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Inhibition of plasmin attenuates murine acute graft-versus-host
disease mortality by suppressing the matrix metalloproteinase-
9-dependent inflammatory cytokine storm and effector cell

trafficking
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INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is
the only curative option for many hematological malignancies.
However, the development of acute graft-versus-host disease
(@GVHD) limits the success of allo-HSCT and is fatal in approximately
15% of transplant recipients. In the first phase of aGVHD, antigen-
presenting cells are stimulated due to antigen disparities between
host and graft."? Donor T cells are activated, and T-helper 1 (Ty1)
cytokines like interferon-y (IFN-y), interleukin-2 (IL-2) and tumor
necrosis factor-o. (TNF-a) initiate the recruitment of effector cells
(cytotoxic T lymphocytes, natural killer cells and monocytes). Finally,
TNF-g, IL-1 and IFN-y as inflammatory mediators induce end-organ
damage. A network of soluble cytokines, a so-called ‘cytokine
storm’, forms a critical link between each of these steps and may be
responsible for the bulk of target-organ damage. The ‘cytokine
storm’ drives the systemic inflammatory response observed in
septic shock and aGVHD, accelerates the coagulation/fibrinolytic
system and generates an imbalance between coagulation and
fibrinolysis** Plasmin (plm), a serine protease, is generated by
conversion from plasminogen (plg) by two plasminogen activators
(PA), such as tissue-type PA (tPA) and urokinase-type PA (uPA).
Although tPA has a dominant role in the resolution of fibrin clots
(fibrinolysis), uPA can activate extracellular proteolysis during
inflammatory processes.® Pim/plg binds to cells like monocytes
via receptors (annexin 2 and Plg-R¢7),” can alter the expression of

associated promﬂammatory cytokmes mcludlng tumor necrosis factor-oc (T NF-0) and F
' ' ttractant protem’
) contro! the deadly cytokine storm |n patlents w1th aGVHD

—Ilga'nd dlrectly, or lndlrectly Vla -
(MCP-1) S|gnallng We propose that pIasmln and

cytokines such as TNF-g, IL-1, IL-6 and monocyte chemoattractant
protein-1 (MCP)-1%""" and modify cell migration.'*""* The role of
plm in guiding the cytokine storm is not well understood. Because
plm can activate other proteases like metalloproteinases (MMPs)'>~"7
and some MMP inhibitors can block processing of TNF-o and Fas-
ligand (FasL),’®%* we hypothesized that plm activation may
control the cytokine storm and regulate the inflammatory
response in murine models of aGVHD.

MATERIALS AND METHODS

Mice

Ten-week-old female C57BL/6 (B6; H-2°) and six-week-old female (BALB/
¢ x C57BL/6)F1 (CBF1; H-2®"%) mice were purchased from Japan SLC Inc.
(Hamamatsu, Japan). Ten-week-old female Plg*’ * and Plg™ =/~ mice,
plasminogen activator inhibitor-1-deficient (PAIT~/~) and PAIT*/* mice
were used after more than 10 backcrosses onto C57BL/6 background.
Mmp9+’+ and Mmp9~/~ mice were used after more than 10 backcrosses
onto CD1 background. Animal protocols were approved by the Animal
Review Board of The Institute of Medical Science, University of Tokyo.

Reagents

The plasmin inhibitor YO-2 [trans-4-aminomethylcyclohexanecarbonyl-
Tyr(O-Pic)-octylamide] and YO-57 [trans-4-amiomethylcyclohexanecarbo-
nyl-L-(0-picolyl)tyrosine-4-aminomethylanilide],®** both provided by
Yoshio Okada (Kobe Gakuin University, Kobe, Japan), were dissolved in
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phosphate-buffered saline (PBS) at 375pg/ml. The MMP inhibitor
[N-hydroxy-2-((4-methoxysulfonyl)(3-pocolyl)-amino)-3- methylbutanamide
(MMI270)] (Novartis Pharma Corporation, Basel, Switzerland)®® was
dissolved in dimethylsulfoxide at 10 mmol/l. The following reagents were
used: D-(-+)-galactosamine hydrochloride (GalN; Sigma-Aldrich, Tokyo,
Japan), lipopolysaccharide (LPS; Sigma-Aldrich) from Escherichia coli
055:85, mouse plg and plm (Innovative Research, Novi, M|, USA),
recombinant human TNF-x (R&D Systems, Minneapolis, MN, USA).

Cell cultures

The human monocytic leukemia cell line THP-1 (3 x 10° cells/well) and the
mouse monocytic leukemia cell line WEHI-274.1 (1 x 10° cells/well) were
stimulated with 1 pg/mi LPS using 24-well Falcon plates (BD Biosciences,
San Jose, CA, USA). A human FasL cDNA-transfected mouse T-lymphoma
cell line (hFasL/L5178Y)'%° (1 x 10° cells/well) was cultured for 24 h.

Induction of lethal aGVHD

Bone marrow (BM) transplantation model: aGVHD was induced in lethally
irradiated (8 Gy) CBF1 mice by intravenous injections of 1 x 107 BM cells and
5% 107 splenocytes (SPs) from B6 mice on day 0. As a control, irradiated
CBF1 mice were injected with the same number of BM cells and SPs from
CBF1 mice. SP transfer model: CBF1 mice were intravenously injected with
2% 10® SPs from B6 mice on day 0 and 7. Treatment: aGVHD mice were
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intraperitoneally injected with 3.75 mg/kg body weight (BW) of YO-2, YO-57
or PBS alone every day from days 0 to 28, day 0 to 14 or day 8 to 28.

