CSC of human origin in general, although the
cellular behavior did not seem to differ among more than
five patients in vitro (data not shown), in accordance with
previous reports [21].

In conclusions, the 3-layered cell-sheet improved car-
diac function associated with angiogenic and anti-fibrotic
effects in a rat model. Thus, the delivery of a sufficient
number of CSCs by a cell-sheet method represents a
promising treatment for cardiac failure, although further
optimization is essential.
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Fig. 5 The presence and
distribution of transplanted
CSCs of human origin were
immunohistologically assessed
using human-specific anti-HLA
antibody. By 4 weeks after
transplantation, the 3-layer
group showed abundant human-
specific HLA-positive
transplanted cells in tissues that
were epicardially attached to the
native cardiac tissue (a). Some
human-specific HLA-positive
transplanted cells were present
in the interstitivm of the native

myocardium (b-d)
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Human Cardiac Stem Cells With Reduced Notch Signaling

Show Enhanced Therapeutic Potential in a Rat
Acute Infarction Model

Takenori Matsuda; Shigeru Miyagawa, MD, PhD; Satsuki Fukushima, MD, PhD;
Satoru Kitagawa-Sakakida, MD, PhD; Hiroshi Akimaru, PhD; Miki Horii-Komatsu, BSc;
Atsuhiko Kawamoto, MD, PhD; Atsuhiro Saito, PhD;

Takayuki Asahara, MD, PhD; Yoshiki Sawa, MD, PhD

Background: Because human cardiac stem cells (CSC) have regeneration potential in damaged cardiac tissue,
there is increasing interest in using them in cell-based therapies for cardiac failure. However, culture conditions, by
which CSCs are expanded while maintaining their therapeutic potential, have not been optimized. We hypothesized
that the plating cell-density would affect proliferation activity, differentiation and therapeutic potential of CSCs through
the Notch signaling pathway.

Methods and Results: Human CSCs were plated at 4 different densities. The population doubling time, C-KIT
positivity, and dexamethasone-induced multidifferentiation potential were examined in vitro. The therapeutic poten-
tial of CSCs was assessed by transplanting them into a rat acute myocardial infarction (AMI) model. The low plating
density (340cells/cm?) maintained the multidifferentiation potential with greater proliferation activity and C-KIT
positivity in vitro. On the other hand, the high plating density (5,500 cells/cm?) induced autonomous differentiation
into endothelial cells by activating Notch signaling in vitro. CSCs cultured at low or high density with Notch signal
inhibitor showed significantly greater therapeutic potential in vivo compared with those cuitured at high density.

Conclusions: CSCs cultured with reduced Notch signaling showed better cardiomyogenic differentiation and
therapeutic potentials in a rat AMI model. Thus, reducing Notch signaling is important when culturing CSCs for
clinical applications. (Circ J 2014; 78: 222—231)

Key Words: Cardiac stem cells; Cell culture; Notch signaling

and mortality.!* Although cardiac tissue is known to

have limited regeneration capacity, it has been shown
that damaged cardiac tissue is regenerated by cardiac stem
cells (CSCs), which are identified as C-KIT-positive cells in
the heart,? through their proliferation and differentiation into
functional cardiomyocytes, vascular smooth muscle cells, and
vascular endothelial cells (ECs), and through release of a vari-
ety of factors that activate native healing processes.* Although
transplantation of autologous stem cells into the heart has been
proven to enhance this regenerative capacity of the damaged
heart,’ transplantation of CSCs that have been expanded in
vitro may have promise in maximizing the regeneration pro-
cess. The magnitude of the therapeutic effect of CSC trans-

C ardiac failure is a major cause of reduced quality of life

plantation is determined by the cell preparation and delivery
method, though the protocol for preparing CSCs has not been
fully established.” Determination of the culturing protocol will
be critical for the clinical application of patient-derived CSCs
that may be isolated from limited biopsy samples.

