PROTECTIVE ROLE OF CCK IN THE DIABETIC KIDNEY

sulfated cholecystokinin octapeptide (CCK-8S) both in vivo (ICAM-1""") mice were used as controls. WT and ICAM-1""" mice aged 8 weeks
and in vitro. were divided into the following four groups (n = b each): I) nondiabetic WT

mice, 2) nondiabetic ICAM-1""" mice, 3) streptozotocin (STZ)-nduced diabetic

WT mice, and 4) STZ-induced diabetic ICAM-1""" mice. STZ was purchased
RESEARCH DESIGN AND METHODS from Sigma-Aldrich (St. Louis, MO). Mice in the diabetic groups received two
ICAM-1"/" mice studies. Male ICAM-1"/" mice (C57B1/6J background) (15)  intraperitoneal doses of STZ (each 100 mg/kg) given 7 days apart. Blood
were purchased from The Jackson Laboratory (Bar Harbor, ME). Male C57BI/6J  glucose levels were determined 7 days after STZ injection, and only mice with
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FIG. 1. The expression and distribution of CCK in kidney tissues of mice. A: Cluster analysis of differentially expressed genes comparing NDM WT
and ICAM-1""" mice and STZ-induced DM WT and ICAM-1"'" mice (n = 5/group). The dendrogram on the left of the cluster shows the relatedness
of the change in gene expression. On the right of the cluster diagram, four groups of genes (1-4) are identified based on their gene expression
changes. The list of constitutive genes involved in cluster 4 is given using the GenBank accession numbers. CCK was included in this cluster.
B: CCK mRNA expression in the renal cortices was significantly increased in diabetic WT mice and significantly reduced to a nondiabetic level in
diabetic ICAM-1""" mice. C and D: The mRNA expressions of CCK-1R and CCK-2R were almost the same among the four groups. Values (means =
SEM) are presented as the ratio of nondiabetic WT. Data shown are representative of three separate experiments performed with five mice per
group. E-G: Immunohistological staining of renal tissue specimens obtained from nondiabetic WT mice. The CCK-positive area was mainly ob-
served in the distal tubules (E ) and collecting ducts (F') and weakly in glomeruli (G). H-J: Inmunohistological staining of kidney tissue specimens
obtained from diabetic WT mice. The distal tubules (H) and glomeruli (J) were stained more intensely compared with those in the nondiabetic
WT mice. A duodenal tissue specimen was used as a positive control (K ). Normal IgG was also used as a negative control (L). Scale bars, 50 pm.
*P < 0.05. ***P < 0.001. NS, P > 0.05. (A high-quality digital representation of this figure is available in the online issue.)
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blood glucose concentrations >16 mmol/L were used in the study. Nondiabetic
WT and ICAM-1""" mice received citrate buffer injections only. All animal
procedures were performed according to the guidelines as described pre-
viously (16). Three months after the induction of diabetes, all mice were
killed, and the kidneys were harvested.

Oligonucleotide microarray. Total RNA was extracted from each specimen
of the renal cortex using the standard protocol included with the RNeasy Midi
Kit (Qiagen, Valencia, CA) at 3 months. Preparation of biotin-labeled target
¢RNA and hybridization of probe arrays (CodeLink UniSet Mouse I Bioarray)
were performed according to the manufacturer’s instructions (Amersham
Biosciences, Uppsala, Sweden) (Gene Expression Omnibus accession num-
bers are available in the Supplementary Data).

Microarray data analysis. The criteria for selecting genes that were induced
or reduced by a diabetic state were as follows: I) the gene flags were “true,”
and 2) the ratio of the gene expression level in diabetic WT mice to that in
diabetic ICAM-1"'" mice was >2 or <0.5. We then selected 193 genes for
further analysis. All normalized data values were replaced to log base 2 and
subjected to hierarchical clustering as described previously (16).

CCK receptor knockout mice studies. CCK-IR™~, CCK-2R™", and CCK-
1R™" 2R mice (C57BL/6J background) (17) were obtained from the Tokyo
Metropolitan Institute of Gerontology. CCK-IR™™ mice and CCK-2R™~ mice
were generated as described previously (18,19). C57BL/6J (CCK-1R** -2R**) mice
were used as controls. Male WT and CCK-1IR™"~,-2R™™ mice aged 8 weeks were
divided into four groups (n = 7 each): 1) nondiabetic WT mice, 2) nondiabetic
CCK-1IR™",2R™" mice, 3) STZ-induced diabetic WT mice, and 4) diabetic CCK-
1R™7,-2R™"" mice. Diabetes was induced as described above. Blood pressure,
blood glucose, A1C, serum creatinine, urine creatinine, and urinary albumin were
measured as described previously (16). Three months after the induction of di-
abetes, all mice were killed, and the kidneys were harvested as described pre-
viously (16). Male CCK-1R™~ and CCK-2R™~ mice aged 8 weeks (n = 7 each)
were also used for comparison of albuminuria after induction of diabetes.

