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Abstract

Background Matrix Gla protein (MGP) is one of the
important proteins inhibiting vascular calcification (VC).
Single nucleotide polymorphisms (SNPs) located in the
promoter and coding regions of the MGP gene affect the
transcriptional activity. In this study, we investigated the
relationship between the SNPs and progression of VC in
patients undergoing maintenance hemodialysis (MHD).
Methods This was a retrospective, longitudinal cohort
study of 134 MHD patients whose VC could be followed
by multi-detector computed tomography (MDCT) exam-
inations. MGP-SNPs (T-138C, rs1800802 and G-7A,
rs1800801) were determined. The progression speed of VC
was examined by plotting the abdominal aortic calcium
volume scores.

Results The progression speed of VC of patients with the
CC genotype of T-138C was significantly slower than that
of patients with the CT or TT genotype. Multiple regres-
sion analysis showed that CT/TT genotype, greater age at
the beginning of MHD, male sex, high levels of cal-
cium x phosphate, low levels of high-density lipoprotein
cholesterol, high levels of low-density lipoprotein choles-
terol, low levels of ferritin and non-use of angiotensin II
receptor blockers were significantly associated with pro-
gression of VC.
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Conclusions The MGP-138CC genotype may be associ-
ated with slower progression of VC in MHD patients. The
genotype of the MGP gene will be a genomic biomarker
that is predictive of VC progression.

Keywords Matrix Gla protein (MGP) -
Abdominal aortic calcium volume score (AACVS) -
Single nucleotide polymorphisms (SNPs)

Introduction

Vascular calcification (VC) is a common finding in patients
undergoing maintenance hemodialysis (MHD). MHD
patients have a 60-80 % prevalence of moderate to severe
VC [1-3]. The VC often progresses over a relatively short
period of time and is a strong predictor of cardiovascular
disease and all-cause mortality in MHD patients [4-6].
Abdominal aortic calcification (AAC) is reported to be a
predictor for cardiovascular mortality in the general pop-
ulation, and was also associated with increased risk of
congestive heart failure in the Framingham Study. The
association between AAC and all-cause and cardiovascular
mortality in MHD patients has been shown in several
reports. However, the factors contributing to AAC in MHD
patients are still not fully understood.

Genetic and biochemical studies have established matrix
Gla protein (MGP) as the first protein known to act as a
calcification inhibitor in vivo. MGP is a vitamin
K-dependent protein of 84 amino acids with a molecular
weight of 12 kDa [7, 8]. Although MGP knockout mice are
normal at birth, they rapidly develop severe arterial calci-
fications and subsequent vascular ruptures leading to death
within 6-8 weeks [9]. Among three types of arterioscle-
rosis (i.e., atherosclerosis, Monkeberg medial calcific
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sclerosis, and arteriolosclerosis), arterial medial calcifica-
tion is the major cause of vascular disease and is rapidly
progressive in dialysis patients [2]. Therefore, MGP would
be a critical factor in the development of arteriosclerosis in
patients with MHD. A few previous reports have investi-
gated serum MGP levels in hemodialysis patients, but the
relationship between the serum MGP concentration and VC
is controversial [10, 11].

It has been reported that the gene encoding MGP has
several single nucleotide polymorphisms (SNPs) in its
promoter and coding regions. Many studies have revealed
the significance of MGP gene polymorphisms at T-138C
and G-7A [12-14]. A previous study showed that MHD
patients have a different distribution of MGP gene poly-
morphisms as compared with the normal population [14].
However, the influence of MGP polymorphism with
respect to the development of AAC in MHD patients is not
fully understood [12, 15]. It is a fact that there are no
reports which examine the association between MGP
polymorphism and AAC. With regard to ‘femoral artery’
calcification, Herrman et al. [12] reported that it was more
prevalent in carriers of the MGP A-7 allele than in MGP
GG-7 homozygotes and that T-138C were unrelated to
femoral artery calcification in healthy volunteers. In addi-
tion, Crosier et al. [15] reported that in males, homozygous
carriers of the minor allele of T-138C, G-7A and
Alal02Thr were associated with a decreased quantity of
‘coronary artery calcification (CAC)’, relative to major
allele carriers.

To date, the exact mechanisms for accelerated VC have
yet to be fully determined. In particular, it is conceivable
that the speed of progression of AAC in hemodialysis
patients varies widely from patient to patient. Therefore,
we examined whether MGP-SNPs affect the progression
speed of AAC in MHD patients.

Materials and methods
Study design, setting and participants

This is a retrospective, longitudinal cohort study of MHD
patients. As a setting, patients with end-stage kidney dis-
ease (ESKD) who started hemodialysis therapy after 2001
at Kawashima Hospital were recruited between August
2009 and November 2010. All of the procedures were
performed in accordance with the guidelines of the Hel-
sinki Declaration on Human Experimentation and the
Ethical Guidelines on Clinical Research published by the
Japanese Health, Labour and Welfare Ministry. This study
was approved by the Ethics Committee of Tokushima
University and Kawashima Hospital, and written informed
consent was obtained from all patients.

The exclusion criteria were (1) past operation for
abdominal aortic aneurysms and (2) renal transplantation.

Finally 145 participants were recruited and provided
samples which we assayed for two SNPs in the MGP
gene promoter region—T-138C (rs1800802) and G-7A
(rs1800801). Routine abdominal computed tomography
(CT) examination is performed once a year in each patient,
and we used these data. We enrolled 134 of the 145
patients whose VC could be followed in consecutive multi-
detector CT (MDCT) examinations; 11 patients were
excluded from additional analysis because they underwent
MDCT examination once or not at all.

Identification of MGP gene genotypes

We selected two common SNPs on the MGP gene pro-
moter—T-138C  (rs1800802) and G-7A (rs1800801).
Whole blood samples were obtained via vascular access at
the start of routine hemodialysis treatment, and were used
for the extraction of genomic DNA with a Wizard Genomic
DNA Purification Kit (Promega, Madison, WI, USA). First,
T-138C (rs1800802) polymorphism was genotyped using a
mismatch polymerase chain reaction (PCR) fragment
amplified with the primers for 142 bp region as a pilot
study—5'-AAGCATACGATGGCCAAAACTTCTGCA-3’
and 5-GAACTAGCATTGGAACTTTTCCCAACC-3'
[13]. These PCR products were purified with DNA Clean
& Concentrator-5 kit (Zymo Research, Orange, CA, USA)
and were digested with the restriction enzyme Bsrl, and
analyzed in polyacrylamide gel (Fig. 1).

The following primers were designed for a 408 bp
region that included T-138C (151800802) and G-7A
(rs1800801)—5'-TCTGTCCCCAAGCATACGAT-3' and
5'-ACACAGAGAAATGGGAGAAAAG-3'. These prim-
ers were verified by sequencing and PCR was carried out.
Purified PCR products were subjected to direct sequencing
by using 3730x1 DNA Analyzer (Applied Biosystems).

Serum MGP assay

Serum MGP concentrations were quantified with a kit from
Biomedica (Vienna, Austria) as described previously [16].