Editorial p69

The cell preparation protocol of CSCs involves multiple
steps, including enzymatic digestion of tissues, cell isolation,
and cultivation, that will affect the fundamental behavior and
therapeutic potential of CSCs.3? Although the cell isolation
protocol has been intensively studied, -3 the cell cultivation
protocol has not. Among the many parameters of the culture
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conditions, it has been suggested that cell density at plating
modulates fundamental behavior of stem cells such as prolif-
eration and differentiation, indicating that the plating density
may affect the therapeutic potential of CSCs.'15 In addition,
it was reported that Notch signaling in direct cell-cell com-
munication may be associated with fundamental behavior of
cells under cultivation, including the lineage specification of
cardiac progenitor cells.’¢-*¥ We hypothesized that the plating
cell-density would affect proliferation activity, differentiation
and therapeutic potential of human CSCs by regulating Notch
signaling, with the aim of exploring the optimal CSC cultiva-
tion protocol for treating cardiac failure.

Methods

Isolation and Cultivation of CSCs

All procedures were in accordance with the ethical standards of
the institutional committee on human experimentation {control
number: 729-4). CSCs were isolated from the right atrium of 3
patients with dilated cardiomyopathy (12-55 years old; data
from the 12-year-old patient are mainly used in this report). In
short, the cells were separated from the tissue by enzymatic
digestion [37°C with 1mg/ml of collagenase (17454, Serva
Electrophoresis, Heidelberg, Germany) in Ham’s F12 medium]
after dissecting fat and fibrous tissues and mincing. The diges-
tion was performed for a total of 5 reactions (60 rpmx20min/
reaction, 8 ml/reaction in 50ml tube) then overnight digestion
(for 12h) was performed for the remaining debris with
0.1 mg/ml of collagenase solution (37°C, 60rpm, 10ml in 50ml
tube). After each reaction, the supernatant was collected and
then the cells were collected by centrifugation (4°C, 500g,
5min) and plated on a normal 10-cm culture dish (353003, BD
Biosciences, Franklin Lakes, NJ, USA) with complete medium
[Ham’s F12 medium supplemented with 10% fetal bovine
serum (FBS; SH30406.02, Hyclone, Thermo Fisher Scientific,
Waltham, MA, USA), 5mU/ml human erythropoietin (E5627-
10UN, Sigma-Aldrich, St. Louis, MO, USA), 10ng/ml basic
fibroblast growth factor (100-18B, PeproTech, Rocky Hill,
USA), 0.2 mmol/L L-glutathione (G6013, Sigma-Aldrich) with
antibiotics].5 The medium was changed on day 2. On day 5, the
cells were collected with trypsin (13924, Sigma-Aldrich) and
replated on 10-cm dishes at 170cells/cm?. At the second pas-
sage (P1), the cells were collected with non-enzymatic solution
(C5914, Sigma-Aldrich), labeled with anti-C-KIT antibody
(130-091-735, Miltenyi Biotec, Bergisch Gladbach, Germany)
followed by FcR blocking reagent (130-059-901, Miltenyi
Biotec) in 3% FBS/PBS, and subjected to FACS (FACS Auia,
BD Biosciences) to isolate the CSCs. As the negative control
sample, mouse IgGl-phycoerythrin (130-092-212, Miltenyi
Biotec) was used. The dead cells were excluded from the
sample by using 7TAAD (559925, BD Biosciences). After sort-
ing, the CSCs were passaged (340 cells/cm?) every 5 days. At
P35, CSCs were sorted again as described. The purified CSCs
were plated on normal culture dishes at different densities with
and without 100nmol/L of gamma secretase inhibitor X XTI (GST;
Merck, Darmstadt, Germany)!¢ and passaged every 5 days.

qPCR

Total RNA was extracted using an RNeasy mini kit (Qiagen,
Hilden, Germany) with on-column DNase digestion (RINase-
Free DNase set, Qiagen). The extracted RNA was subjected to
reverse transcription (Omniscript reverse transcriptase, Qiagen)
with random primers (Invitrogen-Life Technologies, Carlsbad,
CA, USA). gPCR (quantitative real-time PCR) was performed
using predesigned TagMan primers/probes [assay ID; GAPDH:

Hs99999905_m1, P21: Hs00355782_m1, P53: Hs01034249 _
ml, ETS1: Hs00901425_m1, TIE2: Hs00945155_m1, HES1:
Hs00172878_m1, C-KIT: Hs00174029_m1, IL8: Hs99999034
ml, VEGFA: Hs00900055_m1, cTnT: Hs00165960_m1, PDG-
FRB: Hs01019589_m1, HGF: Hs00900070_m!1, Applied Bio-
systems-Life Technologies, Carlsbad, CA, USA] and a 7500
Fast real-time PCR system (Applied Biosystems). GAPDH
was used as the internal control.