Bone marrow transplantation studies. Bone marrow transplantation (BMT)
was performed as described previously (20,21). Briefly, male WT and CCK-1R™~
mice aged 7-9 weeks received 9 Gy of total body irradiation. Postirradiated
male CCK-1R™’~ mice received a bone marrow transplant from WT mice
(WT—1R™""; m = 6). Postirradiated WT mice received a BMT from CCK-1R™/~
mice (IR™"—=WT; n = 6) or WT mice (WT—WT; n = 4). Four weeks after BMT,
diabetes was induced in all mice by STZ as described above. Four weeks after
the induction of diabetes, all mice were killed. DNA was isolated from bone
marrow extracts of all recipient mice using a DNeasy Blood & Tissue Kit
(Qiagen). The chimerism was confirmed by PCR (Supplementary Fig. 1) at the
termination of the study as described previously (22). The specific oligonucleo-
tide primer sequences are shown in Supplementary Table 1.

Interventional animal studies. Male Sprague-Dawley (SD) rats were pur-
chased from CLEA Japan (Tokyo, Japan). SD rats aged 4 weeks were divided into
three groups (n = 7 each): 1) nondiabetic control group (NDM), 2) STZ-induced
diabetic group (DM), and 3) CCK-8S-treated diabetic group (DM-CCK). At the
age of 5 weeks, rats chosen for the DM and DM-CCK groups were injected
intravenously with STZ (65 mg/kg body wt) in citrate buffer (pH 4.5). Rats in the
NDM group received citrate buffer injections only. At the age of 6 weeks, Alzet
osmotic minipumps (Durect Corporation, Cupertino, CA) were implanted sub-
cutaneously in the backs of all the rats. Rats in the DM-CCK group were con-
tinuously infused with CCK-8S (Bachem, Bubendorf, Switzerland) dissolved in
0.9% saline and given at arate of 5 ug CCK-8%/kg - h™!. Animals in the NDM and
DM groups were continuously infused with 0.9% saline only. Food intake was
calculated as the average over 3 days. Serum CCK concentration in both di-
abetic groups was measured using the CCK Enzyme Immunoassay Kit

TABLE 1
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(RayBiotech, Norcross, GA) according to the manufacturer’s instructions. Be-
cause the life expectancy of the osmotic pumps was 4 weeks, all pumps were
replaced with new filled pumps when the rats reached the age of 10 weeks.
Eight weeks after the induction of diabetes, all rats were killed, and the kidneys
were harvested as described previously (16). Glomeruli were isolated from the
left kidney by a previously developed sieving technique (23).

Histological analysis. Periodic acid-methenamine silver (PAM)-stained sec-
tions were analyzed as described previously (24). To evaluate the glomerular
size and mesangial matrix area, we examined 10 randomly selected glomeruli
per mouse and 15 randomly selected glomeruli per rat under high magnifica-
tion (X400). Quantitative analysis for all staining was performed in a blinded
manner.

Immunoperoxidase staining. Immunoperoxidase staining was performed as
described previously (4). Primary antibodies were monoclonal antibody
against rat monocytes/macrophages (ED1, 1:50; Serotec, Oxford, U.K.), poly-
clonal antibody against WT-1 (1:50; Santa Cruz Biotechnology, Santa Cruz,
CA), or polyclonal antibody against cholecystokinin octapeptide (1:500;
Phoenix Pharmaceuticals, Belmont, CA), all of which were applied for 12 h at
4°C. Secondary antibodies were biotin-labeled goat anti-mouse IgG (Jackson
ImmunoResearch Laboratories, West Grove, PA) or biotin-labeled goat anti-
rabbit IgG (Vector Laboratories, Burlingame, CA) for 60 min at room tem-
perature. Intraglomerular EDI1-positive cells or WT-1-positive cells were
counted in 20 glomeruli per animal (n = 4/group).

Immunohistochemical staining. Immunofluorescence staining was performed
using the methods described previously (5). Rabbit antitype IV collagen Ab
(1:200; LSL, Tokyo, Japan) was used for the primary reactions for 60 min at
room temperature, followed by a second reaction with fluorescein isothicyanate-
conjugated goat anti-rabbit IgG (H+L; Zymed Laboratories, San Francisco, CA)
for 30 min at room temperature. The immunofluorescence intensity of type IV
collagen was quantified as described previously (24). We evaluated 15 glomeruli
per animal (n = 4/group).

RNA extraction and quantitative real-time PCR. RNA extraction, real-time
PCR, and visualization of gene expression were performed as described pre-
viously (24). The specific oligonucleotide primer sequences are shown in
Supplementary Table 2.

Nuclear protein extract. Nuclear proteins were extracted from kidney tis-
sues with a nuclear extract kit (Active Motif, Carlsbad, CA) according to the
manufacturer’s instructions.

Nuclear factor-kB activity measurement. Nuclear factor-«B (NF-kB) p65-
dependent DNA-binding activity was determined by TransAM NFkB p65
(Active Motif) according to the manufacturer’s instructions.

Cell culture. THP-1 cells were obtained from DS Pharma Biomedical (Osaka,
Japan) and cultured according to the manufacturer’s instructions. PBS without
calcium and magnesium [PBS (—)] was purchased from Invitrogen (Carlsbad,
CA).