142 bp
200 :
100 |

18bp

M cc  CT ™

Fig. 1 Genotyping of the T-138C polymorphism using mismatch
PCR followed by digestion with the restriction enzyme Bsrl. The
presence of a T nucleotide at position —138 produced a Bsrl
restriction endonuclease site giving fragments of 118 and 24 bp. The
presence of a C nucleotide at position —138 did not produce a
restriction endonuclease site for Bsrl. M: 100 bp DNA Ladder
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Detection and measurement of VC

In order to evaluate the VC of each patient, we gathered
data from the past abdominal CT examinations of each
patient and calculated the abdominal aortic calcium
volume score (AACVS). The plain abdominal MDCT
imaging was performed using an 8-slice Aquarion scan-
ner (Toshiba, Japan). The images from the bifurcation at
the beginning of the common iliac artery to the 70-mm
cranial interval were transferred to a workstation.
Quantification of aortic calcification was carried out with
ZIO Workstation software (ZI1O, Japan). VC was defined
as >130 Hounsfield units of CT value on this worksta-
tion, and counted as pixel data. The AACVS was defined
according to the following formula—(pixel) x (pixel) x
(slice thickness) x (quantity of voxel) [mm>®]. In this
formula, (1 pixel) x (1 pixel) x (slice thickness) expres-
ses (1 voxel). The volumetric scoring method named the
calcium volume score was referred to in previous articles

[17-19].
Statistical methods

We considered two-tailed p values <0.05 as statistically
significant. All of the statistical analyses were performed
using JMP 9.02 (SAS Institute, Cary, NC, USA). Statistical
analysis of continuous variables was performed with
Kruskal-Wallis analysis because assumptions of normality
of the distribution were not verified. Post hoc multiple
comparisons were made using the Steel-Dwass method. In
addition, statistical analysis of nominal variables was per-
formed with the chi-squared test.

Results

This study was carried out to examine the effects of MGP
gene promoter polymorphisms (T-138C and G-7A) on the
progression of VC in patients undergoing MHD. The
T-138C and G-7A polymorphisms are located in the pro-
moter region of the MGP gene (Fig. 2). Sequencing results
of these polymorphisms are also shown in Fig. 2. The
distribution of the T-138C genotype in this study was TT
(35.1 %, n = 47), CT (52.2 %, n = 70) and CC (12.7 %,
n = 17) (Fig. 3a). Similarly, the frequency of the G-7A
genotype was GG (85.1 %, n = 114), GA (12.7 %,
n = 17) and AA (2.2 %, n = 3) (Fig. 3b). We then com-
pared the T-138C allele frequency of this study with that
from the database of the genome-wide association study
(GWAS); a chi-squared test showed no significant differ-
ences between them (p = 0.73, data not shown). In con-
trast, we could get no information on the G-7A allele
frequency in GWAS. For that reason, we decided to place
the primary focus on the analyses of the T-138C genotype.

Clinical characteristics of all patients of each genotype of
T-138C are presented in Table 1. We found that the CC
genotype was associated with significantly higher concentra-
tions of high-density lipoprotein (HDL) cholesterol (p = 0.03).

Figure 4a shows the progression of the AACVS through-
out the study (mean R* = 0.87), and Fig. 4b, ¢ and d show the
scores for the CC (n = 17), CT (n = 70) and TT (n = 47)
genotypes, respectively. The dashed line shows the mean
scores for all patients in each genotype group.

In order to investigate the effect of the T-138C genotype
on the serum MGP concentration, we analyzed the MGP
concentrations in the sera of MHD patients. There were no

GACTETT GAC GTT GACCGTT

Fig. 2 DNA sequences of the polymorphic region in the MGP
(T-138C, G-7A). a DNA sequence from individual homozygous for
the TT genotype of T-138C. b heterozygous for the CT genotype of
T-138C. ¢ Homozygous for the CC genotype of T-138C. d DNA
sequence from individual homozygous for the GG genotype of G-7A.

@ Springer

CCCBTAG CCC TAG CCCATAG

e heterozygous for the GA genotype of G-7A. f homozygous for the
AA genotype of G-7A. ETS Ets transcription factor family, AP-I
activating protein-1, RAR/RXR retinoid A and X receptor, TATA
TATA box
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Fig. 3 The distribution of T-138C and G-7A genotype. a The
distribution of the T-138C genotype (n = 134). b The distribution of
the G-7A genotype (n = 134)

significant differences in the serum MGP concentration
among the genotypes [CC: 22.57 (21.41, 28.43), CT: 25.10
(21.23, 26.87), TT: 25.01 (23.07, 26.45); unit: nmol/L,
p = 0.72].

We compared the result of the slope value of the
absolute AACVS plots as a linear function among the
T-138C genotypes (Fig. 5a). The slope value for the CC
genotype [53.00 (12.11, 254.90)] was significantly smaller
than that for the CT genotype [319.85 (110.70, 647.80)]
and TT genotype [261.00 (85.50, 626.56)] (p = 0.003,
0.03). Figure 5b shows the results of the comparison of the
y-intercepts among the T-138C genotypes; there were no
significant differences among them (p = 0.52). It is gen-
erally believed that the progression of VC at the beginning
of MHD would contribute to the acceleration of VC and
long-term survival of MHD patients [20]. Interestingly,
however, our results indicate that the CC genotype of
T-138C significantly contributes to the slowing of VC
progression, regardless of differences in the VC volume at
the beginning of MHD.

Multiple regression analysis by the best subset regres-
sion method between the progression speed of AACVS
and related parameters revealed that CT/TT genotypes,
greater age at the beginning of MHD, male sex, high lev-
els of calcium x phosphate (Ca x P), low levels of
HDL cholesterol, high levels of low-density lipoprotein
(LDL) cholesterol, low levels of ferritin and non-use of

angiotensin receptor blockers (ARBs) contributed to the
progression of VC (Table 2).

Discussion

Although AAC is reported as a predictor for cardiovascular
mortality in the general population, it is unknown whether
this is also true in MHD patients. In addition, although
many studies have focused on coronary calcification, there
have been very few studies assessing the progression of
AAC in MHD patients. A system for quantification of
calcification was described by Kauppila et al. [21] in a
subgroup of participants of the Framingham heart study. It
relies on lateral lumbar radiographs and the calculation of
the AAC score. Its predictive value for cardiovascular
events and mortality was validated in the Framingham
heart study [22, 23]. Recently, the AAC score was shown
to correlate well with electron beam CT scores of the
coronary arteries in MHD patients [24]. AAC may also be
associated with all-cause and cardiovascular mortality in
ESKD [25]. More recently, VC scores determined by
MDCT were shown to be useful for evaluating the volume
of VC [18]. For that reason, we used MDCT examinations
for evaluation of the progression of VC in MHD patients.
The progression speed of VC differed among the MHD
patients, and we hypothesized that MGP polymorphisms had
some effect on this variation. Our study proved that MHD
patients with the MGP T-138C CC genotype exhibited
slower progression of VC than those with other genotypes.
To our knowledge, this is the first study to reveal that the
MGP T-138C polymorphism is closely linked to differences
in the progression speed of VC among MHD patients.
MGP T-138C polymorphisms lie in the promoter region
of the MGP gene, which is critical for the transcriptional
activity. Farzaneh-Far et al. [13] previously showed that
the —138C variant provides higher levels of MGP tran-
scriptional activity in vascular smooth muscle cells.
Therefore, our clinical data imply that the —138C allele
increases MGP promoter activity in the arterial vessel and
works more protectively against the progression of VC in
MHD patients with the CC genotype. Furthermore, a pre-
vious study demonstrated that the —138C variant is asso-
ciated with higher serum MGP levels (+30 %) [13]. On the
other hand, the serum MGP level was not correlated with
T-138C polymorphisms in another study [26]. Our results
in this study also showed no relation between the MGP
polymorphisms and serum MGP levels. Several reports
have demonstrated that MGP expression was increased in
atherosclerotic arteries [27, 28]. From in situ hybridization,
it was shown that MGP mRNA transcription takes place in
the arterial vessel wall, and is particularly upregulated in
atherosclerotic arteries [27]. Thus, local MGP upregulation

