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Figure 5. Cumulative incidence of infection after HCT. Cumulative

incidence of infection and the levels of TRECs (a), sjKRECs (b) and
¢jKRECs (c) 1 month after HCT. Solid lines indicate the positive levels
of TRECs (a), SjKRECs (b) and ¢jKRECs (c), and the dotted lines
indicate their negative levels.

not correlate with negative TRECs, sjKRECs or ¢jKRECs at 3 months
after HCT (data not shown).

DISCUSSION

In this study, we examined TRECs and sjKRECs/cjKRECs in post-
transplantation patients with malignancies or PID. Our data
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showed the following. (1) The levels of sjKRECs and cjKRECs
increase earlier than those of TRECs. (2) A younger recipient age is
favorable for better recovery of sjKRECs and ¢jKRECs post HCT.
(3) The use of CB achieves rapid recovery of sjKRECs and ¢jKRECs
compared with that of BM or PB as a graft source. (4) Detectable
sjKRECs 1 month after HCT is related to a decreased frequency of
infectious episodes.

Patients with positive sjKRECs at 1 month had increased levels
of sjKRECs at 3 and 6 months, suggesting that positivity can
predict sound B-cell immune reconstitution. In addition, the levels
of sjKRECs and ¢jKRECs increased earlier than those of TRECs
(Figure 1, Supplementary Figures 1 and 2).

There have been no reports of the factors that contribute to
better KREC reconstitution. Compared with BM and PB, we found
that the levels of sjKRECs and ¢JKRECs recovered rapidly in
patients who received CB. Faster B-cell reconstitution after CBT has
been reported previously.'*?* CB itself does not have high sjKREC/
¢jKREC levels. Our results suggest that rapid B-cell recovery by CBT
is because of B-cell neogenesis and not B-cell expansion in the
periphery.

A previous study has demonstrated that sjKREC levels are the
highest in < 1-year-olds and then declines with age in healthy
children.’” Thus, it is likely that younger donors have an
advantage in terms of B-cell reconstitution. Qur results indicated
that a younger recipient age also contributed to increased levels
of sjKRECs and ¢jKRECs.

In addition, our data showed that acute 0-2 GVHD, no steroid
use and no ATG use were associated with positive sjKRECs and
¢jKRECs (Supplementary Tables Ill and IV). These data indicate that
steroid or ATG use affects not only T-cell recovery but also B-cell
immune reconstitution.

As expected, patients with chronic GVHD showed significantly
lower levels of TRECs at 6 months and 1 year. On the other hand,
and in contrast to our expectation, we observed lower sjKRECs and
¢jKRECs from 3 months to 2 years in patients with chronic GVHD
(Supplementary Fi%ure 5). This observation does not support the
data of Allen et al.*® which revealed increased numbers of B cells
and expression of BAFF (B-cell-activating factor belonging to the
TNF family) in patients with chronic GVHD. This discrepancy may
be because the patients with chronic GVHD were on more active
immunosuppressants compared with those without chronic
GVHD. Additionally, there may be relatively high levels of KRECs
in patients with the severe extensive type of chronic GVHD.
However, we would need more patients and additional analyses of
B-cell numbers and activation to reach a conclusion.

Our study suggests that patients with positivity for TRECs or
sjKRECs at 1 month are less likely to develop post-transplant
infections. The contribution of earlier B-cell recovery to overall
immunity, especially anti-microbial immunity, needs further
investigation. Patients with early B-cell neogenesis may attain
early myeloid recovery. B-cells may also serve as antigen-
presenting cells in addition to antibody-producing cells.

A correlation between KREC levels and prognosis has not been
addressed previously. Although there was a tendency toward
better survival for the KREC-positive group at 1 month, we
observed no statistical significance. Further study with a larger
cohort is required to determine whether the difference can be
significant.

It is still unclear whether TREC levels are lower in patients post
CBT than in those receiving BMT.>® Our data focusing on adult
patients showed that T-cell recovery was at least not inferior and
appeared to be similar in CB and BM recipients (data not shown).
On the other hand, compared with BM and PB, CB was superior for
B-cell recovery. This observation suggests quantitative superiority
of B-cell recovery following CBT. Further study should investigate
the repertoire diversity and somatic hypermutation of B-cell
receptors to evaluate qualitative differences and determine
whether rapid qualitative maturation has an effect on improved
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outcomes. In combination with in vitro immunological data and
clinical data such as long-term infection, autoimmunity and
immunological findings, KRECs and TRECs may serve as useful
tools for immunological monitoring after HCT.
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Graft-versus-host disease (GVHD), mediated by donor-derived alloreactive T cells, is a major
cause of nonrelapse mortality in allogeneic hematopoietic stem cell transplantation. Its ther-
apy is not well-defined. We established allele-specific anti-human leukocyte antigen (HLA)
monoclonal antibodies (ASHmADbs) that specifically target HLA molecules, with steady death
of target-expressing cells. One such ASHmADb, against HLA-A*02:01 (A2-kASHmAD), was
examined in a xenogeneic GVHD mouse model. To induce fatal GVHD, non-irradiated
NOD/Shi-scid/IL-2Ry™" mice were injected with healthy donor human peripheral blood
mononuclear cells, some expressing HLA-A*02:01, some not. Administration of A2-
KASHmAD promoted the survival of mice injected with HLA-A*02:01-expressing peripheral
blood mononuclear cells (p < 0.0001) and, in humanized NOD/Shi-scid/IL-2Ry™" mice,
immediately cleared HLA-A*02:01-expressing human blood cells from mouse peripheral
blood. Human peripheral blood mononuclear cells were again detectable in mouse blood 2
to 4 weeks after A2-kASHmADb administration, suggesting that KASHmAbD may be safely
administered to GVHD patients without permanently ablating the graft. This approach,
different from those in existing GVHD pharmacotherapy, may open a new door for treatment
of GVHD in HLA-mismatched allogeneic hematopoietic stem cell transplantation. Copy-
right © 2015 ISEH - International Society for Experimental Hematology. Published by Elsev-
ier Inc. This is an open access article under the CC BY-NC-ND license (htip://
creativecommons.org/licenses/by-ne-nd/3.0/).

Allogeneic hematopoietic stem cell transplantation (allo-
HSCT) can cure hematologic disorders like leukemia [1].
Cord blood or haplo-identical-donor HSCT holds promise
for patients without a human leukocyte antigen (HLA)-
matched donor. However, HLA-mismatched allo-HSCT
may be complicated by alloreactive T cell-mediated graft-
versus-host disease (GVHD), a major cause of mortality
(after recurrent original disease) in allo-HSCT [2].
Although moderate GVHD induces a graft-versus-tumor

Offprint requests to: Satoshi Yamazaki, 4-6-1 Shirokanedai, Minato-ku,
Tokyo, 108-8639 Japan; E-mail: y-sato4 @ims.u-tokyo.ac.jp

Supplementary data related to this article can be found online at hitp://
dx.doi.org/10.1016/j.exphem.2014.10.008.

effect and reduces disease relapse [3-6], severe GVHD
confers a poor prognosis, as it is difficult to control. Agents
used to treat GVHD include steroids [7], calcineurin inhib-
itors [8], and anti-thymocyte globulin (ATG) [2,10]. While
these work well, they have many side effects (opportunistic
infection, anaphylaxis-like reactions, etc.), which clinicians
must carefully monitor.

Antithymocyte globulin endures as an antibody-based
drug for GVHD treatment; however, its polyclonality and
nonspecified target molecule cause it to react not only with
T cells but also with other cells [$,10]. Current alternative
therapies include monoclonal antibodies such as anti-CD3
[11] and anti-CD52 [12,13]. These antibodies have target
molecules far more specific than those of ATG, but they
cannot discriminate host cells from donor cells, resulting
in opportunistic infection and other serious adverse effects.

0301-472X/Copyright © 2015 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. This is an open access article under the

CC BY-NC-ND license (http://creativecormnmons.org/licenses/by-nc-nd/3.0/).
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One major shortcoming of all current GVHD therapies is
that they affect every cell without distinction between donor
and recipient cells. Damage to cells of both the donor and the
recipient causes side effects that impair long-term prognosis
such as organ failure and immune compromise. Therefore,
we suggest a novel therapeutic approach to GVHD using
an antibody that specifically recognizes a donor HLA mole-
cule and damages only donor-derived cells.