Tumor necrosis factor-o mRNA expression in THP-1 cells. THP-1 cells
were precultured in the RPMI 1640 (without glucose) medium supplemented
with 10% FCS and 5.5 mmoV/L p-glucose (Sigma-Aldrich) for 72 h. The cells were
centrifuged, washed in PBS (—), centrifuged, and serum starved for 12 h in
RPMI 1640 medium containing 5.5 mmoV/L p-glucose. After starvation, the cells
were adjusted to a cell density of 4 X 10° cells/mL in RPMI 1640 medium
containing 5.5 mmol/L p-glucose and 1% FCS and placed in six-well plates
(Falcon, Franklin Lakes, NJ). A control scrambled peptide (H-Gly-Asp-Tyr-Asp-
Met-Trp-Met-Phe-NH,) and proglumide (a nonselective CCK receptor antagonist
that interacts with both CCK receptors and can cross brain-blood barrier) were
purchased from Sigma-Aldrich. The cells were exposed to the following stimuli
(n = 5/group): I) 5.5 mmol/L p-glucose (normal glucose [NG]); 2) 15 mmoVL

Metabolic characteristics of WT mice and CCK receptor knockout mice (3 months after induction of diabetes)

Nondiabetic groups

Diabetic groups
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Data are means = SEM. BW, body weight; Ccr, creatinine clearance; Cr, creatinine; SBP, systolic blood pressure. TP < 0.05 vs.

nondiabetic WT group. &P < 0.05 vs. nondiabetic CCK-1IR™™,2R™~
CCK-1R™™,-2R™" group. 1P < 0.05 vs. diabetic WT group.
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FIG. 2. Diabetic CCK-1R™/~,-2R™~ mice exhibited increased albuminuria and enhanced proinflammatory genes in the kidney. A: Time course of
urinary albumin/creatinine ratio (UACR). The UACR of diabetic CCK-1R™/",-2R™~ mice (O) was markedly increased as compared with that of
diabetic WT mice (@) (n = 7/group). The UACR of CCK-1R ™/~ ,-2R™~ mice was higher than that of CCK-1R™~ mice ([]) or CCK-2R™~ mice (f@) at 3
months. *P < 0.05 vs. diabetic WT and nondiabetic groups; ***P < 0.001 vs. diabetic WT and nondiabetic groups; TP < 0.05 vs. nondiabetic groups.
B: PAM staining of the kidney at 3 months. Scale bars, 50 pm. C: Glomerular hypertrophy was observed in both diabetic groups as compared with
nondiabetic WT mice (n = 5/group). *P < 0.05; ***P < 0.001. D: The mesangial matrix index, calculated by the PAM-positive area in the tuft area,
was significantly increased in diabetic CCK-1R™ ‘,-ZR_/ ~ mice as compared with the other three groups. Ten randomly selected glomeruli per
mouse were examined (n = 5/group). *P < 0.05; ***P < 0.001. E: Expression of type IV collagen in kidney tissue. Scale bars, 50 pm. F: Collagen IV-
positive area in glomeruli (folds versus the nondiabetic WT group). Type IV collagen was significantly increased in the diabetic CCK-1R™~ 2R~
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FIG. 3. Distribution of CCK in the rat renal tissues. A-D: Immunohistological staining of renal tissue specimens obtained from nondiabetic rats.
The CCK-positive area was mainly observed in the distal tubules (4), glomeruli (B), and collecting ducts (C). Scale bars, 50 pm. Normal IgG was
also used as a negative control (D). Scale bar, 500 pm. E: CCK mRNA expression was observed in isolated glomeruli and the renal cortex obtained
from nondiabetic rats. (A high-quality digital representation of this figure is available in the online issue.)

p-glucose (high glucose [HG]); 3) 5.5 mmoV/L p-glucose with 9.5 mmol/L mannitol
(osmotic control [Mn]); 4) HG with scrambled peptide (107¢ M); 5) HG with
CCK-8S (107% M); 6) HG with CCK-8S (10~7 M); 7) HG with CCK-8S (107 M),
and 8) HG with CCK-8S (107® M) and proglumide (105 M).

CCK-8S and proglumide were added daily. After incubation for 72 h, total
RNA was extracted, and quantitative real-time RT-PCR was performed as de-
scribed above. Tumor necrosis factor-o (TNF-o) mRNA expression levels were
normalized by B-actin in each sample. Values (means = SEM) were expressed as
the ratios of average values in HG.