@_ Springer
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Table 1 Clinical characteristics of all the patients of each genotype of T-138C

Characteristic CC(n=17) CT (n = 70) TT (n = 47) p value®
Basic Age at the beginning of HD (years) 61 (44, 72) 57 (49, 69) 57 (50, 68) 0.90
Age at the time of this study 62 (48, 74) 63 (53.8, 74) 60 (53, 70) 0.85
Male % (n) 82.4 (14) 68.6 (48) 70.2 (33) 0.53
Body mass index (kg/m?) 21.6 (19.0, 24.2) 22.4 (204, 24.9) 22.6 (20.0, 23.9) 0.53
HD duration (month) 26 (18, 39) 42 (23, 74) 41 (22, 77) 0.10
Diabetes % (n) 23.5 (4) 47.1 (33) 404 (19) 0.20
Medications (po) Statin % (n) 23.5(4) 11.4 (8) 10.6 (5) 0.35
Antihypertensives
Calcium channel blocker % (n) 133 (2) 30.0 21) 36.2 (17) 0.17
ACE inhibitor % (n) 0.0 (0) 14 (D 2.1 (1) 0.82
ARB % (n) 17.7 (3) 31.4 (22) 27.7 (13) 0.52
Vitamin K % (n) 5.9 (1) 1.4 (1) 43 (2) 0.51
Antiplatelet % (n) 29.4 (5) 37.1 (26) 31.9 (15) 0.76
Warfarin % (n) 0.0 (0) 43 (3) 43 (2) 0.69
Calcium carbonate % (n) 70.6 (12) 81.4 (57) 85.1 (40) 0.42
Active vitamin D % (n) 82.4 (14) 60.0 (42) 57.5 27) 0.17
Sevelamar hydrochloride % (n) 177 (3) 27.1 (19) 23.4 (11) 0.70
Cinacarcet % (n) 0.0 (0) 1.4 (1) 43 (2) 0.48
Lanthanum carbonate % (n) 1138 ) 14.3 (10) 12.8 (6) 0.95
Steroid % (n) 5.9 (1) 5.7 (4) 21 0.63
HD-related parameters Kt/'V 1.49 (1.41, 1.62) 1.46 (1.30, 1.67) 1.48 (1.33, 1.60) 0.80
HD (hours) 44,4 44,4 44, 4) 0.69
Laboratory data (blood)  Total protein (mg/dL) 6.3 (6.1, 6.5) 6.2 (5.9, 6.6) 6.2 (6.0, 6.6) 0.54
Albumin (mg/dL) 3.6 (3.5,3.9) 3.6 (34, 3.8) 3.7 (35, 3.8) 0.14
Total cholesterol (mg/dL) 163 (136, 184) 154 (136, 180) 156 (139, 176) 0.97
HDL cholesterol (mg/dL) 54 (40, 62) 42 (33, 51) 38 (32, 53) 0.03*
LDL cholesterol (mg/dL) 67 (55, 104) 78 (67, 100) 78 (66, 97) 0.62
Triglyceride (mg/dL) 123 (63, 156) 105 (70, 158) 119 (85, 223) 0.32
Blood glucose (mg/dL) 128 (113, 151) 126 (102, 146) 125 (96, 151) 0.88
HbAlc (%): only diabetic patients (n = 4:33:19) 5.7 (5.4, 8.3) 5.8 (5.5,7.6) 6.2 (5.5, 6.7) 0.98
GA (%): only diabetic patients (n = 4:33:19) 19.7 (17.2, 29.5) 19.5 (16.7, 23.6) 22.0 (20.3, 24.6) 0.12
C-reactive protein (mg/dL) 0.1 (0.0, 0.2) 0.1 (0.0, 0.4) 0.1 (0.0, 0.2) 1.00
Calcium (mg/dL) 9.0 (8.2,9.5) 8.9 (8.6, 94) 9.1 (8.6,9.7) 0.41
Phosphate (mg/dL) 4.6 (3.8, 54) 4.9 (4.0, 5.6) 4.8 (42,5.6) 0.46
Calcium x phosphate 40.9 (32.0, 48.6) 43.4 (34.0, 49.6) 44.2 (36.9, 53.0) 0.30
Intact-PTH (pg/mL) 75 (36, 105) 74 (39, 129) 63 (39, 145) 0.86
Hemoglobin (g/dL) 11.2 (107, 11.7) 11.1 (10.5, 11.7) 10.9 (10.4, 11.8) 0.79
Ferritin (ng/mL) 126 (94, 158) 132 (79, 192) 130 (55, 173) 0.64
B2 microglobulin (mg/L) 23.9 (20.1, 26.0) 25.8 (22.0, 30.9) 25.8 (23.1, 30.6) 0.16
Blood urea nitrogen (mg/dL) 64.8 (51.5, 81.9) 63.8 (56.5, 76.2) 69.1 (60.6, 80.0) 0.39
Creatinine (mg/dL) 11.40 (9.33, 13.58) 11.73 (9.61, 13.39)  11.63 (10.22, 14.02)  0.70

Data are presented in % (n) for categorical variables, and as median (25th, 75th percentile) for continuous variables
We analyzed the MGP concentrations in the sera of 48 MHD patients (CC: n = 7, CT: n = 26, TT: n = 15) because of discontinuation of the kit from Biomedica.
There were no significant differences in the serum MGP concentration among the genotypes (CC: 22.57 (21.41, 28.43), CT: 25.10 (21.23, 26.87), TT: 25.01 (23.07,
26.45), unit: nmol/L, p = 0.72)
ACE angiotensin-converting enzyme, ARB angiotensin receptor blocker, GA glycated albumin, HD hemodialysis, HDL high-density lipoprotein, LDL low-density
lipoprotein PTH parathyroid hormone

*p <0.05

* Chi-squared test was used for categorical variables, and Kruskal-Wallis tests were used for continuous variables

in arterial walls may be a central mechanism counteracting
the progression of excessive VC. Furthermore, a recent
study reported that gremlin, one of the bone morphogenetic
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protein (BMP) antagonists, binds to precursors of BMP and
inhibits their function [29]. BMP is an osteoinductive
factor expressed in atherosclerotic lesions and MGP is
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thought to be a BMP inhibitor. Therefore, the intracellular
function to block BMP activation may be true of MGP and
MGP may prevent arteries from calcification. Together
with these findings, our study suggests that the CC geno-
type of T-138C may enhance the local activation of MGP
independently of the serum MGP concentration, and may
have the potential to inhibit VC in MHD patients.