Flow cytometry using anti-HLA antibodies is useful for
determination of chimerism and minimal residual disease
after HLLA-mismatched HSCT [14]. Allele-specific anti-
HLA monoclonal antibodies (ASHmADbs) are notoriously
more difficult to generate than are non-allele-specific anti-
HLA antibodies. However, we established a rapid and effi-
cient strategy to generate ASHmADb using HLA-transgenic
mice [15]. Allele-specific antibodies thus generated can
damage target cells quickly and selectively; we assessed
whether or not ASHmAb can treat GVHD in a mouse
model. This report describes the success of a novel thera-
peutic approach to GVHD with ASHmAD that recognizes
donor and recipient cells allele-specifically, damaging
only donor-derived cells.

Methods

Mice

NOD/Shi-Scid Jic (NOD/SCID) mice were purchased from San-
kyo Laboratory (Ibaraki, Japan). NOD/Shi-scid/IL-2Ry™"
(NOG) mice were purchased from the Central Institute for Exper-
imental Animals (Kanagawa, Japan). HLA-B51 (B*5101) trans-
genic mice were all bred and maintained in the Animal
Research Facility of the Institute of Medical Science, University
of Tokyo. Animal care in our laboratory was in accordance with
the guidance of the University of Tokyo for animal and recombi-
nant DNA experiments.

Human samples

Human peripheral blood mononuclear cells (PBMCs) were
collected from healthy donors at the University of Tokyo, and
human cord blood was obtained from the Japanese Red Cross
Kanto-Koshinetsu Cord Blood Bank, according to protocols
approved by the institutional review board of the Institute of Med-
ical Science, University of Tokyo. Mononuclear cells were iso-
lated by centrifugation of human PBMCs on Lymphosepar I
(Immuno-Biological Laboratories, Gunma, Japan). The isolated
cells were washed once with ice-cold phosphate-buffered saline,
suspended in a small volume of phosphate-buffered saline contain-
ing 5% mouse serum (Dako, Glostrup, Denmark) to block nonspe-
cific flnorescence-labeled antibody binding to immunoglobulin Fc
receptors, and kept on ice until staining.

Flow cytometric analysis

Studies of human-derived cells in humanized mice or GVHD
model mice were performed using fluorescein isothiocyanate-
conjugated anti-HLA-A9 (OneLambda, Canoga Park, CA, USA)
and anti-human lineage CD3, 14, 16, 19, 20, and 56 (BioLegend,
San Diego, CA, USA); phycoerythrin (PE)-conjugated anti-HLA

A2 (BD Biosciences, San Jose, CA) and anti-CD56 (BioLegend);
PE/cyanine (Cy) 5-conjugated anti-CD235ab (BD Biosciences);
peridinin chlorophyll/Cy5.5-conjugated anti-CD8 (BioLegend);
PE/Cy7-conjugated anti-CD3, anti-CD33 (BD Biosciences) and
anti-CD38 (BD Biosciences); allophycocyanin (APC)-conjugated
anti-CD3 (BioLegend) and anti-CD34 (BD Biosciences); APC/
Cy7-conjugated anti-CD19 (BioLegend); Pacific blue-conjugated
anti-CD4 and anti-CD45 (Biol.egend); and Alexa Fluor 405- or
647-conjugated anti-CD45 (BioLegend). Propidium iodide (PI,
1 pg/mL; Sigma~Aldrich, St. Louis, MO, USA) was added to sam-
ples to stain dead cells just before flow cytometric analysis.
Becton-Dickinson Ariall & Cantoll fluorescence-activated cell
sorters were used for all multicolor FACS analysis and sorting.
Flow cytometry standard data were analyzed using FlowJo soft-
ware (Treestar, Ashland, OR, USA).

Establishment of ASHmAb

We followed the method of Yamazaki et al. to generate ASHmAD
[15] using PE-conjugated anti-HLA A2 tetramer loaded with
NLVPMVATV  peptide  (HLA-A*02:01-restricted  human
cytomegalovirus-specific epitope pp65) and PE-conjugated anti-
HLLA A24 tetramer loaded with QYDPVAALF peptide (HLA-
A*24:02-restricted human cytomegalovirus-specific  epitope
pp65), which were purchased from Medical and Biological Labo-
ratories (Nagoya, Japan). FlowPRA screening (OneLambda) was
performed according to the manufacturer’s instructions. The
isotypes of kASHmAD selected were IgM (HLA-A9) and IgG2b
(HLA-A2) by Rodent Monoclonal Isotyping Strips (AbD Serotec,
Kidlington, UK). We used an Alexa Fluor 647 monoclonal anti-
body labeling kit (Life Technologies, Carlsbad, CA, USA) to label
kASHmADbs.

Examinations of peripheral blood

Analyses of mouse retro-orbital venous plexus blood samples
were performed using a Celltac o (Nihon Kohden, Tokyo, Japan)
to obtain complete blood counts and a Dri-Chem 3000 (Fujifilm,
Tokyo, Japan) to measure serum total bilirubin and lactate dehy-
drogenase, alanine aminotransferase, and aspartate aminotrans-
ferase activities.

Xenogeneic model of GVHD

Non-irradiated female NOG mice 9 to 10 weeks old were injected
intravenously with 1.0 x 107 human PBMCs (day 0) and were
treated with ASHmAb (3 ng/g/day) on days 3 and 4 (total dose:
120 pg/mouse).

Purification of human CD34-positive cells and xenogeneic
transplantation

Human CD34-positive cells from cord blood mononuclear cells
were enriched using anti-human CD34 Micro-beads (Miltenyi
Biotec, Bergisch Gladbach, Germany). For transplantation, female
NOD/SCID mice or NOG mice 6 to 8 weeks old were irradiated
(1.5 to 2.0 Gy) before transplantation, and 1.0 to 2.0 X 10° live
CD34-positive cells were injected by tail vein. Live cells were
identified by microscopy as those able to exclude trypan blue.

Systemic assessment of GVHD

To evaluate GVHD symptoms, we chose objective measurements
(loss of weight, change of body temperature, and changes in
biomarker values). Body weights and body temperatures of all
mice were determined twice weekly. The liver, gut, kidneys, and
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Figure 1. Assessment of allele specificity of kASHmADs. (A) To establish ASHmAb-producing clones, on day 28 hybridomas (Supplementary Fig. E1, on-
line only, available at www.exphem.org) selected as producing anti-HLA antibody at initial screening were secondarily screened with FlowPRA, using flow
cytometry (YNA2.8.2 and YNA2.12.2). Hybridoma culture supernatants were incubated with HLA-coated beads. After incubation, the beads were washed
and stained with secondary antibodies. Bead fluorescence intensities were measured using a flow cytometer, and specificities of anti-HLA monoclonal an-
tibodies were determined. Representative flow cytometry data are shown for a combination of FlowPRA beads coated with HLA-A*01:01, A*02:01,
A*03:01, B¥49:01, A*25:01, A*29:02, A*30:01, and control antigen or A*26:01. (B) Flow cytometric analysis of A2-ASHmAD with healthy donor PBMCs.
PBMC:s No. 2 express HLA-A*02:01; PBMCs No. 1 do not. We stained three types of PBMCs (PBMCs No. 1 only, PBMCs No. 2 only, and PBMCs No.
1 + No. 2) with Alexa Fluor 647-conjugated ASHmAD to assess this antibody’s specificity. Cells from PBMCs No. 1 + No. 2 sorted as HLA-A2(+) were
subjected to sequencing-based HLA typing. (C) Chimerism analysis of clinical samples using ASHmAb. In a 46-year-old man who underwent cord blood
transplantation more than 12 years earlier for acute myeloid leukemia, we analyzed chimerism of whole PBMCs, B cells, T cells, natural killer cells, and
monocytes using anti-HLA A2 (recipient), anti-HL.A A24 (recipient and donor), and anti-human CD3, CD4, CD8, CD19, and CD56. Doublets and dead cells
were excluded from flow cytometry data. ASHmAbs = allele-specific anti-human leukocyte antigen monoclonal antibodies; HLA = human leukocyte an-
tigen; kASHmAbs = ASHmAbs; PBMCs = peripheral blood mononuclear cells.

lungs were collected from euthanized mice and analyzed by light
microscopy of immunostained sections. Animal cages were main-
tained at room air temperature of 22°C to 23°C with a humidity of
55%.