Cell migration assays. THP-1 cell migration was analyzed with a modified
Boyden chamber assay using a 24-well transwell with 5.0-um pores (Corning
Life Sciences, Corning, NY) as described previously (25,26). THP-1 cells were
preincubated for 24 h in serum-free RPMI 1640 supplemented with 0.1% bovine
serum albumin (Sigma-Aldrich). After starvation, CCK-8S, scrambled peptide,
or proglumide was added to THP-1 cells at different concentrations, and the
cells were added to the top chamber. CCK-8S or scrambled peptide was in-
cubated from 15 min before addition to the top chamber, and proglumide was
added 15 min before addition of CCK-8S. The medium in the lower well
contained 100 ng/mL of recombinant human CC chemokine ligand 2 (CCL2;
R&D Systems, Minneapolis, MN). Cells that migrated to the bottom side of the

membrane were quantitated by CyQuant DNA-binding fluorescence (Invi-
trogen) according to the manufacturer’s instructions (n = 6 each).
Statistical analysis. All values are expressed as the means = SEM. Dif-
ferences between groups were examined for statistical significance using
one-way ANOVA followed by Scheffe’s test. A P value <0.05 was considered
statistically significant.

RESULTS

Enhanced CCK expression in the kidney tissues of
diabetic WT mice. Hierarchical clustering identified 33
genes that were significantly upregulated only in diabetic
WT mice but not remarkably changed in nondiabetic WT
mice, nondiabetic ICAM-1""" mice, or diabetic ICAM-1""~
mice (cluster 4; Fig. 1A). We focused on CCK because CCK
is one of the most upregulated genes in cluster 4. Real-time
RT-PCR revealed that the expression of CCK mRNA in the
kidney cortices was significantly higher in diabetic WT mice

group compared with the diabetic WT group. Fifteen randomly selected glomeruli per mouse were examined (n = 4/group). *P < 0.05; ***P < 0.001.
G: Expression of WT-1 in glomeruli. H: The average number of WT-1-positive cells in glomeruli. Podocyte loss was significantly increased in di-
abetic CCK-1R™",-2R™~ mice as compared with the other three groups. Twenty randomly selected glomeruli per mouse were examined (n =
4/group). Values are the means = SEM. **P < 0.01; ***P < 0.001. Scale bars, 50 pm. I-L: Expression of CCK and proinflammatory genes in the renal
cortex. Expression of CCK was significantly increased to similar levels in both diabetic groups compared with the nondiabetic groups, whereas the
expressions of CCL2, ICAM-1, and CD68 were significantly upregulated only in the diabetic CCK-1R™'~,-2R™"~ group (n = 6/group). Values are
presented as ratio of nondiabetic WT. Results (inean = SEM) are representative of three independent experiments. M: Expression of KIM-1 gene
in the kidney. Expression of KIM-1 was significantly increased in diabetic CCK-1R ™~ -2R™~ mice as compared with the other three groups (n =
6/group). Values are presented as the ratio of nondiabetic WT. Results (mean + SEM) are representative of three independent experiments.
N: Time course of UACR after induction of diabetes. The UACR of WT mice that received a bone marrow transplant from CCK-1 receptor-deficient
mice (1IR™/~ -WT; ©) was markedly increased after induction of diabetes as compared with that of other groups. WI'-WT (@), WT mice that
received a BMT from WT mice; WI—1R ™™ (), CCK-1 receptor-deficient mice that received a BMT from WT mice. Values are the means + SEM.
#P < (.05 vs. other groups. (A high-quality digital representation of this figure is available in the online issue.)
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than in diabetic ICAM-1"/" mice (Fig. 1B), whereas there
was no difference in CCK-1R or CCK-2R mRNA expression
(Fig. 1C and D). We confirmed the distribution of CCK in
the kidney tissues by immunoperoxidase staining. CCK
was widely distributed in kidney tissues of nondiabetic WT
mouse (Fig. 1E-G). In diabetic WT mice, the distal tubules
and glomeruli were stained more intensely than in non-
diabetic WT mice (Fig. 1H-J).