We performed multiple regression analysis by the best
subset regression method between the progression speed of
VC and related parameters (Table 2), suggesting that the CC
genotype of T-138C would function as a preventive factor for
VC. Moreover, greater age at the beginning of MHD, high
levels of Ca x P, low levels of HDL cholesterol, high levels
of LDL cholesterol, and non-use of ARBs are all classic
factors contributing to the progression of VC. With regard to
gender, Yamada et al. [30] previously showed that the pro-
gression of AAC was negatively associated with the pre-
menopausal status in women, which was considered to be
due to female sex hormones. In our study, however, 34 of 39
(87.2 %) female participants were >50 years. Additionally,
in our study, the CC genotype of T-138C was associated with
higher concentrations of HDL cholesterol in the cross-sec-
tional data (Table 1), and low levels of HDL cholesterol

were significantly associated with progression of VC
(Table 2). Yao et al. [31] previously reported in vitro that an
increasing concentration of HDL cholesterol progressively
enhanced expression of the activin-like kinase receptor 1
(ALK1) in human aortic endothelial cells, and that induction
of ALK1 was associated with increased levels of MGP as
determined by real-time PCR. This report supports our
present data because high levels of HDL cholesterol may
induce upregulation of focal MGP expression in the artery
wall and subsequently halt the progression of VC. However,
further investigations are needed to fully understand the
mechanisms of regulation of HDL level in the CC genotype.
Additionally, we tried taking the presence of diabetes, blood
glucose and dialysis vintage (month) into the multiple
regression analysis by the conventional model and the best
subset regression method (stepwise method). These param-
eters were found not to influence the progression speed of VC
in our analysis. Collectively, the most important finding in
our study was that the MGP genotype was an invariable
parameter related to the longitudinal VC progression.
There were several limitations to our study. The sample
size of the study population was relatively small for a genetic
association study. Therefore, further studies with a larger
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Table 2 Multiple regression analysis between the progression speed of AACVS and related parameters

Covariate Coefficient 95 % CI Standardized p value
CT/TT genotype of T-138C 87.06 (19.04, 155.07) 0.25 0.01*
Age at the beginning of HD (years) 9.10 (5.14, 13,07) 0.38 <0.001*
Female sex —73.30 (—127.38, —19.22) —0.20 0.008*
Cax P 9.15 (4.61, 13.70) 0.33 <0.001*
HDL cholesterol (mg/dL) —3.44 (—6.60, —0.28) —0.16 0.03*
LDL cholesterol (mg/dL) 3.09 (1.10, 5.07) 0.23 0.003*
Ferritin (ng/mL) —0.65 (—1.13, —0.16) —0.20 0.01*
ARBs —63.70 (—117.61, —9.78) —0.18 0.02*

n = 134, R? = 0.34, F = 7.1936, p < 0.001, Durbin—Watson ratio 1.9365483
ARBs angiotensin receptor blockers, Ca x P calcium x phosphate, HD hemodialysis, HDL high-density lipoprotein, LDL low-density lipoprotein

* p < 0.05

number of subjects in different groups with different charac-
teristics are needed. We need to continue this study prospec-
tively in order to investigate relationships to cardiovascular
events and long-term mortality. In addition, large-scale fol-
low-up studies with high-risk CKD patients would enhance
and vary the information about the genetic background.

Conclusions

This study emphasizes that MGP T-138C polymorphism is
closely linked to the progression speed of VC in MHD

@ Springer

patients. VC is very common in MHD patients and is a
strong predictor of cardiovascular disease and all-cause
mortality. In particular, accelerated progressive VC
strongly deteriorates the prognosis of MHD patients. We
propose here that the genotype of the MGP gene might be a
genomic biomarker that is predictive of VC progression.
Furthermore, this inalterable biomarker may be helpful for
disease detection and classification, treatment response
prediction, treatment efficacy, and prognosis.
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Abstract Capillary electrophoresis coupled with time-of-
flight mass spectrometry was used to explore new serum
biomarkers with high sensitivity and specificity for diabetic
nephropathy (DN) diagnosis, through comprehensive anal-
ysis of serum metabolites with 78 diabetic patients. Multi-
variate analyses were used for identification of marker
candidates and development of discriminative models. Of
the 289 profiled metabolites, orthogonal partial least-
squares discriminant analysis identified 19 metabolites that
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could distinguish between DN with macroalbuminuria and
diabetic patients without albuminuria. These identified metab-
olites included creatinine, aspartic acid, y-butyrobetaine, cit-
rulline, symmetric dimethylarginine (SDMA), kynurenine,
azelaic acid, and galactaric acid. Significant correlations be-
tween all these metabolites and urinary albumin-to-creatinine
ratios (p<0.009, Spearman’s rank test) were observed. When
five metabolites (including y-butyrobetaine, SDMA, azelaic
acid and two unknowns) were selected from 19 metabolites
and applied for multiple logistic regression model, AUC value
for diagnosing DN was 0.927 using the whole dataset, and
0.880 in a cross-validation test. In addition, when four known
metabolites (aspartic acid, SDMA, azelaic acid and galactaric
acid) were applied, the resulting AUC was still high at 0.844
with the whole dataset and 0.792 with cross-validation. Com-
bination of serum metabolomics with multivariate analyses
enabled accurate discrimination of DN patients. The results
suggest that capillary electrophoresis-mass spectrometry
based metabolome analysis could be used for DN diagnosis.

Keywords Diabetic nephropathy - Capillary electrophoresis-
mass spectrometry - Metabolome - Biomarker - Multiple
logistic regression - Orthogonal partial least-squares
discriminant analysis

Introduction

Diabetic nephropathy (DN) is one of the major complications
of diabetes mellitus (DM) and has become the most prevalent
cause of end-stage renal disease worldwide [1]. DN is also one
of the most significant long-term diseases in terms of morbid-
ity and mortality for individuals with diabetes [2]. Recent
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studies have shown that several interventions can slow the
progression of DN, and their impact 1s greater if they are
started at an carly stage of the development of nephropathy
[3]. Although renal biopsy is the most accurate diagnostic
method for DN, routine renal biopsies are not acceptable in
current clinical practice because of their invasiveness. Micro-
albuminuria is an alternative, non-invasive marker that can be
used for DN risk assessment, and the urinary albumin-to-
creatinine ratio (UACR) on first-void urine sample is recom-
mended for DN screening. However, large prospective studies
have revealed poor accuracy of this marker, even though urine
samples are collected two or three times a day to normalize
day-to-day variation [4]. Therefore, identifying reliable and
versatile biomarkers for risk assessment of DN is important.

Mass spectrometry-based urinary proteomics is used for
biomarker discoveries of DN. Dihazi et al. used surface-
enhanced laser desorption/ionization time-of-flight mass
spectrometry to identify three urinary proteins that differen-
tiated patients with DN from patients with type 2 DM
without nephropathy, patients with type 2 DM with micro-
or macroalbuminuria, patients with proteinuria caused by
non-diabetic renal disease, and healthy controls [5]. Mis-
chak et al. profiled urinary polypeptides using capillary
electrophoresis-mass spectrometry (CE-MS) and found that
the MS patterns could be used to differentiate type 2 DM
from healthy controls [6]. However, urinary protein markers
sometimes show a wider variation than blood samples.
Thus, it is necessary to discover biomarkers with small diumnal
variations.

Metabolomics is the comprehensive analysis of low weight
molecules in a sample, and has become a powerful tool in the
biomarker discovery field. Nuclear magnetic resonance [7],
gas chromatography-mass spectrometry [8], liquid
chromatography-mass spectrometry (LC-MS; [9]), and CE-
MS [10-12] are currently used for metabolomics. Targeted
profiling, that is, detection of only a few sets of metabolites,
has been used to discover biomarkers for DN. Xia et al.
analyzed six intermediate metabolites of the purine degrada-
tion pathway in plasma from patients with non-DN and DN
using LC with or without MS [13]. They found that adenosine,
inosine, uric acid, and xanthine were useful biomarkers for
monitoring DM progression. Jiang et al. used LC-tandem
mass spectrometry to simultaneously quantify eight amino-
thiols in the homocysteine metabolic cycle in plasma and
found two sulfur-containing metabolites, S-adenosylmethio-
nine and S-adenosylhomocysteine, as potential biomarkers for
DM and DN [14].