Tube Formation Assay

CSCs in EBM2 (CC-3156, Lonza, Basel, Switzerland) supple-
mented with 0.2% FBS were plated onto a Matrigel (BD
Biosciences) -coated 96-well plates (7.5x10%cells per well)
and incubated for 16h.* Subsequently, the total tube length
per well was measured?® by analytic software (BZII, Keyence,
Osaka, Japan).

Immunocytofluorescence Analysis of Cell Differentiation
oMEM supplemented with 10% FBS and 10-8mol/L. dexa-
methasone was used to induce differentiation of CSCs.? In
short, CSCs were replated (3,400 cells/cm?) onto a cover slip
coated with 0.1% gelatin and incubated under 5% CO2 at 37°C
for 7 days. The cells were fixed with 4% paraformaldehyde
and labeled with primary antibodies against aSA (alpha sarco-
meric actin, A2172, Sigma-Aldrich), anti-aSMA (alpha smooth
muscle actin, A2574, Sigma-Aldrich), or anti-TIE2 (T6577,
Sigma-Aldrich). The samples were visualized with appropri-
ate secondary antibodies and counterstained with DAPI.

Rat Acute Myocardial Infarction (AMI) Model and Gell
Transplantation

The animal study protocols were approved by the Animal Care
and Use Committee of the Osaka University (21-030-2). The
left coronary artery (LCA) was permanently ligated in nude rats
(F344/NJcl-mu/mu, 8-week-old females, CLEA Japan, Tokyo,
Japan) under inhalation anesthesia with 2.0% isoflurane through
endotracheal intubation.? Immediately after the ligation, 8x10#
cells® or 3x109 cells (for immunostaining against HNA/MLC
and gPCR for VEGFA/HGF (Hepatocyte growth factor)) per
rat were transplanted by intramuscular injection into the in-
farct’s border zone.

Transthoracic Echocardiography (TTE)
TTE was performed under inhalation anesthesia with 1.5%
isoflurane as described previously.*

Histological Examination

Rat hearts were collected after retrograde infusion of phos-
phate-buffered saline (PBS) supplemented with 50mmol/L
potassium chloride and 100 units/ml heparin. The hearts were
embedded in OCT (Sakura Finetek Japan, Tokyo, Japan), cut
into 5-pm sections, and fixed with 4% paraformaldehyde 2
The sections were then stained with Masson’s trichrome or
immunohistologically against von Willebrand factor (VWF;
A0082, Dako, Glostrup, Denmark), HNA (human nuclear
antigen, MAB1281, Millipore, MA, USA), or MLC (myosin
light chain, ab79935, Abcam, MA, USA) by similar methods
to those mentioned earlier.

To calculate the percentage of left ventricle (IV) that was
fibrotic, the total LV and fibrotic areas (blue-colored) were
traced and measured using analytical software (BZII, Keyence).
The percentage of MLC-positive cells was calculated as the
number of HNA and MLC double-positive cells divided by
the number of HNA-positive cells in a high-power magnifica-
tion area (x200).
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Figure 1. Population doubling time (PDT) and C-KIT positivity in cardiac stem cells. (A) PDT was averaged for 3 passages. (B)
C-KIT positivity was assessed by FACS and averaged for 3 passages. (C-F) gPCR analysis. The values are the average for trip-
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Statistical Analysis

All data represent the mean:SEM. Statistical analyses were
performed using software (JMP9, SAS Institute Japan, Tokyo,
Japan or Prism 5, GraphPad Software, La Jolla, CA, USA).
For multiple comparisons, ANOVA with Tukey’s HSD post-
hoc test was used. For the qPCR analysis of C-KIT, interleukin
(IL)-8, and VEGF (Vascular endothelial growth factor) A, the
raw data (normalized by GAPDH) of the “High” or “High+GSI”
group were normalized to the data of the “Low” group from
the same patient, because samples from 3 different patients
were used for this experiment, and 1-sample t-test (vs. Low
group) or unpaired t-test (High vs. High+GSI group) was used.
For echocardiography, the delta values (the difference be-
tween before and 3 weeks after the transplantation) were used.

