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of wild-type WNK4 transgenic mice, and whether
WNK4 protein abundance was indeed increased in
the kidney was not shown. Data from transgenic
mouse studies should be interpreted with caution,
as there is no guarantee that transgenes are expressed
in the same manner as endogenous genes. Sometimes,
transgenes disrupt endogenous genes by homologous
recombination. To circumvent the problems inher-
ent in transgenic mouse studies, analysis of multiple
lines of transgenic mice with different copy numbers
is necessary. Proof that an obsetrved phenotype is de-
pendent on the level of the protein overexpressed
is very important to draw a definite conclusion.
Wakabayashi et al. (2013) reproduced the method
of transgenic mouse generation used by Lalioti et al.
(2006) to generate several lines of WNK4 BAC trans-
genic mice. They showed that, as WINK4 protein
levels in the kidney increased, phosphorylation of
OSR1, SPAK and NCC robustly increased. Further-
more, their WNK4 transgenic mice mimicked the
phenotype of PHAII model mice. These results in-
dicate that increased wild-type WINK4 in the kid-
ney activates the OSR1/SPAK-NCC signaling cas-
cade and causes PHAIL

Thus, impaired ubiquitination and a consequent
increase in WNK4 protein was established as the
molecular pathogenesis of PHAII caused by muta-
tions in WNK4, KLHL3 and Cwllin3 (Fig. 4). How-
ever, WNK kinases other than WNK4 may also
be regulated by the KLHL3-Cullin3 complex. The
amino acid sequence of the KLHL3 binding site in
WNK4 is highly conserved in other WNK kinases
(Fig. 1), and both the WNK1 and WNK4 proteins
were shown to be regulated by KLHL3-Cullin3 (Ohta
et al., 2013; Wakabayashi et al., 2013). Therefore,
levels of both WINK1 and WNK4 may be increased
in the kidneys of patients with PHAII carrying the
KLHL3 and C#/lin3 mutations, further contributing
to the activation of OSR1/SPAK-NCC signaling and
explaining the more severe PHAII phenotypes evi-
dent with C#/l/in3 and KLHL3 mutations than with
WNK1 and WNK4 mutations (Boyden et al., 2012).
PHAII-causing mutations in WNKI consist of large
deletions in intron 1 (Wilson et al., 2001): This dele-
tion was recently discovered to increase full-length
WNKI transcription in the kidneys of a mouse model
of the WNKI mutation (Vidal-Petiot et al., 2013).
The mechanism elucidated in this study may not be
directly related to the pathogenesis of PHAII caused
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by WNKI mutations. However, PHAII should be
considered a disease caused by increased WNK kinase
caused by the dysregulation of either transcription or
the ubiquitination of WNK kinases.

Future perspectives

Analyses of PHAII pathogenesis suggest that the reg-
ulation of levels of WNK kinase protein is an impot-
tant regulatory mechanism of WNK-OSR1/SPAK~
SLC12 signaling. In addition to WINKI1 and WNK4,
it is hypothesised that other WNKs, such as WNK?2
and WNK3, could be substrates of KLHL3-Cullin3
E3 ligase because the KLHL3-binding domain of
WNK4 (the acidic domain) is highly conserved in
all WNK isoforms. Furthermore, KLHL2 is the clos-
est homolog to KLHL3 among KLHL proteins, and
it is also the closest homolog to D. melanogaster Kelch
(63% homology; (Soltysik-Espanola et al., 1999).
Kelch repeats in these three proteins are highly
conserved. KLHL2 shares almost perfect homology
(98%) with KLHL3 in the loop regions of the Kelch
repeats connecting each blade, in which most of the
PHAIl-causing KLHL3 mutations cluster (Boyden
et al., 2012; Louis-Dit-Picard et al., 2012). The high
degree of homology between KLHL2 and KLHLS3 is
not evident between KLHL3 and other Kelch-like
proteins (Prag and Adams, 2003). The function of
the loops connecting the blades of the Kelch repeats
has not yet been evaluated in KLHL3, but given
that these loops form the top face of the B-propeller
(Fig. 3) and that this face is considered the substrate-
binding pocket, extensive homology in' these loop
domains between KLHL2 and KLHL3 supports the
theory of shared substrate specificity between KLHL2
and KLHL3. Takahashi et al. (2013) verified that
KLHL?2 in combination with Cullin3 could func-
tion as an E3 ligase for all WNK isoforms. These
data suggest that all WNK kinases could be regu-
lated by KLHL2 and KLHL3 in multiple cell types.
Regulation of WNK kinases by KLHL2 and KLHL3
could be involved in PHAII and in other contexts
where WNK kinases are regulated. The hormones
and diets known to regulate WNK—-OSR1/SPAK sig-
naling (Fig. 2) may not directly regulate WNK but
rather regulate KLHLs, thereby regulating WNK ki-
nase. In addition, the binding of WINKs to KLHL2
and KLHL3 could be regulated by external stimuli,
such as the phosphorylation of serine and threonine
residues in Kelch domains. Further analyses focusing
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on these points are necessary, in addition to the con-
firmation of PHAII pathogenesis in vivo in PHAII
model mice carrying KLHL3 and Cul/in3 mutations.