Diabetic CCK-1R™~,-2R™" mice exhibited increased
albuminuria with upregulated proinflammatory genes
in the kidney. At 3 months after induction of diabetes, there
was no significant difference in AlC, body weights, and
creatinine clearance between the diabetic WT and diabetic
CCK-1IR™™,-2R™" groups (Table 1). Kidney weight per
body weight was increased not only in the diabetic WT and
diabetic CCK-1R ™~ 2R/~ groups but also in the nondiabetic
CCK-1IR™ 2R group (Table 1). It was noteworthy that
the urinary albumin/creatinine ratio was markedly increased
in diabetic CCK-1R™"-2R™™ mice from 1 month to the end
of the observation period compared with the diabetic WT
mice (Fig. 24). Furthermore, we compared levels of al-
buminuria among diabetic WT, CCK-1R™/~, CCK-2R™/",
and CCK-IR™",2R™" mice. Although there was o sta-
tistical significance, CCK-IR™™ 2R~ mice exhibited the
most increased albuminuria at 3 months (Fig. 24). Repre-
sentative findings of the glomeruli in PAM-stained sections
are shown in Fig. 2B. Glomerular hypertrophy was ob-
served in both diabetic groups compared with the non-
diabetic WT group at the end of the 3-month observation
period (Fig. 2C). Mesangial matrix expansion was ob-
served in both diabetic groups, but was more prominent
in the diabetic CCK-1R™™,-2R™/™ group than in the di-
abetic WT group (Fig. 2D). Type IV collagen intensity was
higher in both diabetic groups than nondiabetic groups,
and the intensity in the diabetic CCK-IR™~-2R™" group
was further increased as compared with that in the diabetic
WT group (Fig. 2E and F)). Immunoperoxidase staining of
WT-1, a normal podocyte marker, was performed to inves-
tigate the effect of CCK-8S in the progression of podocyte
loss (Fig. 2G). The number of WT-1-positive cells per
glomerulus was significantly decreased in the diabetic
WT and both CCK-1R™~,2R™/" groups, whereas podocyte
loss was more prominent in the diabetic CCK-1IR™"~-2R™/~
group (Fig. 2H). CCK mRNA expression in the renal
cortex was increased to the same extent in the diabetic
WT group and diabetic CCK-1R™'~,-2R™/~ group com-
pared with the nondiabetic groups (Fig. 2I). In contrast,
mRNA of CCL2, ICAM-1, cluster of differentiation (CD) 68,
and kidney injury molecule-1 (KIM-1; a marker of tubular
damage) were significantly upregulated in the diabetic
CCK-1IR™/" -2R™"" group compared with the diabetic WT
group (Fig. 2J-M). These findings suggest that diabetic
renal injuries were exacerbated by deletion of both CCK-1R
and CCK-2R via the inflammmatory process. Furthermore, we
performed BMT study to clarify whether deficiency of CCK-
1R on infiltrating macrophages or resident renal cells is
more important for the exacerbation of diabetic renal in-
jury. BMT study showed that 1R™~—WT mice exhibited
significantly increased relative kidney weight (Supplemen-
tary Table 3) and albuminuria (Fig. 2N) compared with
WT—1R™~ and WT'-WT mice, suggesting the importance
of CCK-1R on macrophages.

Distribution of CCK in rat renal tissues. In the renal
cortex of adult rats, the distribution of CCK was compar-
atively localized in distal tubules and glomeruli (Fig. 34
and B). In the renal medulla, the collecting ducts were
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stained intensely (Fig. 3C). We also identified CCK mRNA
expression by real-time RT-PCR in the kidney cortex and
isolated glomeruli obtained from normal adult rats (Fig. 3E).
CCK-8S ameliorates urinary albumin excretion and
inhibits both macrophage infiltration and podocyte
loss in glomeruli. At 8 weeks after induction of diabetes,
systolic blood pressure, A1C, and kidney weight per body
weight were elevated to the same level in both diabetic
groups. However, there was no significant difference be-
tween DM and DM-CCK (Table 2). The body weight and
serum creatinine of both diabetic groups were lower than
that of the NDM animals. However, there was no signifi-
cant difference between the DM and DM-CCK groups
(Table 2). Fasting serum CCK levels in the DM-CCK group
was increased ~3.9-fold than that of the DM group (514 =
89 vs. 132 + 33 pg/mL).

It is noteworthy that CCK-8S treatment significantly re-
duced urinary albumin excretion compared with the DM
group at 8 weeks (Fig. 44). Food intake was increased to
the same extent in both diabetic groups compared with the
NDM group after induction of diabetes (Fig. 4B). Glomer-
ular hypertrophy was observed in both diabetic groups as
compared with the NDM group. There was no significant
difference in glomerular size between the DM and DM-
CCK groups (Fig. 4C and D). Mesangial matrix expansion
was observed in the DM group; however, CCK-8S treat-
ment significantly reduced mesangial matrix expansion
compared with DM (Fig. 4F). Type IV collagen intensity
was higher in the DM than the NDM group. CCK-8S
treatment markedly reduced type IV collagen intensity
compared with the DM animals (Fig. 4F' and G). The av-
erage number of macrophages (EDI1-positive cells) per
glomerulus was markedly increased in the DM compared
with the NDM group, whereas macrophage infiltration was
significantly inhibited by CCK-8S treatment (Fig. 4H and I).
The number of WT-1-positive cells per glomerulus was
significantly decreased in the DM, whereas podocyte loss
was significantly inhibited by CCK-8S treatment (Fig. 4.J
and K).

CCK-8S inhibits expression of proinflammatory genes
and NF-kB activation in diabetic kidney. The mRNA
expressions of CD68, ICAM-1, and TGF-B in the renal
cortex were significantly upregulated in the DM group, and
these increases were significantly suppressed by CCK-8S
treatment (Fig. bA-C). The increase of KIM-1 mRNA ex-
pression in the kidney of DM group was partially but sig-
nificantly suppressed by CCK-8S treatment (Fig. 5F). In
isolated glomeruli, CCK-8S treatment also decreased the

TABLE 2
Metabolic characteristics of untreated rats and CCK-8S-treated
rats (8 weeks after induction of diabetes)

NDM DM

DM-CCK

n 7

Cer, mL - min™
g BW!