If the P-value was <0.05, the difference was considered sig-
nificant.

Resulis

Plating Density-Dependent Proliferation Activity and Purity
of CSCs

Based on previous reports, we hypothesized that the plating
density would affect the proliferation activity and purity of
CSCs. We expected that higher plating density would increase
Notch signaling, induce differentiation and therefore decrease
the proliferation activity and purity of CSCs. To examine this,
we isolated CSCs from samples (eg, 5.6x10° cells/g muscle at
P1). After several passages of culture, we purified C-KIT pos-
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Figure 2. Vascular endothelial cell (EC)differentiation of cardiac stem cells resulting from high-density culture through Notch
signaling activation. (A-D) gPCR analysis was performed after 3 passages under each plating density condition for the target
gene of Notch signaling (HEST), C-KIT, and EC-related genes (IL-8 and VEGFA). (E) Representative morphologies of tube forma-
tion assay are shown. Original magnification, x20. Scale bars=500um. (F) Quantitative analysis of the tube formation assay. The
total length of tubes per well was measured. The results from 12-14 wells per group were analyzed. *P<0.05, **P<0.01,
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itive cells by FACS (93.0£0.3%; mean+SEM) and plated at
different densities (cells/cm?): 86 (Single), 340 (Low), 1,400
(Mid), or 5,500 (High).

The proliferation activity of CSCs in relation to plating
density was assessed by population doubling time (PDT),
which was measured at each passage until the 3rd passage and

then averaged (Figure 1A). The Single, Low and Mid groups
showed a significantly shorter PDT than the High group. Pu-
rity of CSCs in relation to plating density was assessed by
C-KIT positivity, which was measured at each passage until
the 3rd passage and then averaged (Figure 1B). The Single and
Low groups showed significantly greater C-KIT positivity than

Circulation Journal Vol.78, January 2014
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Figure 3. Differentiation potentials of cardiac stem cells (CSC) in vitro. (A) CSCs cultured at a low (blue) or high (red) plating
density were incubated with dexamethasone for 9 days. The expression levels of cardiomyocyte (cTnT), smooth muscle cell
(PDGFRB), and endothelial cell (TIE2) markers were analyzed by qPCR during the culture period. (B-D) Immunostaining for dif-
ferentiated cells on day 7. Scale bars=100um. (E—) Quantitative analysis of the immunostaining. The results from 11-20 fields
per group were examined. *P<0.05, **P<0.01 vs. "High” group. +++P<0.0001 vs. “High+GSI" group.
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the Mid and High groups, and the Mid group showed signifi-
cantly greater C-KIT positivity than the High group. These
findings suggested that lower plating cell densities might con-
tribute to preservation of the proliferation activity and purity of
CSCs in vitro.

Plating Density-Dependent Transcriptional Profiles of CSCs
Cellular function of CSCs in relation to the plating cell-densi-
ty and Notch signaling was further assessed by qPCR for cell-
cycle regulating genes (P21 and P53), EC markers (ETSI,
TIE2, IL8, and VEGFA), Notch-signaling target gene (HESI)®
and C-KIT. Expression of these genes in CSCs was analyzed
in the Low, Mid and High groups. In addition, GSI, which is
a known Notch signal inhibitor,'6:172425 wags added to the cul-
ture medium of the High group to investigate the influence of
Notch signaling on the gene expression.

The Low and Mid groups showed significantly lower levels
of expression of P21, P53, ETS1, and TIE2, compared with
the High group (Figures 1C-F). In addition, the Low group
showed lower expressions of HES1, IL8 and VEGFA than the
High group, and C-KIT expression was significantly greater
in the Low group than in the High group (Figures 2A-D). Of
note, the addition of GSI in the High group diminished the
expression of HES1 and IL-8, but not of VEGFA. In addition,
C-KIT expression in the High group was restored to that of the
Low group by GSI treatment (Figure 2B). These findings sug-
gested that higher plating densities might induce endothelial
differentiation followed by termination of cell cycles, which
slows PDT and diminishes the level of expression of C-KIT
through Notch signal activation.

Plating density-dependent EC differentiation of CSCs in
relation to Notch signaling was further assessed by the tube
formation assay on Matrigel in vitro. Consistent with EC
marker expression, the High group generated longer tubes than
the Low group. Notably, GSI treatment diminished the tube
formation activity in the High group to the level of the Low
group, indicating active involvement of Notch signaling in the
plating density-dependent EC differentiation of CSCs in vitro
(Figures 2E-F).