Immunostaining of organ sections

Liver, lungs, guts, and kidneys from mice transplanted with hu-
man PBMCs were fixed with 10% buffered formalin and
embedded in paraffin. Sections 5 pm thick were placed on glass
slides (Matsunami Glass, Osaka, Japan), deparaffinized, incu-
bated with anti-human CD3 and CD45 monoclonal antibodies
(Dako) overnight at 4°C, and serially incubated with
peroxidase-labeled polymer conjugated goat anti-mouse antibody
(Nichirei, Tokyo, Japan) for 30 min at room temperature. These
sections then were incubated with 0.02% 3,3-diaminobenzidine
(Dojindo, Kumamoto, Japan) substrate solution containing
0.006% H,0, and counterstained with hematoxylin for visualiza-
tion of nuclei. TdT-mediated dUTP nick end labeling (TUNEL)
staining (Medical and Biological Laboratories) was performed
according to the manufacturer’s instructions to permit evaluation
of apoptosis.

Statistics

Mouse survival data are presented as Kaplan-Meier survival
curves. Differences between groups were analyzed by log-rank
testing with GraphPad Prism (GraphPad Software, San Diego,
CA, USA). Differences between group means were tested using
Student’s ¢ test, also with GraphPad Prism; values for which
p < 0.05 were considered significant.

Results

Generation of ASHmAbs and their specificities
Using our established method [15], we developed a panel of
ASHmADs that recognize HLA alleles specifically. First,
we immunized HLA class I transgenic mice with tetramers
specific for HLA-A or HLLA-B alleles [16]. After alloim-
munity was confirmed by assay of sera from immunized
mice, the mice were sacrificed and lymph node-derived
- cells and splenic cells were fused with SP2/0 myeloma cells
to yield hybridoma cells (Supplementary Figure 1E, online
only, available at www.exphem.org). We screened superna-
tants of hybridomas in single-clone culture by enzyme-
linked immunosorbent assay to detect reactivity against
the HLA tetramer (data not shown). Selected clones were
expanded for panel-reactive antibody (PRA) screening, per-
formed using FlowPRA (Fig. 1A). We chose several mono-
clonal antibodies for further work, one binding specifically
to HLA-A*02:01 (YNA2.8.2) and one binding to both
HLA-A*02:01 and HLA-A*03:01 (YNA2.12.2). We also
established the antibodies that bind to HLA-A*23:01,
HLA-A*24:02, and HLA-A*32:01 (Clone YNA24.3.2 and
YNA24.19.2). Focusing on YNA2.8.2, we purified it and
subjected it to biotinylation or to conjugation with the fluo-
rescent chromophore AF647. Using this biotinylated ASH-
mAb or the ASHmAD’s fluorescent conjugate, we analyzed
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whether it could, in flow cytometry, distinguish members of
two different HLA-positive healthy donor PBMC sets. We
mixed PBMCs from two donors, one HLA-A2-positive
and the other HILA-A2-negative, and stained the pool
with biotinylated ASHmAb. Flow cytometry results re-
vealed that we could distinctly separate the two types of
cells (Fig. 1B). With sequencing-based typing (Special
Reference Laboratories, Tokyo, Japan), we confirmed that
cells sorted as HLLA-A*02:01 positive were absolutely, by
genetic criteria, HLA-A*02:01 expressing (data not
shown). To confirm this antibody’s specificity in vivo
further, we analyzed PBMCs of a patient who underwent
allo-HSCT to examine whether the antibody enabled sepa-
ration of donor (HLA-A2-negative/A24-positive) cells from
recipient (HLA-A2/A24-positive) cells (Fig. 1C). The pa-
tient was a 46-year-old man who 12 years earlier had under-
gone cord blood transplantation for acute myeloid leukemia
and who suffered from chronic GVHD. Using YNA2.8.2,
we could successfully separate the patient’s PBMCs into
donor- and recipient-derived cells. Chimerism analysis un-
expectedly revealed that T cells, B cells, natural killer (NK)
cells, and monocytes of native origin persisted in this pa-
tient after HSCT. These results confirm the reported utility
of ASHmADbs as a diagnostic tool [14].

Allele-specific cytotoxicity of ASHmAb

To evaluate the killing ability of ASHmAb, we first
analyzed in vitro cytotoxicity (Fig. 2A). HLA-A2-
negative or -positive cells (1.0 x 10° cells/well) were
cultured with ASHmAD hybridoma supernatant, Dulbecco’s
modified Eagle medium (Sigma-—Aldrich), and 10% fetal
bovine serum, with or without 30% baby rabbit comple-
ment, and were incubated for 24 hours (37°C, 5%CO,).
Percentages of dead cells were determined by PI staining
of cells using a flow cytometer. On average, 61.9% of
HLA-A2-positive cells were PI positive, and on average,
only 14.2% of HLA-A2-negative cells were PI positive.
These results indicate that ASHmAb can bind with
HLA-A2-positive cells in vitro, a phenomenon resulting
in cell death, presumably via complement-dependent cyto-
toxicity. We designated this ASHmADb that kills only
HLA-A*02:01-positive cells as HLA-A2 killing ASHmAb
(A2-kASHmADb). A2-kASHmADb was capable of killing
target cells quickly: when we examined cell death after
3 hours of incubation, we found 30% to 40% mortality
manifest as aggregation and failure of trypan blue exclusion
(data not shown).

To analyze the cytotoxicity of A2-kASHmAD in vivo,
we transplanted 1.0 x 10° cells/mouse cord blood-derived
HILA-A2-negative or -positive mononuclear cells into
CB17-Prkdc*®Y/J (NOD/SCID) mice previously subjected
to 2.0 Gy of irradiation and made human-mouse bone
marrow chimeric mice (Fig. 2B). Before A2-kASHmAD in-
jection (0.5 mg/mouse, intravenously), chimerism of cord
blood-derived HLA-A2-positive cells was 12.0%; 1 day

after injection, chimerism fell to 0.3%. Conversely, chime-
rism of cord blood-derived HLA-A2-negative cells before
A2-kASHmADb injection was 2.3% and 1 day after injec-
tion, chimerism increased to 5.9% (Fig. 2C), an effect
significantly different on statistical analysis (Fig. 2D, E).
These experiments indicate that kASHmADb can damage
cells allele-specifically in vitro and in vivo. We also found
that kKASHmAD administered intraperitoneally could dam-
age target cells as efficiently as kASHmADb administered
intravenously (Supplementary Figure E2ZA-C, online only,
available at www.exphem.org).

Xenogeneic model of GVHD treatment with kASHmAb
We focused on kASHmADb’s cytotoxicity and its ability to
discriminate between donor and recipient cells. ATG, a
representative clinical GVHD molecular-targeted agent, is
used both as a treatment for and as a prophylactic against
GVHD. However, ATG reacts against cells without distin-
guishing between donor and recipient cells and causes
many side effects, such as allergic reaction and increased
susceptibility to infection, as a result of repression of T
cells. Moreover, the exact molecular target of ATG is un-
known, because ATG is polyclonal. As kASHmAb induces
donor-specific cell death in GVHD treatment and is
directed against a clear molecular target, we thought that
kASHmAb might be useful as a molecule-targeted drug
in GVHD treatment as an alternative to ATG.