7.8 £04

99 £ 12 10.0 = 0.6

Data are means = SEM. BW, body weight; Ccr, creatinine clearance;
Cr, creatinine. *P < 0.05 vs. NDM. P < 0.001 vs. NDM.
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mRNA expressions of CD68, ICAM-1, TGF-B, and TNF-« as
compared with DM (Fig. 5F-I). Interestingly, CCK-8S
treatment markedly increased the mRNA expression of
nephrin in glomeruli as compared with DM (Fig. 5J). These
findings suggest that CCK-8S inhibits the development of
albuminuria via inhibition of proinflammatory genes in the
diabetic kidney. NF-kB p65-dependent DNA-binding ac-
tivity in the renal cortex was significantly increased in the
DM compared with the NDM group. CCK-8S treatment
significantly decreased the NF-kB p65-dependent DNA-
binding activity (Fig. 5K).

CCK-8S suppresses TNF-a expression and chemo-
taxis in THP-1 cells. TNF-a mRNA expression was sig-
nificantly increased in the untreated HG group (Fig. 6A).
Although TNF-a mRNA expression was not suppressed in
the scrambled pepude-treated HG group, it was suppressed
in the CCK-8S—treated (10™° M) HG group compared with
the untreated HG group (Fig. 64). In addition, the anti-
inflammatory effect of CCK-8S was largely abrogated by
proglumide (an antagonist for both CCK receptors) (Fig. 6A4).
The number of THP-1 cells migrated into the lower chamber
of the transwell was significantly reduced by CCK-8S treat-
ment in a dose-dependent manner and was not reduced by
scrambled peptide. These antimigratory effects of CCK-8S
were completely abolished by proglumide (Fig. 6B).

DISCUSSION

In present study, we found that CCK is one of the signifi-
cantly upregulated genes in the _diabetic WT kidney com-
pared with the diabetic ICAM-1""" kidney. We hypothesized
that CCK might regulate inflammatory response in the diabe-
tic kidney; however, little is known about the role of CCK and
its receptors in the development of diabetic nephropathy.

Two types of CCK receptors have been identified (27,28).
These receptors have been classified as CCK-1R and CCK-
2R based on their highly distinctive ligand selectivities (18).
The two types of CCK receptors are distributed in various
cells or tissues, including the kldneys (29-33) and macro-
phages (34,35). CCK-1R™ -2R mice are fertile and show
no apparent developmental defects. It has been reported
that the weights of the k1dneys and liver are significantly
increased in CCK-1R™~-2R™"™ mice compared with WT
mice, although no abnormahty is visible in these organs
(17). In this study, deletion of both CCK-1R and CCK-2R
enhanced inflammatory reactions and exacerbated the
development of albuminuria after induction of diabetes.
Our results suggest that CCK is increased in the diabetic
kidney of mice and may regulate macrophage-related
proinflammatory genes via CCK receptors. Furthermore,
BMT study revealed that CCK-1R on macrophages played
a more important role in the early stage of diabetic ne-
phropathy than CCK-1R on resident renal cells. In the BMT
study, we used CCK-1R™~ mice, because CCK-1R on mac-
rophages plays a more dominant role in the anti-inflammatory
effect of CCK-8S than CCK-2R (12). In contrast, CCK-2R is
expressed on renal cells including murine mesangial cells
(32). And the systemic absence of CCK-2R also exacer-
bated the development of albuminuria after induction of
diabetes almost same extent as in CCK-1R™~ mice. There-
fore, although further BMT study is needed, endogenous
CCK might act against not only infiltrating macrophages but
also resident renal cells via CCK-2R.

Several transcription factors have been implicated in the
glucose-mediated expression of genes involved in diabetic
nephropathy (36). NF-«B is one of the key mediators in the
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inflammatory response and plays a pivotal role in the
progression of diabetic nephropathy (37). Activation of NF-
kB in both kidney tissues obtained by biopsies and human
peripheral blood mononuclear cells has been shown to
correlate with degree of diabetic nephropathy (38,39). And
NF-kB is also involved in regulation of ICAM-1 expression
in diabetic kidney (36). Li et al. (12) reported that CCK-8S
inhibited lipopolysaccharide-induced cytokine production
via suppression of NF-kB activity. We showed that CCK-8S
significantly suppressed NF-kB activation in the diabetic
kidney, suggesting that CCK-8S may inhibit ICAM-1 ex-
pression via inhibition of NF-kB activity and thus lead to
suppression of macrophage infiltration in the diabetic
kidney.

Guha et al. (40) reported that high glucose-induced
TNF-a mRNA expression in THP-1 cells was mediated by
NF-kB. Our results indicate that inhibition of both high
glucose-induced TNF-o expression via NF-«B and CCL2-
induced migration might be involved in the anti-inflammatory
effects of CCK-8S in THP-1 cells. Because the nephrin gene
expression in cultured podocyte is repressed by TNF-« at
a transcriptional level (41), our results suggest that CCK-8S
may prevent podocyte loss via inhibition of TNF-o mRNA
expression in diabetic glomeruli.