Compared to targeted profiling, comprehensive metabo-
lome analysis of all metabolites in the given sample is a
more powerful technique. Zhang et al. used non-targeted
LC-MS to detect potential biomarker candidates of DN and
type 2 DM, and observed significant differences in the serum
levels of leucine, dihydrosphingosine, and phytosphingosine

@ Springer

[15]. However, there are few published comprehensive metab-
olome profiles of DN.

Recently, we developed a non-targeted CE-MS-based
metabolome profiling technique [11, 16] and applied it to
biomarker discovery for acetaminophen-induced hepatotoxici-
ty in mice [11] and several types of cancer-specific profiles in
human saliva [12]. In the present study, we used CE-MS to
identify serum metabolite biomarkers for DN diagnosis. Fur-
thermore, classification models incorporating multiple bio-
markers were constructed for discriminating DN from non-DN.

Materials and methods
Sample collection and metabolite extraction

All experiments were conducted in accordance with study
protocol approved by the Institutional Ethics Committee of
Chubu Rosai Hospital. Informed consent was obtained from
all patients according to the Declaration of Helsinki as
revised in 2000. Serum samples from 78 type 2 DM patients
were collected and classified into the following three
groups: DM group without nephropathy and albuminuria
(non-DN, UACR<30 mg/g, n=20), early DN group with
microalbuminuria (micro-DN, 30<UACR<300 mg/g, n=
32), and overt DN group with macroalbuminuria (macro-
DN, UACR>300 mg/g, n=26). All serum samples were
stored at —80 °C.

To extract metabolites, the frozen sera samples were
thawed and 100 pl aliquots were put into 900 pl of methanol
that contained internal standards (20 pmol/l each of methio-
nine sulfone and camphor 10-sulfonic acid). The internal
standards were used to normalize the extraction efficiency of
metabolites during sample preparation for both cationic (me-
thionine sulfone) and anionic (camphor 10-sulfonic acid) me-
tabolite analysis. The solutions were mixed well and then
400 pl of Milli-Q water and 1 ml of chloroform were added,
followed by centrifugation at 4,600xg for 5 min at 4 °C. The
aqueous layer was transferred to a 5-kDa cutoff centrifugal
filter tube (Millipore, Billerica, MA, USA) to remove large
molecules. The filtrate was centrifugally concentrated at 35 °C
and reconstituted with 50 pl of Milli-Q water that contained
reference compounds (200 pmol/l each of 3-aminopyrrolidine
and trimesic acid) immediately before CE-TOFMS analysis.
These reference compounds were added to eliminate the var-
iation in migration time of individual peaks in electrophero-
gram among multiple datasets.

Reagents
Methionine sulfone (internal standard) was purchased

from Alfa Aesar (Ward Hill, MA), and hexakis-(2,2-
difluoroethoxy)-phosphazene (Hexakis) from SynQuest
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Laboratories (Alachua, FL). All other reagents were
obtained from Sigma-Aldrich (St. Louis, MO) or Wako Pure
Chemicals Industries Ltd. (Osaka, Japan). All chemicals
used were of analytical or reagent grade. Water was purified
with a Milli-Q purification system (Millipore, Billerica,
MA).

Instruments

All CE-electrospray ionization (ESI)-TOFMS experiments
were performed using an Agilent CE capillary electropho-
resis system (Agilent Technologies, Waldbronn, Germany),
an Agilent G3250AA LC/MSD TOF system (Agilent Tech-
nologies, Palo Alto, CA, USA), an Agilent 1100 series
isocratic HPLC pump, a G1603A Agilent CE-MS adapter
kit, and a G1607A Agilent CE-ESI-MS sprayer kit. The CE-
MS adapter kit included a capillary cassette, which facilitat-
ed thermostating of the capillary, and the CE-ESI-MS spray-
er kit, which simplified coupling of the CE system with the
MS system, was equipped with an electrospray source. For
system control and data acquisition, G2201AA Agilent
Chemstation software was used for CE, and Agilent
TOF (Analyst QS) software was used for TOFMS. The
original Agilent SST316Ti stainless steel (Fe/Cr/Ni/Mo/Ti;
68:18:11:2:1) ESI needle was replaced with a platinum
needle for anion analysis [17]. The resolution of the TOFMS
mstrument used in this study is higher than 3,000 at m/z 100
with high mass accuracy (<3 ppm).

CE-TOFMS analysis of cationic metabolites

CE-TOFMS analysis of cationic metabolites was performed
as described previously [10]. Cationic metabolites were
separated in a fused-silica capillary (50 pm i.d.x100 cm
total length) filled with 1 mol/l formic acid as the reference
electrolyte. The sample solution was injected at 5 kPa for 3 s
(approximately 3 nl), and a positive voltage of 30 kV was
applied. The capillary and sample trays were maintained at
20 °C and <5 °C, respectively. The sheath liquid was meth-
anol/water (50 %v/v) containing 0.1 pmol/l Hexakis and
was delivered at 10 pl/min. ESI-TOFMS was operated in
positive ion mode. The capillary voltage was set at 4 kV, and
the nitrogen gas (heater temperature 300 °C) flow rate was
set at 10 /min. In TOFMS, the fragmenter voltage, skimmer
voltage, and octapole radio frequency voltage were set at 75,
50, and 125 V, respectively. An automatic recalibration
function was performed using the following masses of two
reference standards: ['>C isotopic ion of the protonated
methanol dimer (2MeOH + H)]", m/z 66.06306; and [pro-
tonated Hexakis (M + H)]", m/z 622.02896. Mass spectra
were acquired at a rate of 1.5 cycles per second from m/z 50
to 1000.

CE-TOFMS analysis of anionic metabolites

The CE-TOFMS analysis of anionic metabolites was per-
formed as described previously [17]. Anionic metabolites
were separated in a commercially available COSMO(+)
capillary, which was chemically coated with a cationic poly-
mer. Ammonium acetate solution (50 mmol/l, pH 8.5) was
used as the electrolyte for CE separation. The sample solu-
tion was injected at 5 kPa for 30 s (approximately 30 nl) and
a voltage of —30 kV was applied. Ammonium acetate
(5 mmol/l) in methanol/water (50 %v/v) containing
0.1 umol/l Hexakis was delivered as the sheath liquid at
10 pl/min. ESI-TOFMS was operated in negative ion mode.
The capillary voltage was set at 3.5 kV. In TOFMS, the
fragmenter voltage, skimmer voltage, and octapole radio
frequency voltage were set at 100, 50, and 200 V, respec-
tively. An automatic recalibration function was performed
using the following masses of two reference standards: ['°C
isotopic ion of deprotonated acetic acid dimer (2CH;COOH-
H)], m/z 120.03834; and [Hexakis + deprotonated acetic acid
(M + CH;COOH-H)T, m/z 680.03554. Mass spectra were
acquired at a rate of 1.5 cycles per second from m/z 50 to 1,000.

Data processing

The raw data were processed using our proprietary software
(MasterHands) [10, 12]. The overall data processing flow
consisted of noise filtering, baseline correction, peak detec-
tion, and integration of the peak areas from 0.02m/z-wide
sections of the electropherograms. Subsequently, the accu-
rate m/z of each peak was calculated by Gaussian curve
fitting in the m/z domain, and the migration times were
normalized to match the detected peaks among the multiple
datasets. The peaks were identified by matching m/z values
and normalized migration times of corresponding authentic
standard compounds. Processed peak lists were exported for
further statistical analysis.