Conclusions

Why PHAII-causing missense mutations in WNK4
are clustered and how these mutations activate
downstream signaling to NCC remained undeter-
mined. Recent advancements in genetics, 1n particu-
lar whole-exome sequencing, revealed two additional
genes responsible for causing PHAII, and their dis-
covery helped to construct a complete picture of the
molecular pathogenesis of PHAIIL Levels of WNK
kinases within cells, regulated via ubiquitination by
KLHL proteins, are important determinants of the
activity of the WINK—-OSR1/SPAK-SLC12A signal-
ing cascade. Consequently, KLHL2 and KLHL3 could
represent new targets for drug discovery to regulate
WNK kinase activity.
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Regulation of blood pressure and renal electrolyte
halance by Cullin-RING ligases

Shinichi Uchida

INTRODUCTION

Hypertension is one of the biggest health problems
in the industrialized world because it damages
critical organs. Studies of monogenic hypertensive
diseases, such as Liddle syndrome and pseudohy-
poaldosteronism type II (PHAII), have provided new
insights into the mechanisms of blood pressure
regulation in humans. PHAII is an autosomal domi-
nant hereditary hypertensive disease characterized
by hyperkalemia, metabolic acidosis, and thiazide
sensitivity [1]. Genes encoding for with-no-lysine
kinases (WNKs) (WNK1 and WNK4) were identified
in 2001 as being responsible for PHAII [2]. Recently,
two new genes encoding for Kelch-like protein 3
(KLHL3) and Cullin-3 were also identified as being
responsible for PHAII [3*,4"]. Therefore, determin-
ing how these causative genes (WNK, KLHL3, and
Cullin-3) are orchestrated and how pathogenic
mutations in these genes cause a common hyper-
tensive disease would contribute to the understand-
ing of the molecular pathogenesis of hypertension
in humans and to the identification of new targets

1062-4821 © 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins
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for antihypertensive drugs. We discuss this issue on
the basis of the recently published data.

PSEUDOHYPOALDOSTERONISM TYPE Il
AND WITH-NO-LYSINE KINASES

At the time when WNKI and WNK4 were identified
as the causative genes for PHAII, a substrate for
WNKs was yet to be identified, but it was expected
that NaCl cotransporter (NCC) was regulated by
WNK1 and WNK4 because PHAII is a thiazide-
sensitive disease.
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Molecular cell biology and physiology of solute transport

The mutations found in WNKI are large
deletions in intron 1, which were considered to
increase its transcription [2]. The mutations of
WNK4 are four missense mutations, three of which
are clustered within a distance of four amino acids in
a region termed the ‘acidic domain’ [2]. This acidic
domain is well conserved in all WNK isoforms [5].