Ito et al. reported a novel xeno-GVHD animal model us-
ing NOG mice in which, thanks to intravenous transfer of
human PBMCs, GVHD symptoms were of early onset
[17]. We employed this model to analyze the therapeutic ef-
fect of KASHmMAD in GVHD. We transplanted 1.0 x 107
cells/mouse HLA-A2-negative or -positive PBMCs into
NOG mice without irradiation (day 0). To judge whether
GVHD had developed or not, blood tests, determinations
of body temperature and weight, and assays of skin damage
were used in previous studies [18-20]. In this study, to
ensure as objective a determination of the onset of
GVHD as possible, we decided to define GVHD onset
based on minor changes in biomarker values, body
temperature, and body weight, as in clinical settings
(Fig. 3C, Supplementary Figure E3, online only, available
at www.exphem.org). Determinations of complete blood
counts (CBC) and biomarkers in peripheral blood estab-
lished that the onset of GVHD—as indicated by significant
changes in complete blood count values—was 3 days after
PBMC injection. We thus decided to start administration of
A2-kASHmAD from this point with A2-kASHmADb injec-
tion (days 3 and 4; 60 pg/day x 2 days) coupled with anal-
ysis of PBMCs by flow cytometry (Fig. 3A); complete
blood count and biomarker determinations; records of
body weight, body temperature, and calculated survival
rate; and histopathologic analysis. First, using flow cytom-
etry, we analyzed the frequency of human-derived cells
in peripheral blood of GVHD model mice before and after
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Figure 2. Allele-specific cytotoxicity of ASHmADbs. (A) Statistical analysis of in vitro killing assay using A2-ASHmAb with and without baby rabbit com-
plement (right and left, respectively). HLA-A2(—) cells (red bar) and HLA-A2(+) cells (blue bar) from healthy donors were each cultured with isotype
control or A2-ASHmADb hybridoma supernatant. Percentages of dead cells were determined by propidium iodide staining and flow cytometry. Doublets
and dead cells were excluded from flow cytometry data. NC = negative control; NS = not significant. Data shown as mean * SD (n = 4, p < 0.05 by
Student’s ¢ test). (B) Schedule of in vivo assay of killing ASHmAbs. Cord blood-derived CD34(+)/HLA-A2(—) or CD34(+)/HLA-A2(+) cells were trans-
planted into NOD/SCID mice with 2 Gy of irradiation to create respectively HLA-A2(—) and HLA-A2(+) human-mouse bone marrow chimeric mice. One
month after transplantation, peripheral blood was analyzed by flow cytometry just before KASHmAD injection and on days 1 and 7 thereafter. (C) Repre-
sentative flow cytometric analyses. Top: HLA-A2(—)/CD45(+) cells (%) among HLLA-A2(—) mouse peripheral blood mononuclear cells in marked gate.
Bottom: HLLA-A2(4)/CD45(+) cells (%) among HLA-A2(+) mouse PBMCs in marked gate. Doublets and dead cells were excluded from flow cytometry
data. (D, E) Statistical analysis of (C). Red bars and blue bars respectively represent HLA-A2(—) and HLA-A2(+) cells. Data shown as mean *= SD (n = 3
and 5, respectively; p < 0.05 by Student’s ¢ test). HLA = human leukocyte antigen; kASHmAbs = killing allele-specific anti-human leukocyte antigen
monoclonal antibodies; NS = not significant; PBMCs = peripheral blood mononuclear cells.

A2-kASHmADb administration (Fig. 3B). Chimerism of the
HI.A-A2-positive group was 5.4% before A2-kASHmAbD
injection; on day 8 after PBMC injection, it was 0%.
Chimerism of the HLA-A2-negative group was 8.8%
immediately before A2-kASHmAD injection; on day 8 after
PBMC injection, it was 27.8%. The survival rate of the
HLA-A2-positive group was 100%, with a mean survival
of more than 6 months; however, all members of the
HILA-A2-negative group died within 2 months (Fig. 3D).
To confirm that GVHD had caused death, we histopatholog-

ically examined liver, lungs, intestine, and kidneys of these
mice. Immunostaining revealed intensive tissue infiltration
by CD3-positive/CD45-positive cells, especially in lungs
and intestine (Fig. 3E, Supplementary Figure E4, online
only, available at www.exphem.org), and TdT-mediated
dUTP nick end labeling studies revealed apoptosis
(Supplementary Figure E5, online only, available at www.
exphem.org). These results verified experimentally that
kASHmAD could be a novel drug to damage target cells
in GVHD safely, quickly, and selectively.
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Figure 3. GVHD kASHmAb treatment model. (A) Schedule, GVHD kASHmAD treatment model. Day —1: Blood examination. Day 0: HLA-A2(—) or
HLA-A2(+) PBMCs transplanted into non-irradiated NOG mice. Day 3: Blood examination immediately before first kASHmAD dose; first KASHmAD
dose. Day 4: Second kKASHmAD dose. Days 2, 8, and 28: Flow cytometric analyses. Day 90: Survival assessment. (B) Representative flow cytometric an-
alyses. Human-derived cells (%) among GVHD model mouse PBMCs, days 3, 8, and 28. Top: HLA-A2(—)/CD45(+) cells, HLA-A2(—) GVHD mouse.
Bottom: HLA-A2(+)/CD45(+) cells in HLA-A2(+) GVHD mouse. Forward-scatter, side-scatter, and propidium iodide gatings excluded residual erythro-
cytes, debris, doublets, and dead cells. (C) Body weight of GVHD model mice before and after KASHmADb treatment. Red line = HLA-A2(—) PBMC-
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and 1900 hours at room temperature (22°C) and ambient humidity (55%). Percentage change from initial weight is illustrated. (D) Survival of GVHD model
mice (kASHmADb-treated). Red and blue lines respectively represent HLA-A2(—) GVHD mice and HLA-A2(+) GVHD mice. Data shown as Kaplan-Meier
estimates (n = 4 and 5, respectively; p < 0.05).
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Figure 3. (continued) (E) Lung and intestine, day 21, GVHD model mice (NOG mice intravenously transplanted with human PBMCs (HLA-A2(—) or
HLA-A2(+)); anti-human CD3 and CD45 developed with 3,3’-diaminobenzidine, hematoxylin nuclear counterstaining. X 200. Bar = 400 pm.
A = alveoli; Br = bronchiole; GVHD = graft-versus-host disease; HE = hematoxylin and eosin, HLA = human leukocyte antigen;
kASHmAbDs = allele-specific anti-HLA monoclonal antibodies against HLA-A*02:01; LP = lamina propria; Lu = lumen; M = muscularis; NOG =
NOD/Shi-scid/IL-2Ry™"; PBMCs = peripheral blood mononuclear cells; S = submucosa.

kASHmAb administration did not cause graft failure

We confirmed that A2-kASHmADb specifically damages
cells that express HLA-A2 in human-mouse bone marrow
chimera mice (Fig. 2C, D). A potential risk of anti-
GVHD therapy with kKASHmAD is damage to donor he-
matopoietic stem cells (HSCs) that necessitates another
transplantation. Unexpectedly, we discovered that in many
mice (14 of 16) in the HLA-A2-positive group chimerism
rebounded to high levels 1 to 2 months after A2-
kASHmAD injection. The dose of kKASHmAD used to treat
GVHD was, at greatest, equivalent to that of the polyclonal
ATG preparation usually given for acute GVHD in actual
clinical settings (3 mg/kg/day x 5 days). The clinical risk
might be substantial if KASHmAbs were administered to
GVHD patients, because if donor-derived HSCs are abla-
ted, patients may have to undergo HSCT again. The obser-
vation that chimerism returns quickly after A2-kASHmADb
administration let us hypothesize that HSCs resist
antibody-mediated killing and that adjusting the dose of
kASHmAb may circumvent damage to HSCs while yet
treating GVHD.

We used humanized mice, generated by transplanting
2.0 x 10° cells/mouse cord blood-derived HLA-A2-
positive/CD34-positive cells into NOG mice after 1.5 Gy
irradiation, to track numbers of cord blood-derived HLA-
A2-positive/CD45-positive human cells among mouse
PBMCs and bone marrow cells after high-dose A2-
kASHmAb (60 pg/day x 2 days) administration
(Fig. 4A). PBMC human cell chimerism in humanized
mice immediately before A2-kASHmAD injection was
72.2%; 2 days after A2-kASHmAD injection, it was
12.9%. Although most CD34-positive cord blood-derived
cells disappeared after A2-kASHmADb injection, human
cell high chimerism (70.7%) returned in the same mice
within 1 month (Fig. 4B, C). We determined numbers of
human cells in mouse PBMCs and bone marrow cells
before and after A2-kASHmADb injection. Although many
human PBMCs disappeared, the proportion of human-
derived cells in bone marrow continued to be substantial
(Fig. 4D). HLA resides on the surface of all nucleated cells,
including HSCs {21,22]; these results unexpectedly indi-
cated that the killing ability of kKASHmAD is selective,
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before intraperitoneal kASHmAD injection) and days 2, 7, 28, 56, and 84. Abscissa: Human CD45; ordinate: HLA-A2. Forward-scatter, side-scatter, and
propidium iodide gatings excluded residual erythrocytes, debris, doublets, and dead cells. (C) Bars: HLA-A2(+)/CD45(+) cells (%) among humanized
mouse PBMCs. The data are normalized against the baseline percentage of human cells. Data shown as mean * SD (n = 5). (D) Representative flow cyto-
metric analyses of cord blood-derived human cells (%) among bone marrow cells, say 84. Mouse bone marrow cells were stained with anti-human CD34 and
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IL-2Ry™", PBMCs = peripheral blood mononuclear cells.

damaging cells in peripheral blood more efficiently than
those in bone marrow. These findings indicated that at the
correct dose, KASHmAD likely could be administered to
GVHD patients safely, without causing graft failure and
necessitating repeat HSCT.