Induction of lethal endotoxin shock

Mice were intraperitoneally injected with 400 mg/kg BW of GalN and 5 ng/kg
BW of LPS (GalN/LPS). B6 mice were intraperitoneally injected with
3.75mg/kg BW of YO-2 or PBS alone dally from day —5 to 2.

Enzyme-linked immunosorbent assay

Human TNF-g, Fasl and plasmin inhibitor complex (PIC) were assayed in
supernatants using commercial ELISA (enzyme-linked immunosorbent
assay) kits (R&D Systems). Murine samples were assayed for TNF-a, IL-18,
Fasl, MMP-9, IFN-y, IL-6, MCP-1, plasmin-a.2 antiplasmin complexes (PAP),
uPA and tPA using ELISA kits (R&D Systems, BiolLegend (San Diego, CA,
USA), CUSABIO BIOTECH (Wuhan, China), Oxford Biomedical Research
(Rochester Hills, MI, USA)).

aGVHD histopathology scoring

Tissues were fixed in 10% buffered formalin and embedded in paraffin.
Hematoxylin and eosin stained tissue sections were evaluated using an
OLYMPUS microscope and scored according to a published histopatho-
logical scoring system.”” Standard magnifications were x 100/0.40 NA and
% 200/0.75 NA.
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(b) Human PIC plasma levels of patients with grade IlI-IV were plotted with day 0 set as the time of aGVHD onset. (c—f) aGVHD was induced in
mice using a murine BM transplantation model. Mice were treated with PBS or YO-2 (n = 12/group). (c) Kaplan-Meier curves showing survival
and (e) body weight. (f) ELISA of murine PAP (n=5-11), (g) TNF-a {n =3), and (h) IFN-y (n=3) in plasma at indicated times. Data represent
mean I s.em. from three independent experiments. *P <0.05, **P<0.01, ***P<0.001.
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Immunohistochemistry FITC-conjugated streptavidin (1:200, BD PharMingen, San Diego, CA, USA).
Frozen murine tissue sections (5pm) were washed with PBS, serum Small intestine sections were stained with anti-CD3e Ab (1:50, BD
blocked and stained with the first antibody (Ab), overnight at 4 °C. Small PharMingen) followed by FITC-conjugate goat anti-armenian hamster IgG

intestine sections were stained with anti-CD11b Ab (1:50, clone M1/70; BD) (H+1L) (1:200, Abcam, Cambridge, MA, USA). Spleen sections were stained
followed by biotin-conjugated goat anti-rat IgG (1:200, CEDARLANW) and rabbit anti-murine MCP-1 (1:500, clone JE; PEPROTECH, Rocky Hill, NJ, USA)
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Figure 2. Plm inhibition protects against aGVHD-associated lethality by controlling proinflammatory cytokine/chemokine production.
(a-m) aGVHD was induced in mice using a splenocytes (SPs) transfer model. Mice (n= 10/group) were treated with PBS, YO-2 and YO-57.
Kaplan-Meier curves showing (b) survival and (c¢) body weight. ELISA of (d) uPA (n = 3) and (e) tPA (n=3) in pooled plasma samples of three
PBS- or YO-2-treated SP transfer model mice obtained at day 6. (f) Mouse PAP (n=7-9) and (g) total MMP-9 (n = 3) were measured in plasma
by ELISA. (h) Blood samples retrieved on day 6 were analyzed by gelatin zymography (upper panel). Quantification of the intensity of proMMP-
9 and actMMP-9 bands (lower panel) (n =3-4). (i) CD11b or CD3e positive FACS-sorted SPs from aGVHD mice at day 8 were cultured for 24 h.
Culture supernatants were analyzed by gelatin zymography. () TNF-¢, (k) FasL, (I) IL-1B, (m) IL-6 and (n) IFN-y was measured by ELISA at
indicated times in pooled plasma samples of PBS-and YO-2-treated aGVHD mice (n = 3/cytokines). Data represent mean * s.e.m. from three
independent experiments. *P<0.05, **P<0.01, **P<0.001. 'Due to death no data available,
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followed by Alexa Fluor 594 goat anti-rabbit IgG (H + L) (1:200, Invitrogen,
Carlsbad, CA, USA), and costained with anti-CD31 Ab (1:500, clone ER-
MP12; BMA Biomedicals, Augst, Switzerland) and biotin-conjugated goat
anti-rat 1gG (1:200, CEDARLNW) and Alexa Fluor 488 streptavidin (1:200,
Invitrogen), or costained with anti-actin Ab (1:500, clone 3F10; GeneTex,
Irvine, CA, USA) followed by Alexa Fluor 488 goat anti-mouse IgG (H+L)
(1:200, Invitrogen).

WEHI-274.1 cells, after preincubation with 1pg/ml of LPS with PBS or
YO-2 for 2 h, were washed. Then cells were fixed with 4% PFA/PBS on slides
and permeabilized with 0.1% Triton X-100/PBS after 30 min. Following
blocking using 10% goat serum in PBS for 30 min, cells were incubated
using anti-NFkB p65 (1:100; Santa Cruz, Dallas, TX, USA; sc-109) for 1h in
PBS with 1% BSA, washed three times with PBS, and incubated for 1 h with
Alexa 594-conjugated goat anti-rabbit Ab (1:100; Invitrogen) in PBS with
1% BSA. After another washing step, cells were mounted with aqueous
mounting medium.