WITH-NO-LYSINE KINASE SIGNALING
REGULATING SOLUTE CARRIER FAMILY
MEMBER 12A TRANSPORTERS

After the identification of WNKI and WNK4 as the
causative genes for PHAII, numerous investigations
of the effects of the coexpression of WNK1 and
WNK4 with transporters, including NCC, were pub-
lished [6-14]. However, the detailed mechanisms
of this regulation, in particular the intracellular
signaling cascades involved, were poorly under-
stood. Then, the oxidative stress-responsive gene 1
(OSR1) and Ste20-related proline-alanine-rich
kinase (SPAK) were identified as substrates for
WNK1 and WNK4 [15,16]. OSR1 and SPAK are
related Ser-Thr kinases that belong to the Ste20
kinase subfamily [5], and were already identified
as regulators of the SLC12A2 J[also known as
Na-K-2Cl-cotransporter 1 (NKCC1)] cotransporter
[17-20]. Therefore, SLC12A3 (also known as NCC)
and SLC12A1 [also known as Na-K-2Cl-cotrans-
porter 2 (NKCC2)], which belong to the same trans-
porter family as NKCC1, could also act as substrates
for OSR1 and SPAK. To prove this, and to clarify the
molecular pathogenesis of PHAII in the kidney
in vivo, Yang et al. [21] generated a mouse model
of PHAII, that is, a knock-in mouse carrying a PHAII-
causing missense mutation in WNK4 (D561A), cor-
responding to the DS64A mutation in patients with
PHAII. At the same time, they generated anti-phos-
phorylated NCC (pNCC) antibodies that recognized
potential Ser and Thr phosphorylation sites by OSR1
and SPAK, deduced from sequence alignment with
NKCC1. Using the anti-pNCC antibodies, Yang ef al.
[21] demonstrated that NCC phosphorylation was

488 www.co-nephrolhypertens.com

significantly increased in the kidneys of PHAII
model mice and that pNCC was concentrated on
the apical plasma membranes of the distal convo-
luted tubules. SPAK and OSR1 phosphorylation at
the specific phosphorylation sites by WNK was
also increased in Wnk*P*¢14* mice, suggesting that
WNK-OSR1/SPAK-NCC signaling was present in
the kidney and was activated by the PHAII-causing
WNK4 mutation. The WNK responsible for NCC
phosphorylation in the kidney was later identified
as WNK4 through the analysis of WNK1, WNK3, and
WNK4 knockout mice [22-24,25%].

The mechanism of NCC activation by phos-
phorylation may be mainly mediated by increased
NCC accumulation in the apical plasma membranes
of the distal convoluted tubules [21,26,27]. Hossain
Khan et al. [28] found that phosphorylation of NCC
decreased its ubiquitination, and decreased endo-
cytosis and degradation may underlie the increased
accumulation of phosphorylated NCC evident in
the apical plasma membranes of the distal convo-
luted tubules.

Apart from NCC regulation, WNK signaling is
involved in NKCC1 and NKCC2 regulation. NKCC2
is a target of furosemide and is present on the apical
plasma membranes in the thick ascending limb of
Henle's loop (TAL). Lin et al. [29] generated kidney-
specific OSR1 knockout mice, which showed Batter
syndrome-like phenotypes with reduced NKCC2
phosphorylation. These data indicate the existence
of OSR1-NKCC2 signaling in TAL, although the
responsible WNK-regulating OSR1 in TAL remains
to be determined (Fig. 1). WNK4 may not be the one
as no reduction in NKCC2 phosphorylation was
observed in WNK4 knockout mice (unpublished
observation).

In SPAK knockout mice, in addition to the
decreased NCC phosphorylation in the kidney,
NKCC1 phosphorylation was decreased in the aorta,
which showed decreased contractility after phenyl-
ephrine administration. Recently, Zeniya et al. [30]
reported that WNK3 was the WNK responsible for
this signaling in the aorta and that this WNK3-
SPAK-NKCC1 cascade was regulated by angiotensin
II. Thus, WNK may be significantly contributing to
blood pressure regulation in extrarenal tissues and
the kidney.