Discussion

Emergence of antibodies to HLLA antigens is often associ-
ated with disorders such as graft failure and resistance to
transfusion [23-27]. This study is the first to find that

anti-HLLA antibodies also can be used therapeutically. Con-
fronted with growing numbers of HLA-mismatched cord
blood or haplo-identical HSCT, we thought about gener-
ating kASHmADs that can recognize donor HLLA molecules
in an allele-specific manner and damage them while sparing
host cells. Because they act specifically against donor cells,
these kASHmADs, in principle, should constitute novel
anti-GVHD drugs with minimum side effects. Indeed, un-
like ATG and anti-CD3 or anti-CD52 antibodies, ASH-
mAbs destroyed donor cells specifically and quickly and
thus treated acute GVHD efficiently, as shown in our
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GVHD-model mice. Many models have been developed to
manipulate, and to clarify, human T-cell-mediated acute
GVHD in vivo [28]. The model that we used is optimal
for evaluation of the killing ability of ASHmADbs, because
it is very simple; it is reproducible; and most of all, the im-
mune response is typically more robust to xenografts than
to allografts.

We thought that graft failure requiring second transplan-
tation was a potential adverse effect of kKASHmAb admin-
istration, because the antibody might target for
elimination all donor-type HLA-expressing cells, in partic-
ular, HSCs (which are known to express high levels of class
I major histocompatibility complex) [21,22]. Unexpectedly,
human PBMCs reappeared in mouse peripheral blood 2 to
3 weeks after KASHmAbD administration at very high doses.
This suggests that the cytotoxic effect of kASHmAb may
preferentially injure mature PBMCs, sparing hematopoietic
stem progenitor cells. The mechanism of this preference is
not clear at present. It could be due to the fact that most
HSCs in the bone marrow niche are in a quiescent state
and resistant to cell damage such as apoptosis [29,30].
Although the concern persists that patients given kASH-
mADb are at risk of graft failure, optimization of kKASHmADb
dosages may solve this issue.

So far, we have generated KASHmADbs against HLA-A2
and HLA-A24 (Supplementary Figure E6, online only, avail-
able at www.exphem.org). These two kASHmADbs can cover
approximately 23.1% of HLA-mismatched transplants (data
from our institute). More kKASHmADbs are needed to cover
other HLA-mismatched transplants. For example, if we
establish 12 more kASHmAbs (HLA-A*02:03, HLA-
A*02:06, HLA-A*02:07, HLA-A*24:02, HLA-A*24:20,
HLA-A*11:01, HLA-A*26:02, HLA-A*31:01, HLA-
A*33:03, HLA-B*35:01, HLA-B*40:02, and HLA-
B*51:01), at least 72.3% of GVHD cases (n = 199) in our
institute can be treated. As an alternative to class I kASH-
mAbs, we have succeeded in generating several HLA class
I ASHmAbs. These mAbs can potentially target activated
T cells and antigen presenting cells that play a central role
in eliciting GVHD. Administration of them alone or in com-
bination with class I kASHmAbs may further enhance the
anti-GVHD effect but minimize side effects.

Furthermore, if the diagnosis of GVHD can be made
earlier using recently discovered biomarkers of early
GVHD [31], for example, we may be able to treat GVHD
safely with low doses of kKASHmAb. Should target cells
evade kASHmADbs by internalizing HLA molecules [32],
kASHmAbs can be labeled with cell-damaging agents
such as anti-cancer drugs and radio-isotopes [33,34],
thereby inducing cell death. If HLA expression is downre-
gulated [35,36], cell surface expression of HLA can be
induced with drugs such as interferon-y [37]. An additional
concern in treatment of GVHD with kASHmADbs is their in-
fluence on the graft-versus-tumor (GVT) effect. Although
little is known about how GVT and GVHD effects differ,

clearly in most cases there will be no GVT effect without
GVHD. To observe the GVT effect even after treatment
of GVHD with either class I or class II kASHmADbs will
pose intriguing questions.

In conclusion, KASHmAD is an antibody that accurately
discriminates between donor and recipient cells and in-
duces target cell death. As use of HLA-mismatched cord
blood transplantation and haplo-identical HSCT increases,
so may the incidence of GVHD. ASHmAbs may provide
an effective treatment for GVHD, favorably influencing
the outcome of allo-HSCT. We believe that kKASHmADbs,
ready-made agents created through well-designed anti-
body-processing technologies, have great potential in the
clinical treatment of GVHD.
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Supplementary Figure E1. Schedule for ASHmADb generation and screening. Day 0: First immunization of HLA-transgenic (Tg) mouse with HLA tetramer.
Day 9: Mouse serum assessed for antibodies. Day 10: Second immunization (boost injection) of HLA-Tg mouse with HLA tetramer. Day 13: Fusion of
spleen- and lymph node-derived B cells with SP2/0 myeloma cells. Fused cells were cultured in medium without aminopterin for 24 hours. Day 14: Sus-
pension of fused cell-daughter cell candidates in methylcellulose-based HAT medium in 10-cm dishes for culture pending selection. Days 20-22: Selection
of hybridoma colonies replating into 96-well plates filled with Dulbecco’s modified Eagle medium. Days 27-28: Screening of supernatants from hybridoma
culture; initially by enzyme-linked immunosorbent assay, secondarily by flow cytometry. ELISA = enzyme-linked immunosorbent assay; HAT = hypoxan-
thine-aminopterin-thymidine; HLA = human leukocyte antigen.
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Supplementary Figure E2. Allele-specific cytotoxicity of HLA-A2-killing ASHmAb (kASHmAb) when injected intraperitoneally (IP). (A, B) Schedule
and representative examples of in vivo assay of IP-administered HLA-A2 kASHmAb. Cord blood-derived CD34(+) / HLA-A2(+) cells were transplanted
into irradiated NOD/SCID mice to create human-mouse bone marrow chimeric mice. One month after transplantation, flow-cytometric peripheral blood anal-
ysis was performed just before IP kKASHmAD injection (0.5 mg, single dose) and on days 1 and 7 thereafter. Flow-cytometric analysis results show percent-
ages of HLA-A2(+4) / human CD45(+) cells in the marked gate. Doublets and dead cells were excluded. (C) Results of statistical analysis of (B). Blue bars
represent HLA-A2(+) cells among humanized-mouse peripheral blood mononuclear cells (PBMC). Data shown as mean * s.d (n=3, p< 0.05 by Student’s
t-test). ASHmAb = allele-specific anti-HLA monoclonal antibody; HLA = human leukocyte antigen.
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Supplementary Figure E3. Results of hematologic and biomarker studies of GVHD-model mice before and after kASHmAD treatment. (A) Blood was
sampled from the retroorbital venous plexus and examined on days -1 (just before PBMC transplantation) and 3 (just before kKASHmAD injection). We deter-
mined complete blood counts (CBC; hematocrit with red blood cell, hemoglobin, and platelet concentrations), serum total bilirubin concentration, LDH,
GOT, and GPT activities in 5 HLA-A2(-) PBMC-transplanted mice and 6 HLA-A2(+) PBMC-transplanted mice. All mice were 7-8 weeks old. Paired
t-test, *P<0.05; **P<0.01; NS: not significant. (B) Body temperature of GVHD-model mice before and after kASHmAD treatment [Red line;
HLA-A2(-) PBMC-transplanted mice = GVHD(+), Blue line; HLA-A2(+) PBMC-transplanted mice = GVHD(-)]. Body temperature was determined twice
weekly between 1500h and 1900h at room temperature 22°C and ambient humidity 55%. Percentage change from initial weight is shown. HLA = human
leukocyte antigen; RBC = red blood cells; LDH = lactate dehydrogenase; GOT = glutamic oxaloacetic transaminase; GPT = glutamic pyruvic transam-
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Supplementary Figure E4. Tissues from GVHD-model mice immunostained for human antigens (kidney and liver). Three weeks after transplantation, liver
and kidneys were obtained from NOD/Shi-scid/IL-2Rynull mice intravenously transplanted with human PBMCs [HLA-A2(-) or HLA-A2(+)]. Sections of
routinely processed formalin-fixed, paraffin-embedded material were stained with anti-human CD3 and CD45 antibodies with 3,3’-diamino-benzidine (DAB)
substrate as chromogen and hematoxylin as nuclear counterstain. While HLLA-A2(+) GVHD mouse shows no human derived-cells, HLA-A2(-) GVHD
mouse organs show human CD3 or CD45 cells; magnification, original image, x200, liver; x400, kidney). Scale bar 400 pm (kidney: 200 um). B = Bile
duct; C = Central vein; G = Glomerulus; GVHD = graft-versus-host disease; H = Hepatic artery; HE = hematoxylin and eosin; HLA = human leukocyte
antigen; PBMC = peripheral blood mononuclear cell ; PV = Portal vein; R = Renal corpuscle.
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Supplementary Figure E5. Apoptosis in sections of organs of HLA-A2(-) and HLA-A2(+) GVHD-model mice after TdT-mediated dUTP nick end-labeling
(TUNEL). Using routinely processed formalin-fixed, paraffin-embedded material, we evaluated apoptosis in sections of liver, lungs, intestine, and kidneys of
HLA-A2(-) and HLA-A2(+) GVHD-model mice, obtained 3 weeks after transplantation, by light microscopy after TdT-mediated dUTP nick end-labeling.
Green dots indicate apoptotic cells. Magnification, original images, x200. Scale bars 400 pm. A = Alveoli; B = Bile duct; Br = Bronchiole; G = Glomer-
ulus; GVHD = graft-versus-host disease; H = Hepatic artery; HLA = human leukocyte antigen; LP = Lamina propria; M = Muscularis; PV = Portal vein;
S = submucosa.
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Supplementary Figure E6. Allele-specific cytotoxicity of HLA-A24-killing ASHmADb (in vitro). (A) To establish ASHmAb-producing clones, on day 28
hybridomas (Supplementary Fig. 1) selected as producing anti-HLA antibody at initial screening were secondarily screened with FlowPRA, using flow
cytometry (YNA24.3.2 and YNA24.19.2). Hybridoma-culture supernatants were incubated with HLA-coated beads. After incubation, the beads were washed
and stained with secondary antibodies. Bead fluorescence intensities were measured using a flow cytometer and specificities of anti-HLA monoclonal anti-
bodies were determined. Representative flow cytometry data are shown for a combination of FlowPRA beads coated with HLA-A*68:01, A*11:01, A*34:01,
A*24:02, A*32:01, A*33:01, A*31:01, and control antigen or A*23:01. (B) Statistical analysis of in vitro killing assay using A24 ASHmAD with baby-rabbit
complement. HLA-A24(-) cells (red bar) and HLA-A2(+) cells (blue bar) from healthy donors were each cultured with isotype control or A24 ASHmAb
hybridoma supernatant. Percentages of dead cells were determined by propidium iodide staining and flow cytometry. Doublets and dead cells were excluded
from flow-cytometry data. NC; Negative control. NS; Not significant. Data shown as mean * s.d (n=4, p< 0.05 by Student’s t-test). ASHmAb = allele-
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ABSTRACT