Flow cytometric analysis

Cell-surface antigen analysis was performed by staining with the following
Abs: goat anti-mouse CCR2 (AbD Serotec), CD4-PE, CD8a-PE, Gr-1-PE, Ly6G-
PE, CD11¢-PE, CD8a-FITC, F4/80-FITC, Ly6C-FITC, H2KY-FITC B-220-APC,
CD11b-APC, CD3e-APC, H-2K -biotin and APC streptavidin (BD PharMin-
gen). Cells (1 x 10° were analyzed on a BD FACS Calibur.

PCR with reverse transcription analysis

Total RNA was extracted using Trizol (Invitrogen), and cDNA was generated
according to the manufacturer’s protocols. Specific forward and reverse
primers, respectively, were designed as follows: human TNF-a: (5'-ttctccttcc
tgatcgtg-3') and (5'-agggctgattagagagaggt-3'); human Fasl: (5'-gagagtctac
cagccagatg-3’) and (5’-caggacaattccataggtgt-3’); human uPA: (5'-ccctectete
ctccagaagaa -3') and (5'-gtagacgatgtagtcctectte-3/); human uPAR: (5'-ggtga
cgccttcageatga-3’)  and  (5'-cccactgcggtactggacat-3'); human  GAPDH
control: (5'-tggtctcctctgacttcaac-3') and (5'-ctgttgctgtagccaaattc-3'); mouse
TNF-o: (5'-gccgatttgctatctcatac-3') and (5'-ggtatatgggctcataccag-3'); and
mouse f-actin control: (5'-tggaatcctgtggcatccatgaaac-3') and (5'-taaaacgca
gctcagtaacagtccg-3'). Gene expression levels were measured using an ABI
Prism 7500 sequence detection system (Applied Biosystems, Carlsbad, CA, USA).

Western blotting

Cells were lysed in lysis buffer (Cell Signaling Technology, Danvers, MA,
USA). Recombinant murine MCP-1 (JE/CCL2, PEPROTECH) 50nm were
preincubated with 25um YO-2, followed by 7.15 IU/ml pim stimulation.
Culture supernatants were removed after 30 min. Lysates/supernatants
were separated by 16% Tricine-SDS-polyacrylamide gel electrophoresis
and transferred to a PVDF membrane.”® Membranes were immunoblotted
with anti-TNF-o. (1:1000; Cell Signaling Technology) and anti-B-tubulin
(1:2000; Sigma-Aldrich) followed by HRP-conjugated or alkaline
phosphatase-conjugated secondary Ab (1:500; Nichirei Bioscience, Tokyo,
Japan). Membranes were immunoblotted with anti-mouse MCP-1 Ab
(0.2pg/ml; PEPROTECH) followed by HRP-conjugated secondary Ab
(1:500; Nichirei Bioscience). Membranes were incubated with ECL-Plus
(GE Healthcare Life Sciences, Piscataway, NJ, USA), and the
chemiluminescent signal was detected on a LAS4000 (Fujifilm) according
to the manufacturer’s instructions. The alkaline phosphatase signal was
detected using a Histofine Kit (Nichirei Bioscience).

Transwell migration assay

SPs derived from SP transfer mouse aGVHD model were isolated on 8 days
after the initial transplantation, stained with CD11b-PE and CD3e-APC, and
placed in the upper well of a 24-well transmigration chamber at 0.5 x 10°

Plasmin inhibition prevents acute GVHD
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cells per 0.1 ml (Corning, New York, NY, USA). Cells migrated for 2 h at 37 °C
towards: 10 nm MCP-1 (JE/CCL2, PEPROTECH), + 1.43 IU/ml plm and =5 pum
YO-2. Migrated CD11b ™ and CD3e™ subpopulations were calculated from
the total number of SPs recovered and the percentages of CD11b™ and
CD3e™ cells determined by FACS.

Zymography

MMP activity of plasma samples and culture supernatants was determined
by gelatin zymography.?>*® Density of each lytic band was quantified
using image analysis software (Imagel).

Chromogenic assay for plasmin activity

The kinetics of active plasmin formation was followed by measuring the
release of p-nitroaniline from a chromogenic substrate (D-Val-Leu-Lys
p-nitroanilide dihydrochloride, Sigma), detected as a change in absorbance
(A405 nm/min) using a multiwell plate reader.

Plasma samples from the patients following HSCT

From January 2009 to June 2011, 27 patients underwent HSCT at the IMSUT.
In accordance with the Declaration of Helsinki, patients gave their informed
consent. We have obtained approval from the Ethics Committee of the IMSUT.

Statistical analysis

Survival curves were plotted using Kaplan-Meier estimates. We used the
log-rank test for analysis of survival data and the Mann-Whitney U-test for
statistical analysis of clinical scores. Student’s t-test was used for statistical
analysis of remaining data. Data are presented as means + s.e.m. P<0.05
was considered statistically significant.