NEW GENES CAUSATIVE FOR
PSEUDOHYPOALDOSTERONISM TYPE Ul
Recently, two new genes, KLHL3 and Cullin-3, were
identified as being responsible for causing PHAII
[3"%,4™]. Cullin-3 is one of the six cullins identified
in eukaryotes, and cullin-3-based Cullin-RING
ubiquitin ligases (CRLs) have been recently ident-
ified as being involved in developmental and stress
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FIGURE 1. WNK signaling in kidneys and arteries. In the signal cascades of WNK-OSR1/SPAK-SLC12A fransporters,
WNK4 and SPAK may play a dominant role in NCC (SLC12A3) phosphorylation. Likewise, WNK3 {possibly also WNK1)
and SPAK {possibly also OSR1) may have similar roles in NKCC1 phosphorylation (SCL12A2) in the smooth muscle cells of
arteries. OSR1 was shown to have a major role in NKCC2 (SLC12A1) phosphorylation. The upstream WNK regulating OSR1
in TAL remains to be determined. WNK4 may not be the one as no reduction in NKCC2 phosphorylation was observed in

WNK4 knockout mice (unpublished observation).

responses, as well as human hereditary diseases
[31%]. Ubiquitin ligase, also known as E3 ligase, is
a key element in the ubiquitin or proteasome system
that transfers ubiquitin moieties to substrates.
Among several hundreds of E3 ligases identified to
date, CRLs constitute the most prevalent class of E3.
As shown in Fig. 2, Cullin-3 serves as a scaffold for

the catalytic module of a RING finger protein (Rbx1)
and a ubiquitin-conjugating enzyme (E2), and a
substrate adaptor module. Cullin-3 binds to several
substrate adaptor proteins that have BTB domains.
The name BTB is derived from a homologous,
115-amino acid domain present in Drosophila mela-
nogaster bric a brac 1, tramtrack, and broad complex

X

KLHL3

WNK degradation

Y WNK ubiquitination

FIGURE 2. Primary and three-dimensional structures of a KLHL protein and its function as a component of CRL3. Upper panel:
the primary structure of Kelch-like (KLHL) proteins with N-terminal BTB and BACK domains and five to six C-terminal Kelch
domains. The BTB domain is a binding site for Cullin 3, and Kelch repeats constitute a propeller structure, as shown in the
right lower panels, fo capture o subsirate. Each Kelch domain forms a blade, and most PHAll-causing mutations {shown in

yellow lines) are located in the loop regions linking each blade, which may be involved in substrate binding. Left lower panel:
KLHL3 and Cullin-3 forms an E3 ligase complex with the RING finger protein, RBX1. WNKs are captured by this E3 ligase by
binding fo KLHL3 and are ubiquitinated and degraded.
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proteins that facilitates protein-protein interaction
[32]. Several substrate-binding domains, such as
Kelch, WD40, and basic leucine zipper, are com-
monly found in the BTB domain-containing
adaptor proteins in CRL3.

The Kelch-like protein family consists of more
than 40 members {33%]. In general, KLHL proteins
contain one BTB domain, one BTB and C-terminal
Kelch (BACK) domain, and five to six Kelch domains
(Fig. 2). The Kelch domain forms one blade of a
B-propeller structure, which is also involved in the
protein—protein interaction. Kelch domain-contain-
ing proteins have been shown to participate in many
cellular functions [34] because substrates for KLHL~
CUL3 E3 ligases are diverse. A list of the functions of
KLHL-CUL3 E3 ligases and their involvement in
disease is presented in Table 1 [3"%,4%,35,36™,37%,
38-56].

PATHOGENESIS OF
PSEUDOHYPOALDOSTERONISM TYPE Il
THROUGH MUTATIONS IN THREE
DIFFERENT GENES

As mutations in WNK4, KLHL3, and Cullin-3 cause
the same disease, PHAII, it is reasonable to speculate