Statistical analysis

The relative ratio of the detected peak area to that of the
internal standard was used to eliminate systematic bias
derived from injection volume variance and MS sensitivity.
Data were analyzed with GraphPad Prism 5.0 (GraphPad
Software, Inc., San Diego, CA, USA) for statistical tests.
The Kruskal-Wallis test and Dunn’s post test were used to
assess the statistical significance of differencesAamong non-
DN, micro-DN and macro-DN samples. The Spearman’s
rank correlation test was used to calculate correlations
among UACR, eGFR, and the relative ratios of peak areas
of the metabolites. Multiple logistic regression (MLR) mod-
els were developed to discriminate non-DN and DN cohorts.
Biomarker metabolites for these models were selected in
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two procedures. First, normalized data were subjected to
orthogonal partial least-squares discriminant analysis
(OPLS-DA) using SIMCA-P + software (Version 12.0,
Umetrics, Umed, Sweden), and a model was built and used
to identify marker metabolites that accounted for differenti-
ation of non-DN and macro-DN cohorts. Next, a stepwise
variable selection method (forward and backward selection)
was conducted with a threshold of p<0.25 for adding and
eliminating features using JMP 8.0 (SAS Institute Inc., Cary,
NC, USA). The generalization ability of the developed
MLR model was evaluated using cross-validation methods.
Tenfold cross-validation was conducted 20 times with differ-
ent random seeds using WEKA (ver. 3.6.1, The University of
Waikato, Hamilton, New Zealand) to split the datasets into
training and validation data [18]. Bootstrap analysis was also
conducted to estimate the optimistic bias in the given datasets.
Two hundred replicates, including the same number of
patients, were computationally generated with a random
selection of individuals, this permitted redundant selection,
and MLR models were developed and cross-validation tests
were conducted on each generated dataset.

Results

Metabolome analysis of serum samples obtained from non-
DN and DN patients

Serum metabolome profiles of 78 patients in three succes-
sive stages of DN were collected using a single standard
protocol [non-DN (n=20), micro-DN (n=32) and macro-
DN (n=26)] and analyzed. Age distribution, gender and
other clinical characteristics are listed in Table 1. The ages
in the micro-DN and macro-DN groups were slightly higher
than in the non-DN group (p=0.0226). The macro-DN
group had significantly higher creatinine contents and lower
estimated glomerular filtration rates (eGFR) than the other
groups (p<0.0001), while no significant difference was seen
between the non-DN and micro-DN groups. The macro-DN
group also showed significantly higher triglycerides and
systolic blood pressure (SBP) compared with the non-DN
group (p=0.0172 and 0.0083, respectively). The other clin-
ical parameters showed no significant difference among all
groups (p>0.05).

On average, 4400 peaks were detected from each
serum sample with CE-TOFMS. After eliminating re-
dundant peaks, such as noise, fragments and adduct
ions, 289 metabolites remained. Using this dataset, we
firstly performed principal component analysis (PCA),
but the resultant score plots of the PCA showed no
unequivocal stage-specific clusters (data not shown).
Next, OPLS-DA was performed to discriminate between
DN patients (micro-DN and macro-DN) and non-DN
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patients based on the profiled metabolites. The OPLS-
DA model demonstrated satisfactory separation between
non-DN and micro-DN patients (Fig. la) using one
predictive component and one orthogonal component
(RzXcum:OZla RzYcum:O-676o chm2:0'179): and clear
separation between non-DN and macro-DN patients
(Fig. 1b) using one predictive component and three
orthogonal components (R*Xoyn=0.353, R*Youn=0.946,
Ocum=0.599). These results indicate that serum metab-
olome profile can be used to distinguish DN patients
from non-DN patients.

The resultant S plot of the developed OPLS-DA model
between non-DN and macro-DN patients identified 19
metabolites (Table 2) that were highly correlated in the
separation of the groups ([p(corr)|>0.5). Of these, we were
able to assign metabolite identities to eight metabolites by
matching their m/z values and migration times with those of
standard reagents. These metabolites were creatinine,
aspartic acid, 'y-butyrobetaine, citrulline, symmetric dime-
thylarginine (SDMA), kynurenine, azelaic acid, and galac-
taric acid. The composition formulae of the other
metabolites were calculated based on their isotope distribu-
tion patterns as follows: CsHgN,O, [metabolite ID (MID)
17], CoH7sNO (MID 51), CoH1gNO (MID 52), C;H4N,05
(MID 158), and C4HN4O (MID 202). Only the m/z values
of the other metabolites are listed in Table 2 because of
insufficient isotope peak size. The AUC values of MID 202
(0.765, 95 % CI); 0.649-0.880, p=4.47x 10™*) gave the best
discriminating ability among these markers (Table 3).

Correlation between biomarker candidates and clinical
parameters

Correlation analysis between these 19 serum biomarker
candidates and currently available clinical parameters
showed all candidate metabolites were significantly corre-
lated with UACR (p<0.009) (Table 4). The correlation
coefficients for creatinine (r=0.5701), aspartic acid (r=
0.4993), y-butyrobetaine (r=0.4942), citrulline (r=
0.4300), SDMA (r=0.4820), kynurenine (#=0.5351), MID
17 (r=0.4968), MID 97 (»=0.5223), MID 152 (»=0.5336),
MID 158 (r=0.4980), and MID 202 (r=0.6352) were pos-
itively correlated with UACR. Those of azelaic acid (r=—
0.5210), galactaric acid (r=-0.4596), MID 51 (r=-0.4728),
MID 52 (»=-0.4871), MID 96 (+=-0.3085), MID 114 (r=—
0.3638), MID 127 (»=-0.2961), and MID 134 (»=-0.3669)
were negatively correlated. Furthermore, 15 of 19 metabo-
lites were significantly correlated with eGFR (p<0.035).
The correlation coefficients of creatinine (r=—0.8832),
aspartic acid (r=—0.3912), y-butyrobetaine (»=—-0.6492),
citrulline (»=-0.6531), SDMA (»=-0.7111), kynurenine
(r=-0.5627), MID 17 (#=-0.5808), MID 97 (r=-0.7651),
MID 152 (r=-0.7687), MID 158 (»=-0.6302), and MID
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Table 1 Clinical characteristics
of diabetic nephropathy patients Non-DN Micro-DN Macro-DN p value
Number 20 32 26
Male/Female 9/11 22/10 17/9
Age (years) 57.5£12.9 66.6+£9.2% 67.3+8.7° 0.0226
BMI (kg/m?) 26.9+5.0 24.6+£3.4 (1) 24.8+3.0 0.3074
HbA . (%) 6.8+1.0 7.2+1.1 6.8+0.7 0.3931
UACR (mg/g) 12.1+£6.7 103.9+£77.8* 1055.3+741.3% ® <0.0001
Creatinine (enzymatic, mg/dL) 0.71+0.18 0.84+0.28 1.39+0.66™° <0.0001
Triglycerides (mg/dL) 134.6+131.5 133.5+55.2 179.7£110.3% (3) ©0.0172
Cholesterol (mg/dL) 190.4+53.5 (2) 198.5+25.7 (2) 218.0+£41.9 (1) 0.0838
The number in parentheses indi- HDL cholesterol (mg/dL) 56.3+18.9 50.9+14.6 52.9+21.1 (1) 0.5011
cates the number of patients for LDL cholesterol (mg/dL) 120.4+31.7 120.5+£26.2 (1) 125.8+34.1 (1) 0.8421
which clinical values were Systolic BP (mmHg) 132421 143£23 152+22° 0.0083
missing. The p values were cal- -y, 1 1 BP (mmHg) 74+13 79:£14 8110 0.0711
culated using the data from the ) 5 ab
patients without missing values. eGFR (mL/min/1.73 m~) 81.9424.0 70.5£21.9 47.2+25.6" <0.0001
Data are means+SD Medication (number)
*Significantly different com- Diabetic drug 17 27 25
pared to non-DN group Hypolipidemic drug 10 16 14
®Significantly different com- Antihypertensive drug 10 19 22

pared to micro-DN group

202 (r=-0.7455) showed negative correlation with eGFR.
This indicates that they were positively associated with renal
dysfunction. By contrast, those of azelaic acid (#=0.3739),
galactaric acid (»=0.4152), MID 51 (»=0.2204), and MID
134 (r=0.2397) showed positive correlation with eGFR.