RESULTS
PIm is activated during the early phase of aGVHD

To investigate whether activation of plasmin (plm) occurs after HSCT
and is associated with aGVHD, we analyzed patient plasma samples
of human HSCT recipients. Patient demographics were compared
(Supplementary Table 1) and the aGVHD severity was rated on a
scale of Grade 0-, Grade Il and Grade llII-IV (severe aGVHD). As a
measure of plm activation, human plasmin «2-PIC plasma levels
(around 0-100 days after transplantation) were determined.
Individual maximum human PIC plasma levels correlated with the
grade of aGVHD (Figure 1a). Human PIC levels peaked within the
first 2 weeks after aGVHD diagnosis (Figure 1b) in circulation, which
was followed by a decrease in plasminogen (plg), and an increase in
thrombin-antithrombin and plasminogen activator inhibitor-1-tPA
complex (PAI-1-tPA complex; Supplementary Figure 1). The clinical
data indicated that plasmin activation was observed during early
phase of severe aGVHD in humans.

Next, we studied the effect of plm inhibition during aGVHD
progression in a murine major histocompatibility complex (MHC)-
mismatched BM transplantation model of lethal aGVHD. CBF1
recipients received total body irradiation as a conditioning
regimen followed by the transplantation of BM cells with or
without SPs (Figure 1c). By day 21, SPs were of donor origin and
blood counts had recovered (data not shown). Pharmacological
plm inhibition was achieved using the pim inhibitor YO-2.224
YO-2 inhibits plm by blocking the catalytic site, and efficiently
inhibits circulating pIm (Supplementary Figure 2a). YO-2 treatment
delayed disease progression, showing improved survival and
attenuated weight loss in mice (Figures 1d and e). Clinical signs of

Figure 3.

PIm inhibition reduces aGVHD-associated tissue destruction, inflammatory changes and lymphoid hypoplasia. (a-d) Tissue sections

from mice 8 days after SP transfer were stained with hematoxylin and eosin (H&E; scale bar, 100 um). Representative images ( x 200) of (a) skin,
(b) liver and (c) large intestinal tissue sections show aGVHD-associated cell infiltration (arrow head), apoptotic body (arrow) and ulceration
(asterisk). (d) Semi-quantitative histopathological scoring of tissues (n = 5/group). (e} Absolute numbers of SPs from mice following SP transfer
determined at indicated times (n=>5). Data are the mean * s.e.m. from three independent experiments. *P<0.05, **P <0.01 and ***P <0.001.
(f) Absolute number of SP subpopulations calculated after obtaining the percentage of these cell populations by FACS. Spleens were
harvested from CBF1, and PBS- or YO-2-treated aGVHD mice on day 8 (n = 3-5). (g-i) Tissue sections from mice 14 days after SP transfer were
stained with H&E (scale bar, 200 um). Representative images (x 100) of (g) spleen, (h) bone marrow and (i) thymus sections. (j) After
determination of the dpercentages of each subpoBuIation by three-color FACS, the absolute cell numbers of CD4™ T, CD8™ T and B220™
B cells of host (H-2K¥*KP*+) or donor (H-2K?~K°*) origin in SPs from CBF1, PBS-treated or YO-2-treated aGVHD mice on day 14 were
calculated from the total numbers of SPs recovered (n = 3). Data are representative from three independent experiments.
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aGVHD did not occur in CBF1 recipients adoptively cotransferred recipients transplanted with B6 BM cells and SP (B6:BM + SP). Even
with syngenic BM cells plus SP (CBF1:BM -+ SP) or allogenic though all mice had received total body irradiation, plm activation
C57Bl/6 (B6) BM cells (B6:BM), whereas aGVHD developed in CBF1 as determined by the increase in circulating mouse PAP was low in
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CBF1 recipients transplanted with CBF1:BM+ SP or B6:BM cells
(Figure 1f), indicating that total body irradiation alone was not
sufficient to activate plm. In contrast, activation of plm was found
in CBF1 mice receiving B6:BM + SP peaking on day 7 (Figure 1f).

Th1 cytokines are released during aGVHD under MHC-mismatch
conditions. Tyl cytokines like TNF-oo and I[FN-y were not
upregulated in syngenic BM cells plus SP (CBF1:BM+SP) or
allogenic C57BI/6 (B6) BM cells (B6:BM) (Figures 1g and h). TNF-a
production after aGVHD induction was suppressed in YO-2-treated
aGVHD mice. These data suggest that plm occurred under MHC-
mismatch conditions in the early phase of aGVHD and that plm
and Ty1 cytokines peaked around day 7.