We investigated whether bone marrow or peripheral blood stem cells from older sibling donors or cord blood
from unrelated donors provided a better outcome in allogeneic hematopoietic stem cell transplantation for
relatively older patients who were candidates for myeloablative conditioning. Clinical outcomes of 97 patients
aged 45 years or older with hematologic malignancies who received unrelated cord blood transplantation
(CBT) (n = 66) or bone marrow transplantation (BMT) or peripheral blood stem cell transplantation (PBSCT)
from related donors (n = 31) were compared. The cumulative incidences of grades Ill to IV acute and
extensive chronic graft-versus-host diseases were similar between both groups. Although transplant-related
mortality was significantly lower after CBT compared with BMT/PBSCT from related donors (hazard ratio [HR],
.29, P = .04), overall mortality (HR, .72, P = .47) and relapse (HR, 2.02, P = .23) were not significantly different
after CBT and BMT/PBSCT from related donors. These data suggest that CBT could be as safe and effective as
BMT/PBSCT from older related donors for relatively older patients when it is used as a primary unrelated stem

cell source.

© 2014 American Society for Blood and Marrow Transplantation.

INTRODUCTION

Donor age has been associated with transplant outcomes
in allogeneic hematopoietic stem cell transplantation (allo-
HSCT) after myeloablative conditioning or reduced-intensity
conditioning (RIC) [1-5]. Older donor age resulted in an
increased incidence of severe graft-versus-host disease
(GVHD), which led to higher transplant-related mortality
(TRM) or overall mortality after allo-HSCT from unrelated
adult donors [1,2]. In contrast, it is difficult to determine the
exact effect of the age of related donors, because increasing
recipient age is frequently accompanied by increased donor
age after allo-HSCT from related donors. However, older
donor age of related donors may also be associated with
adverse outcomes [3-5].

Several studies, including ours, comparing both cord
blood transplantation (CBT) and bone marrow transplan-
tation (BMT)/peripheral blood stem cell transplantation
(PBSCT) from unrelated donors after myeloablative condi-
tioning in adult patients demonstrated that the incidence of
severe GVHD was significantly lower after CBT than after
unrelated BMT/PBSCT. The survival rate and relapse inci-
dence in CBT recipients were comparable with those in un-
related BMT/PBSCT recipients [6-3]. Moreover, we also

Financial disclosure: See Acknowledgments on page 1154.
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demonstrated similar survival, relapse, and TRM between
unrelated CBT and related BMT/PBSCT (rBMT/PBSCT) reci-
pients [10]. The incidences of grades IIl to IV acute GVHD
(aGVHD) and extensive chronic GVHD (cGVHD) among CBT
recipients were also significantly lower than those among
rBMT/PBSCT recipients. Because the lower risk of severe
GVHD is one of the most attractive advantages of CBT, the use
of cord blood instead of bone marrow or mobilized periph-
eral blood as a stem cell source might offer the possibility of
decreasing severe GVHD in older patients. However, there
has been no comparative study between CBT and BMT/PBSCT
from older related donors after myeloablative conditioning
in relatively older patients.

We previously reported that unrelated CBT after mye-
loablative conditioning is feasible in patients over the age of
45 years [11,12]. In this retrospective study, we report on a
clinical comparison of CBT from unrelated donors and BMT/
PBSCT from older related donors in patients older than
45 years of age with hematologic malignancies who were
candidates for a myeloablative conditioning.

METHODS
Patients and Transplant Procedures

This retrospective study included 97 consecutive patients, 45 years of
age or older, who received CBT (n = 66) from unrelated donors or BMT
(n = 26) or PBSCT (n = 5) from related donors for acute myeloid leukemia
(AML), myelodysplastic syndrome (MDS), chronic myeloid leukemia (CML),
acute lymphoblastic leukemia (ALL), and non-Hodgkin lymphoma (NHL) at
the Institute of Medical Science, University of Tokyo between May 1992
and July 2013. Nineteen patients who received rBMT/PBSCT and 32 patients
who received CBT were included from our previous study with extended

1083-8791/$ — see front matter © 2014 American Society for Blood and Marrow Transplantation.
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Table 1
Characteristics of Patients, Grafts, and Transplantation

Characteristic rBMT/PBSCT CBT P

Number of patients 31 66

Recipient age, yr, median (range) 48 (45-58) 49 (45-55) .60

Recipient sex, n (%) 51
Male 20 (64) 37 (56)

Female 11 (35) 29 (43)

Recipient CMV serostatus, n (%) .18
Positive 28 (90) 64 (96)

Negative 0(0) 2(3)
Unknown 3(9) 0(0)

Disease type, n (%) .08

AML 16 (51) 44 (66)
MDS 2(6) 8(12)
CML 6(19) 3(4)
ALL 3(9) 8(12)