Aunapuu et al. (42) recently reported that CCK over-
expression was associated with renal morphological
damage in transgenic mice without a significant difference
in kidney weight or proteinuria, but with a thickened glo-
merular basement membrane. CCK is expressed from
embryonic day (E) 8.5, whereas both CCK-1R and CCK-2R
have been identified from EI10.5; in addition, CCK is
thought to affect tissue growth and differentiation (43). In
another study, both CCK-1R and CCK-2R expression were
confirmed from E14.5 in kidney tissues (33), and therefore,
CCK might regulate renal microstructural growth. In non-
diabetic CCK-1R™~-2R™~ mice, increased kidney and
liver weight (17) and reduction in the number of glomer-
ular podocytes also suggest that CCK may play a role in
regulating the development or growth of these organs. In
the current study, we examined the effect of CCK-8S using
an STZ-induced diabetic model, but no nephrotoxicity was
observed.

Because the half-time of CCK-8S in blood is short, it
would be difficult to use a longer period for maintaining
renoprotective effect in patients with diabetic nephropa-
thy. Recently, Leén-Tamariz et al. (44) reported that
PEGylated CCK-10, which did not cross the blood-brain
barrier, maintained blood concentration longer than free
CCK. Such drugs with a longer duration of action may be
more suitable for clinical use.

In conclusion, we have shown that CCK is expressed in
the kidney, and deficiency of both CCK-1R and CCK-2R
accelerates development of albuminuria by enhancement
of inflammation in the kidneys after induction of diabetes.
Administration of CCK-8S confers protection against renal
inflammation, leading to a reduction of albuminuria in di-
abetic rats. Furthermore, CCK-8S directly inhibits high
glucose-induced TNF-a expression and migration in cultured
THP-1 cells. Our findings may provide a novel strategy of
therapy for the early stage of diabetic nephropathy and other
inflammatory diseases.
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Abstract

Background Inflammatory process is involved in patho-
genesis of diabetic nephropathy, although the activation and
phenotypic change of macrophages in diabetic kidney has
remained unclear. Sialoadhesin is a macrophage adhesion
molecule containing 17 extracellular immunoglobulin-like
domains, and is an I-type lectin which binds to sialic acid
ligands expressed on hematopoietic cells. The aim of this
study is to clarify the activation and phenotypic change of
macrophages in the progression of diabetic nephropathy.
Methods We examined the expression of surface markers
for pan-macrophages, resident macrophages, sialoadhesin,
major histocompatibility complex class II and «-smooth
muscle actin in the glomeruli of diabetic rats using
immunohistochemistry at 0, 1, 4, 12, and 24 weeks after
induction of diabetes by streptozotocin. Expression of type
IV collagen and the change of mesangial matrix area were
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also measured. The mechanism for up-regulated expression
of sialoadhesin on macrophages was evaluated in vitro.
Results  The number of macrophages was increased in
diabetic glomeruli at 1 month after induction of diabetes
and the increased number was maintained until 6 months.
On the other hand, sialoadhesin-positive macrophages were
increased during the late stage of diabetes concomitantly
with the increase of o-smooth muscle actin-positive mes-
angial cells, mesangial matrix area and type IV collagen.
Gene expression of sialoadhesin was induced by stimula-
tion with interleukin (IL)-1f and tumor necrosis factor-o
but not with IL-4, transforming growth factor-f and high
glucose in cultured human macrophages.

Conclusion The present findings suggest that sialoadhe-
sin-positive macrophages may contribute to the progression
of diabetic nephropathy.

Keywords Macrophage - Sialoadhesin -
Diabetic nephropathy

Introduction

Diabetic nephropathy is a leading cause of end-stage renal
failure in developed countries. Infiltration of mononuclear
cells is a characteristic of the glomeruli in patients with
diabetes [1]. We previously demonstrated that intercellular
adhesion molecule-1 (ICAM-1) mediates macrophage
infiltration into the glomeruli of streptozotocin (STZ)-
induced diabetic rats [2]. Furthermore, we demonstrated
that infiltration of macrophages was suppressed in diabetic
ICAM-1 knockout mice and urinary albumin excretion,
glomerular hypertrophy and mesangial matrix expansion
were significantly suppressed in diabetic ICAM-1 knockout
mice compared to diabetic wild-type mice [3]. These
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findings strongly suggest the important role of macrophages
in the progression of diabetic nephropathy, although the
state of activation and the phenotype of macrophages
infiltrated into diabetic glomeruli have remained unclear.

Sialoadhesin (Sn) is a sialic acid-dependent lectin-like
receptor [4] which mediates cell to cell interactions.
Expression of Sn is normally restricted to distinct subsets
of tissue macrophages including lymphoid tissue macro-
phage [5]. Sn is induced rapidly in response to serum
factors [6], glucocorticoids, and cytokines [7]. Recent
studies in humans have shown that Sn is expressed abun-
dantly on macrophages in the pathological tissues of mul-
tiple sclerosis, atherosclerosis, rheumatoid arthritis, and
breast cancer [8], suggesting that Sn-positive macrophages
are related to chronic inflammation.