PIm inhibition protects against aGVHD-associated lethality by
controlling proinflammatory cytokine/chemokine production
Because T-cell alloreactivity rather than irradiation seems to
be important for plm activation, we next used another
MHC-mismatched mouse model, a so-called ‘parent-to-F1’ model
of lethal aGVHD (Figure 2a). Mixed chimerism was found in SPs of
day 28 (data not shown). Because plm is activated mainly during
the early phase of aGVHD, YO-2 was only injected from day 0 to 8
in this MHC-mismatched mouse aGVHD model. YO-2 treatment
improved the survival and prevented aGVHD-associated BW loss
in SPs transfer-induced aGVHD mice (Figures 2b and c). Even
though YO-2 had been reported to induce thymocyte apoptosis
in vitro, thymocytes isolated from YO-2-treated aGVHD animals did
not show increased T-cell apoptosis (Supplementary Figure S2b).
Next, we injected another plm inhibitor (YO-57), which had been
reported to not affect thymocyte apoptosis. Similarly to YO-2
treatment, YO-57 treatment improved the survival and prevented
aGVHD-associated BW loss (Figures 2b and c). These data indicate
that plm inhibition rather than T-cell apoptosis seemed to be
important to improve clinical symptoms of aGVHD in vivo. As signs
of the activation of fibrinolysis during aGVHD progression, murine
PAP, uPA and tPA plasma levels increased after transplantation
(Figures 2d-f). PAP levels were low in YO-2-treated aGVHD mice.
As the function of plm is to dissolve fibrin clots, and plm inhibition
might cause fibrin deposition/clot formation, accelerate coagula-
tion, d14 liver tissues from aGVHD mice were stained for
fibrin(ogen). No difference in fibrin(ogen) staining pattern was
observed in YO-2- and vehicle-treated aGVHD-derived tissues
(Supplementary Figures S3a and b). Fibrin deposition was only
found in tissues from Plg~/~ mice. Similarly, no abnormal plasma
levels of thrombin-antithrombin (Supplementary Figure S3c) were
found after YO-2 treatment.

Increased serum levels of matrix metalloproteinase-9 (MMP-9)
have been reported in aGVHD patients after allo-HSCT.3' Plm
inhibition partially prevented the rise in total plasma MMP-9 levels
in circulation, with a decrease in both the pro-MMP and active
form of MMP-9 as determined by zymography (Figures 2g and h).
MMP-9 and MMP-2 proteolytic activity was high in CD11b ™, but
not CD3e™ FACS-sorted SPs of aGVHD mice ( Figure 2i).

Because MMP-9 protein increased and active MMPs/MMP-9
can convert cytokines/chemokines into more active or inactive
immune signals,>? or can process membrane-bound proteins, %33
we hypothesized that pim inhibitor treatment can control
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cytokine processing. Circulating TNF-a, FasL, IL-18 and IL-6, but
not IFN-y levels were reduced in YO-2-treated aGVHD mice
(Figures 2j—-n). PIm addition increased gene transcription of TNF-,
IL-1B, IL-6 and MCP-1 in monocytes in a dose-dependent manner,
a process that could be blocked when YO-2 was added to the
cultures (Supplementary Figure S4a). These data indicate that
blockade of the naturally occurring activation of plm during the
early phase of aGVHD development impaired the production of
cytokines/chemokines.

Plm inhibition reduces aGVHD-associated inflammatory changes

On day 10 after transplantation, skin from YO-2-treated aGVHD
mice showed less cell infiltration, hyperkeratosis and loss of hair
follicles, the liver showed less bile duct damage and portal cell
infiltrates and the large intestines showed less cell infiltration,
lamina propria inflammation, crypt destruction and mucosal
atrophy when compared with PBS-treated aGVHD mice (Figures
3a—c). YO-2-treated mice compared with controls showed a lower
disease score by histopathological evaluation (Figure 3d). We
observed SP expansion 8 days after transplantation, followed by
lymphoid hypoplasia 14 days after transplantation (Figure 3e). The
numbers of T cells, CD11b*Ly6G"°*Ly6C" inflammatory mono-
cytes, CD11b*F4/80 * macrophages and CD11c™ dendritic cells
were decreased in YO-2-treated aGVHD mice compared with the
PBS-treated aGVHD mice (Figure 3f). These findings demonstrate
that pharmacological inhibition of plm delays aGVHD-associated
skin, liver and intestine damage, and that it suppresses the
infiltration of effector cells in aGVHD tissues.

Plm inhibition reduces lymphoid hypoplasia

GVHD-associated lymphoid hypoplasia and B-cell dysfunction has
been shown to be dependent upon donor T cell-mediated
function>* On day 14 after transplantation, when compared
with PBS-treated aGVHD mice, the spleen from YO-2
treated aGVHD mice showed less lymphoid atrophy with decreased

cellularity and structural disorganization, the BM showed less

atrophy and a paucity of hematopoietic cells, and the thymus
showed less disorganized demarcation between the thymic cortex
and medulla (Figures 3g-i). In the SPs from YO-2-treated GVHD
mice, B220™ B cells of host or donor origin were preserved as
compared with PBS-treated aGVHD mice (Figure 3j). These
findings suggest that plm inhibition reduced lymphoid atrophy
and immunosuppression associated with aGVHD.

Plasmin inhibition impairs MCP-1-mediated cell migration in vitro

During aGVHD reaction, donor T cells initially migrate to the
spleen and peripheral lymphoid tissues within hours3® YO-2
treatment reduced the number of CD11b* cells and CD3e™ T
effector cells as determined by immunohistochemistry on spleen
sections after 8 days of aGVHD initiation (Figures 4a-d). Because T
cell and inflammatory cell trafficking into parenchymal organs
requires  specific  selectin-ligand, integrin-ligand®*® and
chemokine-receptor interactions, for example, MCP-1 with its
receptor CCR2, we next examined whether plm could alter
MCP-1/CCR2 signaling. YO-2-treated aGVHD mice showed lower