NHL 4(12) 3(4)

Disease status at transplantation,” n (%) A48
Standard 8(25) 23 (34)

High 23 (74) 43 (65)

Conditioning regimen, n (¥) <.01

TBI12Gy-+Ara-C/G-CSF 21 (64) 0(0)
TBI12Gy+Ara-C/G-CSF+CY 2 (6) 52 (78)
TBI12Gy-+Ara-C/G-CSF+Flu 0(0) 3(4)
TBI12Gy+CY 3(9) 3(4)
TBI12Gy-+Ara-C+CY 1(3) 8(12)

TBI12Gy-+VP16 4(12) 0(0)

GVHD prophylaxis, n (%) 23
Cyclosporine A+methotrexate 29 (93) 65 (98)

Cyclosporine A 2(6) 1(1)

Number of nucleated cells, x107/kg, median (range) 26.6 (3.13-50.0)' 2.39 (1.72-5.07) <.01

Number of CD34* cells, x10%/kg, median (range) 40.5 (20.6-75.0)" 1.04 (.17-3.15) <01

Donor age, yr, median (range) 46.5 (38-58) — —

Sex compatibility, n (%) 81
Female donor to male recipient 8 (25) 20 (30)

Other 23 (74) 46 (69)

HLA disparities,’ n (%) <.01
0 28 (90) 1(1)

1 2(6) 13 (19)
2 1(3) 52 (78)

ABO incompatibility, n (%) .04
Match 19 (61) 20 (30)

Major mismatch 4(12) 17 (25)
Minor mismatch 5(16) 18 (27)
Bidirectional mismatch 3(9) 11 (16)

Time from diagnosis to transplantation, days, median (range) 521 (59-2501) 390.5 (55-6783) 84
<365 d, n (%) 12 (38) 31 (46) 51
>365d, n (%) 19 (61) 35(53)

Year of transplantation, n (%) <.01
1992-2002 27 (87) 17 (25)

2003-2013 4(12) 49 (74)
Follow-up for survivors, mo, median (range) 185 (32-258) 87 (4-175) <.01

CMV indicates cytomegalovirus; CY, cyclophosphamide; Flu, fludarabine; VP-16, etoposide.
» Disease status at transplantation was classified as standard risk or high risk; CR1 or CR2 without poor prognostic karyotype for AML and ALL, refractory
anemia for MDS, chronic phase for CML, and CR1 or CR2 for NHL were classified as standard risk, whereas patients in all other situations were classified as high

risk.

t Number of HLA disparities defined as low resolution for HLA-A, -B, and -DR.

# Number of nucleated cells was only for BMT recipients.
§ Number of CD34" cells was only for PBSCT recipients.

follow-up [10]. For disease status at transplantation, patients in first
complete remission (CR1) or second complete remission (CR2) without
poor prognostic karyotype for AML and ALL, refractory anemia for MDS,
chronic phase for CML, and CR1 or CR2 for NHL were classified as standard
risk, whereas patients in all other situations were classified as high risk.
Although bone marrow or mobilized peripheral blood from HLA-
compatible related donors within immediate families is a frontline graft
source, patients without a suitable closely HLA-compatible related donor
were eligible for CBT as an alternative first treatment option, unless they had
any type of anti-HLA antibody. Cord blood units were obtained from the
Japan Cord Blood Bank Network and were selected as reported previously
[9,10]. All patients received 12 Gy total body irradiation (TBI)-based mye-
loablative conditioning regimens, and cyclosporine-based GVHD pro-
phylaxis regimens, as previously reported {9,10]. For myeloid disease,
granulocyte colony-stimulating factor (G-CSF) was added to the condition-
ing regimen to increase the susceptibility to cytosine arabinoside (A;a-C)

through induction of cell cycle entry of dormant leukemia cells, as previ-
ously reported [13]. Almost all patients received some supportive care, such
as antibacterial, antifungal and antiviral agents, as previously reported
19,10]. The institutional review board of the Institute of Medical Science,
University of Tokyo approved this study, which was conducted in accor~
dance with the Declaration of Helsinki.

End Points and Definitions

The primary study end point was overall survival (OS), which was
defined as the time from the date of transplantation to the date of death or
last contact. Secondary end points were relapse, TRM, GVHD, and neutrophil
and platelet recovery. Relapse was defined by morphologic evidence of
disease in peripheral blood, bone marrow, or extramedullary sites. TRM was
defined as death during a remission. Both aGVHD and cGVHD were graded
according to previously published criteria [13,14]. The incidence of aGVHD
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was evaluated in all engrafted patients, whereas the incidence of cGVHD
was evaluated in engrafted patients surviving more than 100 days.
Neutrophil engraftment was defined as the first of 3 consecutive days during
which the absolute neutrophil count was at least .5 x 10°/L. Platelet
engraftment was defined as the first of 7 consecutive days with a platelet
count of 20 x 10%/L or higher without platelet transfusion.

Statistical Analysis

Baseline patient and transplant characteristics were compared using
the chi-square test for categorical variables and the Mann-Whitney U test
for continuous variables. The probability of OS was estimated according to
the Kaplan-Meier method, and groups were compared using Cox regres-
sion models or the log-rank test. The probabilities of relapse, TRM, aGVHD
and cGVHD, and neutrophil and platelet engraftment were estimated based
on a cumulative incidence method to accommodate competing risks.
Multivariate analysis was performed with a Cox proportional hazard model
adjusted for OS and a Fine and Gray proportional hazards model for the
others. In addition to the stem cell source (CBT versus rBMT/PBSCT), the
following variables were considered: disease type (myeloid [AML, MDS,
CML] versus lymphoid [ALL, NHL] disease), disease status at transplantation
(standard risk versus high risk), time from diagnosis to transplantation
(<365 days versus >365 days), sex compatibility between donor and
recipient (female donor to male recipient versus other), ABO compatibility
between donor and recipient (match versus mismatch), and year of
transplantation (1992 to 2002 versus 2003 to 2013).

All statistical analyses were performed with EZR (Saitama Medical
Center, Jichi Medical University, Saitama, Japan), a graphic user interface for
R 3.0.2 (R Foundation for Statistical Computing, Vienna, Austria) [15].
P < .05 was considered significant. Analysis of data was performed in
December 2013.

RESULTS
Characteristics of Patients and Grafts

The characteristics of patients, grafts, and transplant
procedures are summarized in Table 1. Recipients’ age, sex,
cytomegalovirus serostatus, disease type, disease status at
transplantation, GVHD prophylaxis, sex incompatibility be-
tween donors and recipients, and time from diagnosis to

Table 2
Univariate and Multivariate Analysis of Transplant Outcomes after rBMT/
PBSCT and CBT in Patients Aged 45 Years or Older

Univariate
Analysis

HR(95%Cl) P

Multivariate
Analysis*

HR(95%CI) P

Neutrophil engraftment
rBMT/PBSCT vs. CBT
Platelet engraftment
rBMT/PBSCT vs. CBT
Grades IlI-IV aGVHD
rBMT/PBSCT vs. CBT
Extensive cGVHD
rBMT/PBSCT vs. CBT
Overall mortality
rBMT/PBSCT vs. CBT
Relapse
rBMT/PBSCT vs. CBT
TRM
rBMT/PBSCT vs. CBT

69(38-1.04) 07 46(26-81) <01
30(14-61) <01 24(.12-50) <.01
57(18-1.85) 36 .53 (.15-1.90) .34
1.01(53-191) .97 1.08(49-2.35) .84
69(36-132) 26 72(30-1.73) A7
142 (52-387) 49 2.02(63-642) .23

38(16-93) .03 .29(.08-99) .04

= For neutrophil engraftment, lymphoid disease was also a significant
variable (HR, 2.40; 95% CI, 1.52 to 3.79; P < .01). For platelet engraftment,
lymphoid disease was also a significant variable (HR, 1.74; 95% CI, 1.17 to
2.59; P < .01). For grades I1I-IV aGVHD, ABO incompatibility was a significant
variable (HR, 4.41; 95% CI, 1.06 to 18.24; P = .04). For extensive cGVHD, high
risk of disease status at transplantation was a significant variable (HR, 3.14;
95% (1, 1.39 to 7.09; P < .01). For overall mortality, high risk of disease status
at transplantation (HR, 3.33; 95% Cl, 1.36 to 8.11; P < .01) and ABO in-
compatibility (HR, 3.14; 95% CI, 1.44 to 6.87; P < .01) were significant var-
iables. For relapse, high risk of disease status at transplantation was a
significant variable (HR, 4.55; 95% CI, 1.08 to 19.23; P =.03). For TRM, female
donor to male recipient (HR, 2.89; 95% Cl, 1.11 to 7.52; P = .02) and ABO
incompatibility (HR, 5.20; 95% Cl, 1.56 to 17.33; P < .01) were also signifi-
cant variables.