Retained Multipotency in CSCs Under Low-Density Culture
Because we confirmed that a higher plating density might in-
duce EC differentiation of CSCs, we next examined the mul-
tipotency of CSCs in relation to the plating density by inducing
differentiation in vitro. We expected CSCs at a lower plating
density to maintain multipotency, and conversely, lose multi-
potency at a higher plating density. CSCs that were cultured in
Low and High conditions were replated with dexamethasone
and incubated for 9 days.3?627 Expressions of ¢TnT (cardio-
myocyte marker), PDGFRB (SMC marker), and TIE2 in each
group were serially assessed by gPCR. cTnT, PDGFRB, and
TIE2 were all upregulated in Low group over the culture pe-
riod compared with the High group (Figure 3A), suggesting
that CSCs cultured at low density may retain greater multipo-
tency than those cultured under High conditions.

The differentiation potential of CSCs was further assessed
by immunostaining for aSA (cardiomyocyte marker), aSMA
(SMC marker) and TIE2 on day 7 (Figures 3B-D). The num-
ber of «SA- or aSMA-positive cells was significantly greater
in the Low group than in the High group, and the TIE2-positive
cell number tended to be greater in the Low group than in the
High group (Figures 3E-G). Of note, the cells cultured under
High conditions with GSI showed a significantly greater posi-
tivity for xSMA and TIE2 than those under pure High culture
conditions, though GSI treatment did not affect significantly

aSA positivity. These findings suggested that the multipotency
of CSCs was hampered by higher plating density through
Notch signaling-mediated EC differentiation.

Therapeutic Effects of CSCs in a Rat AMI Model

Our in vitro data suggested that CSCs at a lower plating den-
sity maintained multipotency. Because multipotency may be
required for their therapeutic potential, we next examined this
in relation to the plating density and Notch signaling by trans-
planting CSCs into a rat AMI model? We expected CSCs
cultured under Low and High+GSI conditions to have greater
therapeutic potential than those under High conditions. CSCs
that were prepared in Low, High, or High+GSI culture condi-
tions suspended with PBS or PBS only were injected into the
infarct-border zone just after permanent ligation of the LCA.
Effects of the CSC-transplantation therapy were assessed by
standard TTE.

TTE revealed that all groups consistently showed progres-
sive enlargement of the end-diastolic volume of the LV. How-
ever, the Low group showed significantly less progressive
enlargement in the end-systolic volume of the LV and signifi-
cantly less progressive reduction in LV ejection fraction com-
pared with the High group, which showed a similar trend to the
PBS-only group (Figures 4A—C). Notably, the enlarged LV
end-systolic volume and reduced LV ejection fraction.in the
High group were restored to the levels of the Low group by
culturing intact CSCs under High+GSI conditions for 3 pas-
sages before transplantation. These findings suggested the re-
duced therapeutic potential of the High group was mediated by
Notch signaling activation during cultivation, which compro-
mised the multipotency of CSCs through EC differentiation.

LV Remodeling and Angiogenesis After GSC Transplantation
Because the- therapeutic potential of CSCs is dependent not
only on multipotency but also paracrine effects, the latter (LV
remodeling and angiogenesis) were further assessed histo-
logically at 3 weeks after transplantation. We expected CSCs
cultured under Low and High+GSI conditions to show greater
paracrine effects than those under High conditions.

The Low and High+GSI groups had reduced area of scar-
ring and preserved structure of L'V compared with the High
group, which showed a similar scar size and structure to the
PBS-only group, as assessed by Masson’s trichrome staining
(Figure 4D). The percentage of fibrosis in the LV was signifi-
cantly less in the Low and High-+GSI groups compared with
the PBS-only and High groups (Figure 4F). vWF-positive
arterioles and capillaries were more prominent in the infarct-
border zone of the Low, High and High+GSI groups compared
with the PBS-only group (Figures 4E,G). These results indi-
cated that not only direct differentiation potential (multipo-
tency) but also the paracrine effect (antifibrotic effect) of the
Low and High+GSI groups might be greater than those of the
High group.