«

Figure 4. Plm inhibition influences both the initial T-cell expansion and its concomitant effector cell migration to aGVHD target organs.
(a-d) Immunofluorescent staining of (a) CD11b and (b) CD3e of intestinal tissue derived from CBF1 mice and PBS of YO-2-treated aGVHD mice
8 days after SP transfer (scale bar, 100 um). Quantification of (c) CD11b* and (d) CD3e™ cells in intestinal tissues (n = 3/group). (e) ELISA of
MCP-1 in pooled plasma samples of three SP transfer model mice obtained at indicated times. (f) MCP-1 gene expression in spleen on day 8
was determined by gqPCR (n =3) (g) CCR2™ cells within SPs harvested from mice after SP transfer on day 8 (n = 3-4) were determined by FACS.
(h—j) MCP-1 was costained with (h) actin, (i) CD31 and (j) CD11b on spleen sections derived from PBS-treated aGVHD mice 8 days after SP
transfer (scale bar, 10 um; n = 3). (k) Western blot analysis of MCP-1 after incubation of recombinant (rec.) murine MCP-1with/without plasmin
in the presence/absence of YO-2 (n = 3). (I) Transmigration assay of CD11b* or CD3e™ SPs migrating towards medium in the lower chamber
containing MCP-1 in the presence or absence of rec. plasmin with or without YO-2 (right; n = 3). Each experimental condition was assayed in
triplicate. Data represent mean £ s.e.m from three independent experiments. P-values: PBS versus YO-2: *P<0.05, **P<0.01, ***P <0.001.
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MCP-1 plasma levels (Figure 4e), MCP-1 mRNA expression in the by western blot analysis, and blocked the improved chemoattractive
spleen (Figure 4f) and a lower number of CCR2™ cells in SPs when ability of plm-processed MCP-1 using CD11b™ or CD3e* cells,
compared with PBS controls (Figure 4g). MCP-1 has been shown derived from the spleens of aGVHD mice in vitro (Figures 4k and |).
to be important for monocyte/macrophage, memory T cells and
dendritic cells recruitment in several inflammatory models.*”*8
Immunohistochemical analysis identified actin™, most likely Pim inhibition protects against lethal endotoxin shock and
smooth muscle cells/pericytes and CD31* endothelial cells as  reduced MMP-9 and TNF-o production in vivo
the major cellular source for MCP-1 in spleen sections of aGVHD We next examined whether plm inhibition can control TNF-o
mice (Figures 4h-j). Plm can enhance MCP-1 signaling by releasin% production through MMPs, Administration of GaIN/LPS is a
. . . lian, 39,41 . .
a MCP-1 fragment with improved chemoattractive ability. model of endotoxin shock that is governed by monocyte/
YO-2 prevented the release of the MCP-1 fragment as determined macrophage-released TNF-g. YO-2-treated B6 mice and Plg ™"~
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Figure 5. Plm inhibition protects against lethal endotoxin shock. (a) Kaplan—-Meier curves showing survival of WT B6 mice treated with PBS or

YO-2, Plg*’*, Plg=/~, PAI1 =/~ and PAI1 =/~ mice (n=8-20/group). Significant differences were found between B6 mice treated with PBS
and YO-2: ***P<0.001; between Plg™*’* and Plg™’~ mice: **P<0.001. (b, ¢) Sera and plasma were collected at 1 h after GalN/LPS injection.
(b) PAP (n=6-10) and (c) TNF-a (n = 6-15) were analyzed in plasma derived from GalN/LPS-injected mice by ELISA. (d) Kaplan-Meier curve
showing survival of Mmp9™/", Mmp9~/~ mice treated with or without YO-2 (n = 13-20/group). Significant differences were found between
Mmp9*’* and Mmp9~"~ mice with PBS: **P< 0.01; between Mmp9 ™"~ treated with PBS and YO-2: *P<0.05. (e, f) Plasma samples were
collected at 1 h after GalN/LPS injection. (e) Total MMP-9 (n = 5) in plasma was measured by ELISA. (f) Blood samples were analyzed by gelatin
zymography (left). Quantification of the intensity of actMMP-9 and actMMP-2 bands (right; n = 3). Data represent the mean * s.e.m. from two
independent experiments. *P<0.05, **P<0.01, ***P<0.001.

>
Figure 6. PIm inhibition prevents TNF-a. shedding and FasL production. (a, b) THP-1 monocytes were stimulated by 5ng rhTNF-a, 1 ig/ml LPS
and 20 ng rlFN-y for 2 h. (@) uPA and (b) uPAR gene expressions in cultured cells were determined by gPCR (n=3). (b, ¢) Dose-responsive
inhibition of cytokine release from LPS-stimulated THP-1 and hFasL/L5178Y cells by YO-2. TNF-a and FasL levels were determined in culture
supernatants by ELISA (n=3). (d) Gene expression of cytokines in cultured cells as determined by qPCR (n = 3). (e-i) WEHI-274.1 cells were
preincubated with 0.5 um mouse plasminogen and 5um YO-2, 5 um MMI270 or PBS, followed by 1pg/ml LPS stimulation in the absence of
serum. (e) Plm in culture supernatants was detected using a plm chromogenic substrate (n=3). (f) Quantitation of relative intensity of
proMMP-9 and actMMP-9 bands in supernatants as determined by zymography (n = 3). (g) Secreted TNF-o. were determined by ELISA (n=3).
{h) TNF-0. gene expression in cultured cells as determined by qPCR (n=3). (i) Confocal immunofluorescence staining of NF-kB (p65) in
LPS-stimulated WEHI-274.1 cells (scale bar, 10um). (j) Left: western blot of membrane-TNF-a (mTNF-a) in cell lysates (n=3). Right:
quantification of mTNF-a relative to B-tubulin. (k) Proposed mechanism by which plm exacerbates the cytokine storm in inflammatory
diseases. Inflammatory cells like monocytes, by releasing the plasminogen activator uPA catalyze the generation of plm. PIm by activating
other MMPs can generate a proteolytic environment resulting in the shedding of TNF-a and in an increased production of other cytokines,
thereby fueling the so-called ‘cytokine storm’ As cytokines in turn can promote the production of inflammatory cells, a vicious cycle is
initiated. In addition, plm promotes the recruitment of inflammatory cells, such as CCR2* by generating a MCP-1 fragment with improved
chemoattractive properties. Data represent the mean + s.e.m. from three independent experiments. ¥*P <0.05, **P<0.01, ***P <0.001.
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mice, but not PAIT~/~ mice, were protected against lethal
endotoxin shock (Figure 5a). We found high PAP plasma levels in
PBS-treated B6 mice 2 h after LPS injection, indicating that plm is
activated in the early phase after LPS injection. PAP plasma
levels were decreased in YO-2-treated B6 mice and Plg ~/~ mice,
but not Mmp9 =/~ mice (Figure 5b). A reduction in circulating
PAP levels was observed, but this did not reach significance in