MLR model development

For the discrimination of DN (micro-DN and macro-DN)
from non-DN patients, we developed a MLR model. Of the
19 biomarker candidates, v-butyrobetaine, SDMA, azelaic
acid, MID 114, and MID 127 were selected by stepwise
feature selection as MLR variables. The developed model

yielded high AUC values (0.927, 95 % CI, 0.870-0.983, p<
0.0001, Fig. 2a). The model also yielded high AUC values
(+SD; 0.880+8.62x107%) in the cross-validation test. In a
bootstrap test, the AUC values were 0.946+0.0262 and
0.895+0.0364 for training and cross-validation, respective-
ly. To evaluate only the eight identified metabolites, we
independently developed a MLR model. Stepwise feature
selection selected aspartic acid, SDMA, azelaic acid, and
galactaric acid as MLR variables. This MLR model also
yielded high AUC values (0.844, 95 % CI, 0.754-0.934,
»<0.0001, Fig. 2b), although it performed slightly worse
than the mode! with all metabolites, including unknown
peaks. This model also yielded high AUC values (+SD;
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Fig. 1 OPLS-DA based on comprehensive metabolites data from (A) non-DN (blue dots) and micro-DN (pink triangles) samples and (B) non-DN
(blue dots) and macro-DN (red triangles) samples. The ellipse in each figure indicates the Hotelling T2 (0.95) range for this model
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Table 2 The 19 serum biomarker candidates that statistically differentiated the different DN stages

MID Mode* miz Non-DN Micro-DN Macro-DN p value Formula Metabolite

i1 C 114.067 0.501:£0.153 0.612:£0.209 1.052:4£0.506 <0.0001 C4H7N;O Creatinine

17 C 129.067 0.046::0.035 0.0650.049 0.125+0.079 <0.0001 CsHgN> O,

29 C 134.046 0.126:£0.025 0.141:£0.041 0.170::0.036 <0.0001 Cal17NO4 Aspartic acid
39 C 146.118 0028:0.007 0.0324:0.008 0.039::0.010 <0.0001 C5H16NO;, y-Butyrobetaine
51 C 156.139 0.006+0.005 0.005::0.004 0.001:£0.003 0.0005 CoH17NO

52 C 158.154 0.063::0.020 0.055:0.022 0.040::0.012 0.0007 Col1oNO

69 C 176.104 0.194:£0.053 0.199:£0.060 0.27540.081 0.0005 CoH 3N304 Citrulline

78 C 203.150 0.006:£0.002 0.007::0.002 0.0104:0.005 0.0004 CglsN4O; SDMA

82 C 209.093 0.0100.004 0.01140.005 0.0160.005 0.0002 CioH12N20; Kynurenine

96 C 243.184 0.026:£0.013 0.019£0.012 0.015+0.007 0.0301

97 C 244.106 0.00060.001 0.0009:£0.001 0.002::0.002 0.0003

114 C 276.128 0.008:0.006 0.006:£0.004 0.003::0.003 0.0104

127 C 302.197 0.106::0.050 0.079:£0.047 0.062:+0.028 0.0372

134 C 316213 0.010::0.009 0.006:0.007 0.003::0.002 0.0158

152 A 96.960 0.216::0.063 0.243:+0.003 0.341+£0.103 <0.0001

158 A 103.014 0.003::0.002 0.004::0.002 0.005+0.002 0.0001 CoHuNLO5

202 A 149.049 0.030+:0.006 0.034£0.009 0.051£0.019 <0.000] ColgN4O

232 A 187.098 0.020+0.013 0.017+0.011 0.009+0.004 <0.0001 CoH 604 Azelaic acid
246 A 209.03] 0.029::0.012 0.02440.009 0.016::0.013 <0.0001 CaH1605 Galactaric acid

“Mode “C” and “A” indicate that the candidate metabolites were obtained in cationic and anionic analysis, respectively

The relative ratio of peak area of each metabolite is shown as the mean+SD

0.792+1.21x1072) in the cross-validation test. In a boot-
strap test, the AUCs were 0.875+0.0419 and 0.820-:0.0543

Table 3 AUC values for individual markers

Metabolite AUC 95 % CI p value
Creatinine 0.7526 0.6423 0.8629 8.06x107*
MID 17 0.7319 0.6128 0.851 2.09%107°
Aspartic acid 0.7069 0.5871 0.8267 6.05%107
y—Butyrobetaine 0.7379 0.6149 0.8609 1.60x107°
MID 51 0.644 0.5021 0.7858 0.0561
MID 52 0.7078 0.5853 0.8302 5.84x107°
Citrulline 0.6431 0.5158 0.7704 0.0576
SDMA 0.731 0.6098 0.8522 2.18x107°
Kynurenine 0.7284  0.6122  0.8447 2.44%1073
MID 96 0.6828 0.5475 0.818 0.0153
MID 97 0.6655 0.5396 0.7914 0.0281
MID 114 0.6836 0.5399 0.8274 0.0148
MID 127 0.6707 0.5321 0.8093 0.0235
MID 134 0.6552 0.5102 0.8001 0.0395
MID 152 0.7302 0.6048 0.8555 2.26%107°
MID 158 0.7108 0.5809 0.8407 5.16x107°
MID 202 0.7647 0.6492 0.8801 4.47x107
Azelaic acid 0.731 0.6151 0.8469 2.18x107°
Galactaric acid 0.7591 0.6169 0.9012 5.89x107*

@ Springer

for training and cross-validation, respectively. These results
indicate that the developed model is sufficiently accurate,
specific, and general.

Discussion

The aim of this study was to obtain metabolic markers for
early detection of DN from patient serum samples. We used
CE-MS-based metabolome analysis to find differences in
the serum metabolites from non-DN, micro-DN, and macro-
DN samples. OPLS-DA with 289 metabolites clearly sepa-
rated non-DN from macro-DN. Adequate separation of
micro-DN from non-DN was also achieved. These results
show that OPLS-DA is useful in this type of analysis. The
resultant S-plot of the developed OPLS-DA model identi-
fied 19 metabolites that were major contributors to the
separation of macro-DN from non-DN (Jp(corr)|>0.5).
These metabolites showed a gradual increase or decrease
with progressive development of nephropathy. Among
them, eight metabolites were identified, and these markers
are discussed in comparison with other published reports
below.