Differentiation Potential of CSCs in Vivo

Finally, we examined whether the greater multipotency of the
Low and High+GSI groups in vitro reflected greater therapeu-
tic potential in vivo as compared with the High group. The
phenotypic fate of the transplanted CSCs, in relation to their
plating cell-density and Notch signaling, was assessed in ex-
cised rat hearts at 3 weeks after transplantation.

MLC and HNA-double-positive cells were present in the
infarct-border zone of the Low and High+GSI groups, but were
rarely detected in the High group (Figare 5A). Quantitative
assessment showed that 60% of the HNA-positive transplanted
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Figure 4. Therapeutic potential of cardiac stem cells in a rat model of acute myocardial infarction. (A-C) Echocardiography before
(Pre) and after transplantation (1, 2, or 3 weeks). (A) End-diastolic volume (EDV, ml), (B) end-systolic volume (ESV, ml), (C) ejec-
tion fraction (EF, %) of rat left ventricle. Black lines indicate PBS treatment, blue lines “Low”, red lines “High”, and yellow lines
“High+GSI" group. The results from 911 rats per group were examined. *P<0.05, ***P<0.0001 Low vs. “PBS” and "High” groups.
+P<0.05, ++P<0.01 High+GSlI vs. "PBS” and “High” groups. (B-E) Masson's trichrome staining and immunostaining against vWF.
The insets show the enlarged image of the indicated area. Scale bars=2mm in () and 200um in (E). (F-G) Quantitative analysis
of D and E. (F) The results from 9-11 sections at the mid-ventricle level (transplanted site) from 9-11 rats per group were analyzed.
(@) The results from 54-66 fields from 9-11 rats per group were analyzed. **P<0.01 vs. "High” group. *P<0.05, +*P<0.01 vs. “PBS”
group. PBS, phosphate-buffered saline; vWF, von Willebrand factor.

cells in the Low group and 70% in the High plus GSI group
were positive for MLC, compared with the High group in
which only 20% of the HNA-positive cells were MLC-positive
(Figure 58). In addition, the human-derived cardiomyocytes
survived at least for 3 weeks after transplantation and resided

mainly in the infarct-border zone. These results indicated that
the lower plating density with lower Notch signaling main-
tained the multipotency of CSCs in vitro and their cardiomyo-
genic differentiation potential in vivo, which resulted in a
greater therapeutic potential in the rat model of AMI.
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Figure 5. Differentiation potential of cardiac stem cells into cardiomyocytes in vivo. (A) Representative images for immunostaining
against myosin light chain (MLC, red) and human nuclear antigen (HNA, green). DAPI (blue) was used for nuclear staining. Scale
bars=100um. (B) Quantitative analysis of HNA-positive cells that were MLC-positive in vivo. The results from 10-31 fields per group
(from 2-4 rats per group) were analyzed. *P<0.05 vs. “High” group. (C) gPCR analysis for VEGFA and HGF. Rat hearts were col-
lected at 2 days after transplantation. GAPDH was used as internal control; 3-4 rats per group were used.

Regarding the paracrine effects, we examined by gPCR

some paracrine factors (VEGFA and HGF)* at 2 days after Discussien

transplantation. These experiments showed no significant dif- We discovered that Notch signaling was activated in CSCs
ference in the expression levels of the paracrine factors among under high cell-plating conditions and induced EC differentia-
the groups (Figure 5C). tion. Notch signaling is implicated as a key regulator of arte-

Circulation Journal Vol.78, January 2014



230

MATSUDA T et al.

rial EC differentiation from Flk1-positive endothelial precur-
sors.”® In addition, VEGF is a known key regulator of EC
differentiation from embryonic stem cells.® In this study,
VEGFA and Notch signaling were both activated in the High
group (Figures 2A,D). Morcover, the use of GSI clearly dis-
sected the difference in downstream angiogenic gene expres-
sions and in angiogenic potential between the low- and high-
density cultures (Figures 2C.E,F). Thus, the results from this
study lead to the conclusion that Notch signaling is involved
in the EC differentiation of CSCs.