Plasmin inhibition prevents acute GVHD
A Sato et al

reduced after GalN/LPS injection. Indeed, YO-2-treated B6 mice
and Plg~/~ and Mmp9~’/~ mice showed decreased TNF-u
plasma levels (Figure 5c). YO-2 treatment could not prevent
death in mice that were intravenously injected with recombi-
nant mouse TNF-a (data not shown). These results indicate that
plm is activated during the early phase after the onset of
endotoxin shock and that plm inhibition blocks the release of

Mmp9”/ ~ mice. We determined whether TNF-a levels were TNF-a in vivo.
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Next, we tested whether plm-mediated lethality and TNF-o
production required endogenous MMP-9 in a model of endotoxin
shock. Mmp9™/~ mice were partially resistant to endotoxin
shock-associated lethality (Figure 5d). These data suggest that pim
inhibition prevents TNF-o production in part through MMP-9.

YO-2 treatment restored survival in GalN/LPS-injected Mmp9 =7
mice (Figure 5d). YO-2 treatment reduced the total amount of
MMP-9 and active MMP-9 and MMP-2 protein in circulation, as
determined by ELISA and zymography (Figures 5e and f). As plm
inhibition inactivates not only MMP-9, but also other MMPs (like
for example, MMP-2 as shown here), the survival-enhancing
effects of plm inhibition after LPS administration is both MMP-9-
dependent and MMP-9-independent.

PIm inhibition prevents TNF-o shedding and FasL production

in vitro

We next examined the influence of Tyy1 cytokines on the expression
of fibrinolytic factors in monocytes/macrophages in vitro. The addition
of LPS and TNF-o increased the expression of uPA (Figure 6a),
whereas LPS, TNF-o. and IFN-y augmented UPAR expression in THP-1
cells (Figure 6b). These data indicate that inflammatory Ty1 cytokines
enhance the gene expression of fibrinolytic factors in monocytes/
macrophages. YO-2 inhibited the release of TNF-o. and FasL in
monocyte culture supernatants in a dose-dependent manner
(Figure 6c). The reduction of FasL release was not the result of
impaired gene expression, as shown by gPCR (Figure 6d), but rather
seems to be due to impaired protein release of the cytokine.

When WEHI-274.1 cells were maintained in serum-free medium,
plm and MMP-9 activity increased in culture supernatant after LPS
stimulation, but was inhibited in cultures treated with YO-2 or the
MMP inhibitor MMI270 (Figures 6e and f). TNF-o. secretion from
WEHI-274.1 cells was blocked by either YO-2 or MMI270
(Figure 6g). TNF-o. mRNA accumulation in LPS-stimulated WEHI-
274.1 cells was reduced by YO-2, but was not affected by MMI270
(Figure 6h). PIm-mediated upregulation of cytokines in human
monocytes has been reported to involve NF-kB activation.® After
LPS stimulation, p65 subunit of the transcription factor NF-xB
immunofluorescence staining was localized in the nucleus in
control cultures, but was detected in the cytosolic compartment in
YO-2-treated cells (Figure 6i). These data suggest that YO-2
blocked plm-mediated NF-xB translocation to the nucleus,
thereby blocking gene expression. Next we investigated whether
plm induces TNF-o. shedding from its 25-kDa membrane-
associated form (mTNF-a) to its 17-kDa secretory form. Both YO-
2 and MMI270 treatment enhanced the expression of 25-kDa
mTNF-o as determined by western blot analysis (Figure 6j). These
data indicate that plm accelerates the ectodomain shedding of
mTNF-a in vitro, and can regulate its transcription.

We show that pharmacological plm inhibition prevents
inflammation-associated lethality and tissue destruction in models
of endotoxin shock and aGVHD (Figure 6k) by impairing the
release of inflammatory cytokines/chemokines, which will further
attract inflammatory cells or fuel the influx of inflammatory cells.