transplantation were almost the same between the CBT and
BMT/PBSCT recipients. On the other hand, there were
significant differences in the following variables (Table 1).
The conditioning regimen significantly differed between
the CBT and rBMT/PBSCT recipients (P < .01). The most
common conditioning regimen was TBI12Gy-+Ara-C/G-
CSF+cyclophosphamide (78%) for CBT and TBI12Gy+Ara-C/
G-CSF (64%) for rBMT/PBSCT. The number of nucleated cells
or CD34" cells for CBT recipients was 1 log lower than in
rBMT or rPBSCT recipients, respectively. The proportion of
HLA disparity and ABO incompatibility was higher among
CBT recipients than rBMT/PBSCT recipients. CBT was more
frequently performed in recent years, resulting in the
significantly shorter follow-up period for CBT compared with
that for rBMT/PBSCI. Median follow-up was 185 months
(range, 32 to 258 months) for rBMT/PBSCT recipients and
87 months (range, 4 to 175 months) for CBT recipients
(P <.01).

Neutrophil and Platelet Engraftment

One patient in the CBT group died on day 21 due to en-
cephalitis, and 1 patient in the rBMT/PBSCT group died on
day 7 due to organ failure. Primary graft failure occurred in 3
of the surviving 65 patients in the CBT group, but there was
no primary graft failure in the rBMT/PBSCT group. As ex-
pected, neutrophil recovery was significantly delayed after
CBT as compared with rBMT/PBSCI. Median times to
neutrophil recovery were 22 days (range, 18 to 34 days) after
CBT, as compared with 18 days (range, 11 to 40 days) after
rBMT/PBSCT (P < .01). The cumulative incidence of neutro-
phil recovery on day 60 was slightly lower after CBT (93.9%;
95% confidence interval [CI], 83.5% to 97.9%) compared with
rBMT/PBSCT (96.8%; 95% CI, 57.8% to 99.8%) (P = .07). In the
multivariate analysis, the hazard risk of neutrophil engraft-
ment was significantly lower after CBT as compared with
rBMT/PBSCT (hazard ratio [HR], .46; 95% Cl, .26 t0 .81; P < .01,
Table 2).

Platelet recovery was also significantly delayed after CBT
as compared with rBMT/PBSCT. Median times to platelet
recovery were 42 days (range, 13 to 104 days) after CBT, as
compared with 24 days (range, 15 to 300 days) after rBMT/
PBSCT (P < .01). The cumulative incidence of platelet recov-
ery on day 100 was significantly lower after CBT (90.8%; 95%
Cl, 80.0% to 95.9%) compared with rBMT/PBSCT (93.5%; 95%
Cl, 71.5% to 98.7%) in the univariate analysis (P < .01); the
difference was also significant in multivariate analyses (HR,
.24; 95% (I, .12 to .50; P < .01, Table 2).

Acute and Chronic GVHD

The cumulative incidences of grades Il to IV (HR, .90; 95%
Cl, 49 to 1.64; P =.76) and grades III to IV aGVHD (HR, .53;
95% (I, .15 to 1.90; P = .34) were similar between CBT and
rBMT/PBSCT recipients in multivariate analyses (Table 2). The
unadjusted cumulative incidence of grades Il to IV aGVHD at
100 days was 9.2% (95% Cl, 3.7% to 17.8%) in CBT recipients
and 16.1% (95% Cl, 5.7% to 31.2%) in rBMT/PBSCT recipients
(P = .35). Extensive cGVHD developed in 27 of 58 CBT
recipients and in 13 of 27 rBMT/PBSCT recipients surviving
more than 100 days. In a multivariate analysis, the cumula-
tive incidences of cGVHD (HR, .94; 95% CI, .55 to 1.62; P =.84)
and extensive cGVHD (HR, 1.08; 95% CI, .49 to 2.35; P = .84)
were similar between CBT and rBMT/PBSCT recipients in
multivariate analysis (Table 2).
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Figure 1. Outcomes after CBT or BMT/PBSCT from related donors in patients
aged 45 years or older with hematologic malignancies after a myeloablative
conditioning regimen. Adjusted probability of OS (A), unadjusted cumulative
incidence of relapse (B), and TRM (C).

Table 3
Cause of Death

Death before 100 Days
rBMT/PBSCT (BT

Death after 100 Days
rBMT/PBSCT  CBT

(n=2) (n=4) (n=14) (n=19)
Primary disease 0 2 5 12
GVHD 0 0 5 5
Infection 1 2 4 2
Organ failure 1 0 0 0

Survival, Relapse, and TRM

The adjusted probabilities of OS at 5 years were 67.4%
(95% Cl, 55.7% to 81.6%) for recipients of CBT and 55.2% (95%
Cl, 39.4% to 77.4%) for recipients of rBMT/PBSCT (Figure 1A).
In multivariate analysis, the hazard risk of overall mortality
was similar between CBT and rBMT/PBSCT recipients (HR,
.72;95% C1,.30 to 1.73; P=.47; Table 2). We also compared OS
of both groups for each disease risk. However, OS of both
recipient groups was also equivalent in standard-risk pa-
tients (n = 31) and high-risk patients (n = 66) (data not
shown). The unadjusted cumulative incidence of relapse at
5 years was 22.0% (95% Cl, 12.7% to 33.0%) in CBT recipients
and 16.7% (95% CI, 5.9% to 32.3%) in rBMT/PBSCT recipients
(P = .48) (Figure 1B). In multivariate analysis, the hazard risk
for relapse was similar between CBT and rBMT/PBSCT re-
cipients (HR, 2,02; 95% CJ, .63 to 6.42; P = .23; Table 2). The
unadjusted cumulative incidence of TRM was significantly
lower after CBT at 100 days (3.0%; 95% Cl, .6% to 9.4%) and
5 years (15.8%; 95% Cl, 7.6% to 26.6%) compared with rBMT/
PBSCT at 100 days (6.5%; 95% (I, 1.1% to 18.9%) and 5 years
(32.7%; 95% Cl, 16.8% to 49.6%) (P = .04) (Figure 1C). In
multivariate analysis, the hazard risk of TRM was signifi-
cantly lower after CBT as compared with rBMT/PBSCT (HR,
.29; 95% (1, .08 to .99; P = .04; Table 2).

We also analyzed a subgroup of patients aged 50 years or
older after CBT (n = 29) and rBMT/PBSCT (n = 11). In
multivariate analysis, the hazard risk of overall mortality
(HR, .36, P =10) and relapse (HR, 2.73, P = .41) after CBT was
comparable with that after rBMT/PBSCT, respectively. How-
ever, the hazard risk of TRM was lower after CBT than after
rBMT/PBSCT (HR, .16; 95% Cl, .04 to .56; P <.01).

The causes of death before and after 100 days after
transplantation by donor type are summarized in Table 3.
The major cause of death in both recipient groups was pri-
mary disease. However, GVHD and infection as a primary
cause of late mortality were more common after BMT/PBSCT
compared with CBT.

DISCUSSION

The objective of this study was to compare the transplant
outcomes after CBT and rBMT/PBSCT in relatively older
patients who were candidates for myeloablative condition-
ing. Unexpectedly, there were no significant differences in
aGVHD and ¢cGVHD between CBT and rBMT/PBSCT recipients.
However, TRM was higher after rBMT/PBSCT compared with
CBT. The reduced TRM in CBT might be in part due to
improved supportive care, because CBT was more frequently
performed in recent years. However, year of transplantation
did not affect any clinical results in our multivariate analysis.
On the other hand, we used almost the same 12-Gy TBI-
based myeloablative conditioning and cyclosporine-based
GVHD prophylaxis regimens during the period for both
recipients of CBT and rBMT/PBSCT. Among relatively older