that components of WNK-OSR1/SPAK-NCC signal-
ing cascade, in particular WNK4, could be the sub-
strate for the KLHL3-Cullin-3 E3 ligase complex. In
fact, Ohta et al. [36™] and Wakabayashi et al. [37™]
reported that WNK1 and WINK4 were substrates for
the KLHL3-Cullin-3 E3 ligase complex, respect-
ively. Then, two further reports {57%,58%] demon-
strated WNK4 as a target of the KLHL3-Culiin-3
E3 ligase complex. Analyses of PHAIl-causing
mutations in WNK4, KLHL3, and Cullin-3 also con-
firmed this notion. Wakabayashi ef al. [37""] and
Mori et al. [59] showed that binding of KLHL3 to
WNK4 was abolished by PHAII-causing mutations
in WNK4, indicating that the acidic domain is
involved in the binding to KLHL3. In contrast to
WNK4, mutations in KLHL3 were not clustered to a
single domain, but were present in the BTB, BACK,
and Kelch domains. Mutations in the BTB and BACK
domains affected the ability of KLHL3 to bind Cull-
in-3, whereas mutations in the Kelch domains
affected the ability of KLHL3 to bind WNK1 and
WNK4 [59]. Thus, impaired binding of KLHL3 to
Cullin-3 or WNK4 decreased WNK4 ubiquitination,
resulting in increased WNK4 proteins within cells.

Almost all PHAII-causing Cullin-3 mutations are
found around the splice donor and acceptor sites of

Table 1. List of KIHL-CUL3 E3s: functions and involvement in disease

KIHL2 WNK ND

ND [35]

WNK4 ND

ND

KLHL8 Rapsyn AChR clustering

ND

KLHL13

ND ND

KLHL12 Disheveled

Wnt/B-cotenlr{ signaling

ND

DAPK

INF-induced response

KLHL25 AE-BP

Translational regulation

ND

ND (56]

AChR, acetylcholine receptor; adRP, autosomal dominant refinitis pigmentosa; DAPK, death-associated protein kinase; ND, not determined; Nrf2, NF-E2-related
factor 2; PHAIl, pseudohypoaldosteronism type II; PLK1: polo-ike kinase 1; PML, promyelocytic leukemia; WNK, with-no-lysine kinase.
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exon 9. Osawa et al. [60] and Tsuji et al. [61] recently
verified that exon 9 was skipped in the leukocytes
of patients with PHAII-causing Cullin-3 mutations,
as shown by the experiment in cultured cells by
Boyden et al. [3°"]. Overexpression of the mutant
Cullin-3 lacking a portion of exon 9 with KLHL3
showed less ability to reduce the coexpressed WNK4
[37"], suggesting that the mutant Cullin-3 may
have less E3 ligase activity. Thus, all PHAII-causing
mutations in WNK4, KLHL3, and Cullin-3 resulted in
a common consequence, that is, decreased WNK4
ubiquitination and increased WNK4 protein within
cells (Fig. 3).

This increase in WNK4 protein was confirmed in
the kidneys of Wnk*?5%24* mice [37""]. Because
WNK4, as well as WNK1, was shown to phosphor-
ylate and activate OSR1 and SPAK in vitro [15], the
increase in WNK4 must be stimulatory to down-
stream WNK-OSR1/SPAK-NCC signaling. However,

FIGURE 3. Molecular pathogenesis of PHAIl. Under normal
conditions, WNK 4 proteins within cells are maintained by
appropriate degradation after ubiquitination by the KLIHL3 -
Cullin-3 E3 ligase complex. However, PHAll-causing
mutations in the acidic domain of WNK4 and in the Kelch
domains of KLHL3 affect their binding, thereby reducing the
ubiquitination and degradation of WNK4. PHAIll-causing
mutant Cullin-3 lacking the portion corresponding fo exon 9
is less able to decrease WNK4, probably because of its
reduced E3 ligase activity. Thus, PHAll-causing mutations in
the three different genes have a common consequence, that
is, decreased WNK4 ubiquitination and increased WNK4
protein levels within DCT, leading tfo the activation of OSR1/
SPAK-NCC signaling and to PHAIL.