C-KIT positivity was markedly reduced during cultivation
regardless of the plating cell-density in this study, though pre-
vious reports suggested that C-KIT positivity was preserved
for several passages until transplantation.3” This contrary find-
ing between the present and the previous studies may be ex-
plained by different patient population, sampling/isolation
protocols, culture protocols including plating cell-density, and/
or different C-KIT detection protocols.®” Although a direct
relationship between C-KIT positivity and the therapeutic ef-
fects of CSCs remains unclear, plating cell-density was re-
lated to C-KIT positivity and therapeutic effects in this study,
warranting further studies to investigate the significance of
C-KIT expression in this treatment. In addition, the abso-
lute number of C-KIT positive cells increased under low-
density conditions compared with the high-density conditions
(Figure S1A). Thus, low-density conditions might propagate
CSCs effectively. In addition, we confirmed that CSCs ex-
pressed KDR but not Nkx2.5 (Figure S3C). Therefore, the
characteristics of CSCs might be similar to those of cardiovas-
cular progenitors.!»30

The findings of this study suggested that plating cell-densi-
ty was a determinant of in vitro fundamental cellular function,
including multipotency and the in vivo therapeutic effects of
CSCs, and that Notch signal is one of the mechanisms respon-
sible for this plating density-dependent function. CSCs that
were cultured under High conditions showed a trend in EC
differentiation with loss of SC properties such as multipoten-
cy. Although this spontaneous differentiation of CSCs was
associated with activation of the Notch signaling pathway,
inhibition of Notch signaling using GSI did not totally re-
store cellular function, including C-KIT positivity and PDT
(Figure S1B).

One may consider several reasons for this as follows. First-
ly, the Notch signal pathway was not totally inhibited by GSI
treatment, though the concentration of GSI was carefully pre-
pared by referring to a previous report'® and doing preliminary
experiments (Figures S1C-E). Secondly, alternative pathways
to Notch signaling are present that may affect cellular proper-
ties in the maintenance culture of CSCs.17%53t Finally, Notch
signaling in the Low group might be slightly activated during
the culture process and thus affect the properties of CSCs.

The magnitude of the therapeutic effects of CSCs in the rat
AMI model was dependent upon the plating density in asso-
ciation with Notch signaling in this study. Although inhibition
of Notch signaling in the High group did not totally restore
cellular functions in vitro (Figures 2D,3E), functional and
pathological recovery from AMl in the High group was totally
restored by inhibition of Notch signaling during the course of
cell preparation. This contrary finding may be explained by
differences in cellular functions between in vitro and after
transplantation into a rat AMI model. The cells that were trans-
planted into the heart were influenced by a variety of factors,
such as needle injection-related mechanical damage, ischemia,
inflammation or factors released from the native cardiac tis-
sue.3233 These complex pathways in this treatment may yield

different results for in vitro and in vivo experiments.

Regarding the therapeutic potential of CSCs, not only the
cardiomyogenic potential but also differentiation potential into
other lineages or just the proliferative activity of the cells might
be considered. However, only a few CSC-derived vWE-posi-
tive BCs were detected (Figure S2A). For the SMCs, a sig-
nificant difference in the percentage of aSMA-positive cells
was observed between not only the Low and High groups but
also the Low and High+GSI groups (Figure $2B). In addition,
the difference in proliferative activity in vitro might not ex-
plain the difference in therapeutic potential between the Low
and High groups because the High+GSI group did not recover
PDT (Figure S1B). Therefore, we conclude that the cardio-
myogenic differentiation potential might be the main differ-
ence between the Low and High groups in terms of therapeutic
potential, which was affected by Notch signaling.

In addition, we also examined the paracrine effect of trans-
planted CSCs -and observed no significant difference in the
VEGFA or HGF (Figure 5C) (and IGF1; Figure 82C) expres-
sion levels* among the groups (Low vs. High vs. High+GSI)
at 2 days after transplantation. This was contrary to results
shown in Figures 4D,F, which indicated that the antifibrotic
effect (possibly by paracrine mechanisms) was hampered by
culturing CSCs at a higher plating density. Therefore, other
unknown factor(s) might be present and the “High” culture
condition might hamper the expression of such protein(s) after
transplantation.

This study is limited by the use of primary CSCs from
mainly 1 individual patient who had idiopathic cardiomyopa-
thy (except qPCR for C-KIT, IL-8, and VEGFA, in which 3
different patients’ samples were used; Figures 2B-D), though
a consistent fundamental difference in the cellular behavior of
primary CSCs cultured with different plating densities was
confirmed (PDTs with 4 different patient samples and C-KIT
positivity with another patient sample; Figures S3A,B).