The concentration of serum creatinine was significantly
increased in the micro-DN and macro-DN groups compared
with the non-DN group (p<0.0001), and positively correlated
with UACR (r=0.5701, p<0.0001) and negatively correlated
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Table 4 Correlation analysis

between the 19 biomarker can- MID Metabolite UACR eGFR

didates and clinical parameters

(urinary albumin-to-creatinine Coefficients p value Coefficients p value

ratio (UACR) or estimated glo-

merular filtration rate (eGFR)) 11 Creatinine 0.5701 <0.0001? —-0.8832 <0.0001*
17 0.4968 <0.0001* —0.5808 <0.0001*
29 Aspartic acid 0.4993 <0.0001* -0.3912 0.0004*
39 v-Butyrobetaine 0.4942 <0.0001? —0.6492 <0.0001°
51 0.4728 <0.0001* 0.2204 <0.0001°
52 —0.4871 <0.0001? —0.0678 0.053
69 Citrulline 0.4300 <0.0001° -0.6531 <0.0001*
78 SDMA 0.4820 <0.0001? -0.7111 <0.0001°7
82 Kynurenine 0.5351 <0.0001* —0.5627 <0.0001*
96 —0.3085 0.006° 0.1975 0.083
97 0.5223 <0.0001° —-0.7651 <0.00017
114 ~0.3638 0.001° 0.1392 0.224
127 —0.2961 0.009° 0.2035 0.074
134 —0.3669 0.001* 0.2397 0.035°¢
152 0.5336 <0.0001* —0.7687 <0.0001°
158 0.4980 <0.0001? —0.6302 <0.0001*

. 202 0.6352 <0.0001?* —0.7455 <0.0001°

bp <0.001 232 Azelaic acid —0.5210 <0.0001* 0.3739 0.0007*

p=<0.01 246 Galactaric acid ~0.4596 <0.0001° 0.4152 0.0002°

°p<0.05

with eGFR (»=-0.8832, p<0.0001). Accumulation of serum
creatinine was also observed in DN patients by metabolic
analysis [19]. In clinical practice, creatinine is widely used
as a marker of DN that reflects the renal function. Although
serum creatinine had high specificity for detecting decreased
GFR, the sensitivity is not sufficient because its levels do not
significantly increase until the GFR is reduced to less than
50 % of normal levels [20].

The levels of amino acids, including aspartic acid (p<
0.0001), citrulline (p=0.0005), SDMA (p=0.0004), and
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kynurenine (p=0.0002), were significantly elevated in the
DN groups compared with the non-DN group. These metab-
olites showed high positive correlations with UACR
(aspartic acid, »=0.4993, p<0.0001; citrulline, r=0.4300,
p<0.0001; SDMA, r=0.4820, p<0.0001; kynurenine, r=
0.5351, p<0.0001) and negative correlations with eGFR
(aspartic acid, r=-0.3912, p=0.0004; citrulline, r=—
0.6531, p<0.0001; SDMA, r=-0.7111, p<0.0001; kynure-
nine, r=-0.5627, p<0.0001). Aspartic acid and citrulline are
involved in the urea cycle. Urea, is a major end product of
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Fig. 2 ROC curve analyses in combination with (A) y-butyrobetaine, SDMA, azelaic acid, MID 114, and MID 127, and (B) aspartic acid, SDMA,

azelaic acid, and galactaric acid to discriminate non-DN and DN patients
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nitrogen metabolism, and is produced by free ammonia and
aspartic acid. Citrulline is normally taken up by the kidneys
and converted to urea via arginine. Chuang et al. found
significant accumulation of urea cycle intermediates in the
patients with end-stage renal disease [21]. Because the
kidneys are important in conversion of citrulline to arginine,
the increase in the serum level of citrulline in DN patients
could be attributed to degradation of this function.

SDMA and asymmetric dimethylarginine (ADMA),
which is a structural isomer of SDMA, are formed by the
enzymatic methylation of arginine residues within proteins.
These metabolites have been identified as biomarkers for
chronic kidney disease [22]. ADMA is metabolized by
dimethylarginine dimethylaminohydrolase (EC 3.5.3.18) in-
to citrulline and dimethylamine in the kidneys, whereas
SDMA is excreted directly into the urine without further
modification [23]. In this study, ADMA was under the
detection limit, but SDMA was positively correlated with a
decrease in function of kidney. Therefore, SDMA is a more
sensitive marker than ADMA of various renal diseases,
mcluding DN.

Tryptophan is metabolized to kynurenine and further
metabolized to acetyl-CoA and NAD in the tryptophan-
kynurenine pathway. The rate limiting enzymes of this path-
way are indoleamine 2,3-dioxygenase (EC 1.13.11.52) in
the kidney and tryptophan 2,3-dioxygenase (EC 1.13.11.11)
in the liver. Both these enzymes metabolize tryptophan to N-
formylkynurenine, and N-formylkynurenine is subsequently
catabolized to kynurenine. Saito et al. showed the peripheral
kynurenine pathway accelerates in renal insufficient rats,
and the reaction rate was positively correlated with the
severity of the case [24]. They also found increased serum
kynurenine concentrations reflected increased tryptophan
2,3-dioxygenase and decreased kynureninase (EC 3.7.1.3)
activity in the liver [24]. Integration of profiling of these
enzyme activities and metabolites will increase understand-
ing of these mechanisms.

We detected a significant increase in y-butyrobetaine in
DN patients (»p<0.0001). Toyohara et al. showed a negative
correlation between <y-butyrobetaine and eGFR in plasma
from the patients with chronic kidney disease [25]. Because y-
butyrobetaine is converted to L-carnitine by y-butyrobetaine
dioxygenase (EC 1.14.11.1), it is assumed the increased y-
butyrobetaine arises from inhibition of this enzyme in the
kidney.

The levels of azelaic acid (p<0.0001) and galactaric acid
(»p<0.0001) were significantly lower in the DN groups than
the non-DN group. These metabolites also showed high
negative correlations with UACR (azelaic acid, r=-—
0.5210, p<0.0001; galactaric acid, »=—0.4596, p<0.0001)
and positive correlations with eGFR (azelaic acid, r=
0.3739, p=0.0007; galactaric acid, ¥=0.4152, p=0.0002).
Azelaic acid is a saturated C9 dicarboxylic acid derived
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from oxidation of fatty acids and inhibits the generation of
reactive oxygen species on neutrophils [26]. Galactaric acid,
is a natural product found in various fruits, and acts as a
growth substrate for many organisms, including Escherichia
coli [27]. However, biological mechanisms of decreased
serum azelaic acid and galactaric acid after onset DN need
to be clarified.

In this study, the obtained 19 metabolites showed rela-
tively high separation abilities (AUC values of receiver
operating characteristic curves 0.643-0.765, Table 3). To
increase the separation ability, we then applied a MLR
model to this dataset. The developed MLR model included
five metabolites, y-butyrobetaine, SDMA, azelaic acid,
MID 114, and MID 127. This model had a higher AUC
value for diagnosis of DN (0.927, p<0.0001) than single
markers, and shows the use of multiple markers is advanta-
geous (Fig. 2a). However, this model contained two uniden-
tified metabolites. The model using only identified
metabolites was even simpler and more versatile for actual
diagnosis because it could be used with quantification by
another technique, such as LC, LC-MS, or an enzymatic
method. Thus, we developed another MLR model using
only the identified metabolites, aspartic acid, SDMA, aze-
laic acid and galactaric acid (Fig. 2b). This model showed
high separation ability (AUC value 0.844, p<0.0001), and
could also be used to diagnose DN. However, there are
several limitations to be acknowledged for this study. For
example, the developed model should be further validated
using larger and independent new datasets. In addition,
although we evaluated the generalization ability of the de-
veloped model using cross-validation, the specificity of the
model was not assessed. Especially, the specificity for DN
using data obtained from study of other kidney diseases
(e.g., kidney cancer) should be addressed in future study.

In conclusion, we applied CE-MS-based metabolome
profiling to serum samples from diabetic patients with or
without existing DN. Biomarker candidates for the early
diagnosis of DN were obtained. Although a further valida-
tion study is needed, this technique has potential as a tool for
biomarker discovery studies.
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