1062-4821 © 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins
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long-standing controversy exists over the influence
of WNK4 on NCC function [62]. Initially, WNK4
overexpression experiments in Xenopus laevis oocytes
showed that WNK4 is a negative regulator of NCC
[6,7]. However, Castaneda-Bueno et al. [25%] reported
that WNK4 knockout mice exhibit a phenotype rem-
iniscent of Gitelman syndrome (Gitelman syndrome
is caused by the loss of function of NCC), indicating
that WNK4 is a positive regulator of NCC in vivo.
Moreover, WNK4 transgenic mice showed robust
increases in OSR1, SPAK, and NCC phosphorylation
and showed phenotypes similar to PHAIl [37%%.
Therefore, it is now clear that increased wild-type
WNK4 in the kidney activates the WNK-OSR1/
SPAK-NCC signaling cascade and causes PHAIIL
Thus, the long-standing controversy about the influ-
ence of WNK4 on NCCwas settled by the discovery of
the two new causative genes for PHAII. This contro-
versial story gives us an important lesson that it is
very risky tomake conclusions based on resultsfrom a
single experimental system, especially from in-vitro
overexpression studies. In this regard, the scheme
depicted in Fig. 3 should also be validated in mouse
models carrying the PHAII-causing mutations in
KLHL3 or Cullin-3.

UNANSWERED QUESTIONS AND FUTURE
PERSPECTIVES

Thus, impaired ubiquitination and a consequent
increase in WNK4 protein were established as the
molecular pathogenesis of PHAII, caused by
mutations in WNK4, KLHL3, and Cullin-3 (Fig. 3).
There are several questions to be answered in future.
First, is WNK4 the only WNK regulated by the
KLHL3-Cullin-3 E3 ligase complex in the kidney
in vivo? In fact, in-vitro experiments clearly show
that both WNK1 and WNK4 proteins were regulated
by the KLHL3-Cullin-3 E3 ligase complex
[36°%,37""]. Therefore, levels of both WNK1 and
WNK4 may be increased in the kidneys of patients
with PHAII carrying mutations in KLHL3 and
Cullin-3, further contributing to the activation of
WNK-OSR1/SPAK-NCC signaling and explaining
the more severe PHAII phenotypes evident with
mutations in Cullin-3 and KLHL3 than in WNKI
and WNK4 [3"*]. Moreover, other WNKs, such as
WNK2 and WNK3, could be substrates for the
KLHL3-Cullin-3 E3 ligase complex because the
KLHL3-binding domain of WNK4 (the acidic
domain) is highly conserved in all WNK isoforms.
Furthermore, KLHL2, the closest homolog to KLHL3
among KLHL proteins, was shown to behave sim-
ilarly to KLHL3 in terms of E3 ligase for WNKs [35].
These data suggest that both KLHL2 and KLHL3 may
be involved in the regulation of all WNKs in various
types of cells. It would also be interesting to confirm
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whether there are regulatory mechanisms control-
ling the interaction between KLHL2/3 and WNKs.
Although several regulations of WNKs by diets and
hormonal factors have been reported, the detailed
mechanisms are largely unknown. Regulated bind-
ing of KLHL2/3 and WNKs by phosphorylation or
other modifications may be one of the important
mechanisms of WNK regulation. Finally, one of the
biggest questions may be why mutation in Cullin-3,
which is ubiquitously expressed and functions as a
scaffold of E3 not only for KLHL3 but also for many
other adaptor proteins, induces the Kidney-specific
disease PHAIIL. The skipping of exon 9 might occur
dominantly in DCT cells in the kidney; however, we
can also confirm the skipping in the white blood
cells of the patients. Another possibility would be
that the mutant Cullin-3 might be functionally
defective as E3 ligase only with KLHL3. A knock-
in mouse model carrying the same mutations in
Cullin-3 is necessary to answer these questions.

CONCLUSION

Why PHAIl-causing missense mutations inWNK4
are clustered and how these mutations activate
downstream signaling to NCC has been a long-
standing unanswered question. The recent discov-
ery of two additional genes causing PHAII helped
construct a complete picture of the molecular
pathogenesis of PHAIIl and provided definite genetic
evidence that WNK4 in the kidney never behaves as
a negative regulator of NCC but acts as a positive
regulator through WNK-OSR1/SPAK-NCC signal-
ing. Levels of WNKs within cells, regulated via ubig-
uitination by KLHL2/3-Cullin-3 E3 ligases, would
be important determinants of the activity of the
WNK signaling cascade.
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