Regarding CSC preparation in the clinical scenario, the use
of Notch signaling inhibitor in the culture process may be use-
ful in enhancing the therapeutic potential of CSCs.* In addi-
tion, regarding the duration of the existence and localization of
the transplanted cells, human-derived cardiomyocytes survived
at least for 3 weeks after transplantation and resided mainly in
the infarct-border zone. In this study, CSCs of human origin
were transplanted into athymic nude rats. This xenotransplan-
tation model has been used in a number of studies, which have
rarely reported significant immunological reactions.??35 In fact,
the transplanted cells in this study were not histologically in-
volved in inflammatory reactions such as accumulation of in-
flammatory cells (data not shown). Thus, immune rejection in
this model is minimal and does not affect the results. In addi-
tion, CSCs will be transplanted in an autologous manner in the
clinical situation.® Therefore, the immunological reactions of
this treatment may be negligible.

In conclusion, cellular properties and therapeutic potential
of CSCs are affected by cell-plating density through activation
of Notch signaling. Therapeutic effects of CSC-transplanta-
tion therapy for heart disease may be enhanced by reducing
Notch signaling in CSCs.
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Myocardial Layer-Specific Effect of Myoblast Cell-Sheet
Implantation Evaluated by Tissue Strain Imaging
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Background: The implantation of skeletal myoblast (SMB) cell-sheets over the damaged area of a myocardial in-
farction (Ml) has been shown to improve global left ventricular (LV) function through a paracrine effect. However, the
regeneration process has not been fully evaluated. We hypothesized that the use of tissue Doppler strain M-mode
imaging to assess myocardial layer-specific strain might enable detailed visual evaluation of the regenerative ability
of SMBs.

Methods and Results: SMBs were cultured on temperature-responsive culture dishes to generate cell-sheets. At
4 weeks after inducing anterior M, the animals were divided into 2 groups: SMB cell-sheet implantation and sham
operation (n=6 in each). A total of 30 cell-sheets (1.5x107 cells/sheet) were placed on the epicardium, covering the
infarct and border regions. Subendocardial and subepicardial strain values were measured in the infarct, border, and
remote regions by tissue Doppler strain analysis. SMB cell-sheet implantation produced the following major effects:
progression of LV remodeling was prevented and global LV ejection fraction increased; the subendocardial strain
was significantly greater than the subepicardial strain in the treated border region; vascular density in the subendo-
cardium was significantly higher than in the subepicardium in the treated region; the expression of vascular endo-
thelial growth factor was significantly increased.

Conclusions: Tissue Doppler strain analysis allows precise evaluation of the effect of cell-sheet implantation on
layer-specific myocardial function. (Circ J 2013; 77: 1063—-1072)

Key Words: Cytokines; Heart failure; Strain; Tissue Doppler

ing, despite recent medical and surgical advances.

Myocardial regenerative therapy is attracting grow-
ing interest as a means of improving left ventricular (LV) func-
tion in advanced heart {ailure.!* However, recent clinical trials
reported slightly disappointing results for cell transplantation
by needle injection.** The major drawbacks of cell transplan-
tation using that technique are poor retention and survival of
the injected cells, local myocardial damage and potential lethal
arthythmias. The cell-sheet technique was developed to de-
liver cells efficiently without damaging the myocardium and,
consequently, more effectively improve cardiac function than
the needle injection method.5 This therapeutic modality is

H eart failure still occurs frequently and is life-threaten-

already being used in the clinical setting.!® It has been sug-
gested that implantation of a skeletal myoblast (SMB) cell-
sheet reverses L'V remodeling via paracrine effects in which
angiogenic factors constitutively released from the implanted
cell-sheets induce neo-angiogenesis, increased vascular den-
sity and blood flow, thereby reversing hybernating myocar-
dium.5>1? However, detailed evaluation of functional improve-
ment (eg, region-specific functional recovery associated with
secreted cytokines) has not been performed. Moreover, the ex-
isting evidence base remains inconsistent, and the underlying
mechanism and optimal protocols are still being debated.!!
Tissue strain M-mode imaging based on the tissue Doppler
technique (TDI-Q, Toshiba) was developed to accurately mea-
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