DISCUSSION

Here, we show that plm is activated during the early phase of
endotoxin shock and aGVHD in mice and humans. PIm inhibition
protects against the proinflammatory cytokine storm in these
inflammatory diseases by blocking cytokine/chemokine produc-
tion and inflammatory cell infiltration.

Donor T cells recognize MHC and their associated peptides on
host APCs, which results in T-cell activation and Tyl cytokine
production. Tyl cytokines increase due to a reaction between
MHC-mismatch donor T cells and recipient APC, or LPS-activated
APC including monocyte/macrophage. We observed that plm
peak levels coincided with a peak in IFN-y levels, a cytokine,
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mainly released by activated T cells. We therefore suspected that
there is a link between Tyl cytokines and plm activation.
Monocytes exposed to IFN-y and TNF-o. upregulated the expres-
sion of the fibrinolytic factors uPA and uPAR. uPA binding to its
receptor UPAR will convert more plg into plm. The newly
produced plm will further increase the production of proinflam-
matory cytokines, establishing a vicious cycle of plm activation
and cytokine production,

We provide evidence that plm inhibition blocks shedding of the
membrane-associated proapoptotic cytokine TNF-o after LPS
stimulation in vitro and promotes the release of FasL. PIm has
been reported to cleave Fasl, releasing a soluble proapoptotic
FasL fragment from the surface of endothelial cells. The Fas/FasL
pathway is particularly important in hepatic GVHD. PIm inhibitor
treatment improved the pathological score in liver tissues of
aGVHD mice. Similar to reports by others,®® we show that plm
inhibition inhibited the transcription of TNF-o,IL-1B, IL-6 and MCP-
1 in monocytes by activating the NF-xB pathway. These data
indicate that plm inhibition controls cytokine/chemokine
production by blocking the processing and transcription.

PIm inhibition decreased the total amount of circulating MMP-9
in murine models of septic shock and aGVHD, and in a partial
MMP-9-dependent manner improved survival in a murine septic
shock model. Plasmin, via activation of MMP-3 is a potent activator
of pro-MMP-9 in vitro®" In an experimental model of the
autoimmune disease bullous pemphigoid, it was reported that
plm, in concert with other unidentified mechanism(s) caused
MMP-9 activation.** How can we explain the impaired rise in
circulating MMP-9 after pIm inhibition? One possibility is that plm
as shown by others and us induces IL-18, TNF-o production in
monocytes.® These cytokines, like reported for IL-18,"% in turn can
induce MMP-9. PIm inhibition prevented the cytokine increase.

Another scenario is that plm regulates the infiltration of MMP-9
producing cells in inflamed tissues during aGVHD. We identified
CD11b™* cells as major supplier of MMP-9 during aGVHD. The
increase in total numbers of CD11b ™" cells, rather than changes on
a cellular basis, most likely accounts for the net MMP-9 activation.

We show that plm improves MCP-1-mediated CD11b™ and
CD3e™ cell migration in vitro. We found that MCP-1 gene
transcription and protein release are reduced in YO-2-treated
aGVHD mice in vivo. Furthermore, we confirmed and extended a
report demonstrating that plm proteolytically removes the C
terminus of MCP-1 thereby enhancing the chemotactic potency of
MCP-1.3%4° Even though we focused on MCP-1, other chemotactic
molecules or alterations in the proteolytic environment by pim
might contribute to the observed impaired myeloid cell
recruitment into inflamed tissues. Coagulation is highlighted
during septic shock and aGVHD. The serine proteinase activated
protein C reduces mortality in animal models of sepsis,** and
inhibits coagulation by blocking PAI-1  activity.*>*¢  Often
inflammatory diseases are associated with an increase in PAI-1
plasma levels, indicating that fibrinolysis is blocked during disease
progression. On the other hand, increased tPA levels have been
reported during sepsis in mice and the early phase of HSCT in
humans.>#”~* We found that pim is activated during the early
phase of aGVHD and endotoxin shock, causing severe tissue
destruction. YO-2 can block excessive circulating plm thereby
blocking fibrinolysis, without the requirement of binding to the
lysine-binding site of the plg molecule-binding fibrin as other pim
inhibitors. Clinically, patients often show signs of excessive
fibrinolysis and coagulation at the same time. Especially in these
cases, YO-2 treatment seems to be a good choice in cases with
known risk of bleeding while using fibrinolysis-activating agents.

During sepsis, patients die from bacteremia or sepsis-induced
hyperinflammation due to an uncontrolled ‘cytokine storm’.
During the late phase of immunosuppression, patients often die
due to secondary infection”®*' These observations gave the
rationale to conduct clinical studies to block proinflammatory
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cytokines during sepsis and aGVHD. But the results have been
disappointing due to immunosuppressive side effects.’"*? We

propose that pharmacological

plm inhibition in the early

profibrinolytic phase regulates the fatal cytokine storm without
immunosuppressive side effects. Blockade of the activation of plm
during the early phase of aGVHD development delays the onset of
aGVHD, but is followed by a phase of the activation of the
coagulation system demonstrating that there is an important
therapeutic window to benefit from plm inhibition in the
treatment of aGVHD.

The matrix-degrading PA/plm system is a general proteolytic

enzyme system which mediates tissue destruction in, for example,
sepsis,”> group A streptococcus infection, influenza virus
infection®® and in autoimmune inflammatory diseases. We propose
that plm is a novel therapeutic target and biomarker for these
diseases, where tissue destruction impairs the life quality of patients.
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