Ito et al. [9] demonstrated that Sn-positive macrophages
were observed in the prolonged model of mesangial
proliferative glomerulonephritis. This study suggests that
Sn-positive macrophages might be involved in chronic
inflammation of the kidney. There have been some reports
which describe the critical role of Sn-positive macrophages in
the pathogenesis of experimental glomerulonephritis [10-12];
however, little is known about Sn-positive macrophages in the
pathogenesis of diabetic nephropathy. To elucidate the rela-
tionship between Sn-positive macrophages and diabetic
nephropathy, we analyzed the phenotypes of macrophages in
diabetic glomeruli by immunohistochemically examining
ED1 (pan-macrophages marker), ED2 (resident macrophages
marker), and ED3 (Sn-positive macrophages marker) [13].
We also analyzed the activated macrophages which express
OX-6 (major histocompatibility complex [MHC] class
II-positive cell marker) on the cell surface.

Diabetic nephropathy is characterized histologically by
glomerular hypertrophy, glomerular basement membrane
thickening, mesangial matrix expansion, and ultimately
glomerular sclerosis [14-17]. In diabetic glomerulosclerosis,
there is an accumulation of matrix proteins, type IV collagen
or fibronectin [18, 19]. Because the mesangial cells are
responsible for this matrix protein synthesis, overproduction
of these matrix proteins is considered to be a result of
phenotypic change in the mesangial cells [18]. Therefore,
we also analyzed «-smooth muscle actin (a-SMA) as a
marker of the phenotypic change of mesangial cells [20, 21].
Furthermore, we examined the expression of ICAM-1, type
IV collagen, and mesangial matrix area.

Materials and methods
Animals

Male Sprague-Dawley rats, weighing 120 g (4 weeks of
age), were purchased from Charles River Japan (Yokohama,
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Japan) for use in this study. The rats received a standard
chow and water diet. All procedures were performed
according to the Guidelines for Animal Experiments at
Okayama University Medical School, Japanese Government
Animal Protection and Management Law (No. 105) and
Japanese Government Notification on Feeding and Safe-
keeping of Animals (No. 6).

Induction of diabetes

Diabetes was induced in 25 rats by an intravenous injection
of 65 mg/kg STZ (Sigma-Aldrich, St. Louis, MO, USA) in
10 mM citrate buffer solution (pH 4.5). The control rats
were injected with citrate buffer alone. Blood was collected
from a tail vein and assayed for glucose. Urinary protein
was determined by the biuret method. Five diabetic and
five control rats were sacrificed under anesthesia and the
kidneys were harvested at 1, 4, 12, and 24 weeks after the
STZ or buffer injection. Kidneys were weighed and fixed in
10 % formalin for periodic acid-methenamine silver
(PAM) staining and the remaining tissues were embedded
in Optimal Cutting Temperature (OCT) compound (Sakura
Finetechnical Co., Tokyo, Japan) and immediately frozen
in acetone cooled on dry ice. Metabolic data were mea-
sured as described previously [2].

Metabolic data

Blood glucose, urinary albumin excretion (24 h), and body
weight were measured at 0, 1, 4, 12, and 24 weeks. Urine
collection was performed for 24 h with each rat individu-
ally housed in a metabolic cage and having free access to
food and water. Blood glucose was measured by the glu-
cose oxidase method. Urinary albumin concentration was
measured by nephelometry (Organon Teknika-Cappel,
Durham, NC, USA). Glycosylated hemoglobin (HbAlc)
was measured at 0, 1, 4, 12, and 24 weeks after induction
of diabetes by latex agglutination assay.

Effect of insulin treatment

Three days after STZ administration, when all animals
(n = 5) exhibited blood glucose levels >300 mg/dl, insulin
treatment was initiated using nearly 24 h-acting Humalin N
(Shionogi, Osaka, Japan) as described previously [2]. All
insulin-treated rats were sacrificed at 4 weeks and pro-
cessed for immunohistochemical studies.

Antibodies
As primary antibodies, we used mouse antibodies against

rat pan-macrophages (ED1), resident macrophages (ED2),
Sn-positive macrophages (ED3), and MHC class II-positive
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cells (OX6); these antibodies were purchased from AbD
Serotec (Oxford, UK). Mouse anti-rat ICAM-1 monoclonal
antibody was purchased from Seikagaku Corporation
(Tokyo, Japan). Rabbit anti-mouse collagen IV antibody
was purchased from LSL (Tokyo, Japan). Mouse anti o-
SMA monoclonal antibody was purchased from Oncogene
(Boston, MA, USA).

As secondary antibodies, biotinylated goat anti-mouse
immunoglobulin (Ig) G and fluorescein isothiocyanate
(FITC)-labeled goat anti-mouse IgG were obtained from
Jackson Immunoresearch Laboratories (West Grove, PA,
USA). Rodamin-labeled anti-mouse IgG was obtained
from Chemicon International (Temecula, CA, USA).
FITC-labeled anti-rabbit IgG was obtained from Zymed
Laboratories (San Francisco, CA, USA).

Histopathological examination

Immunoperoxidase and immunofluorescence staining were
performed as described previously [2]. Fresh frozen sec-
tions were cut at 4-um thickness using a cryostat. To
evaluate the phenotype of infiltrated macrophages, anti-
ED1, ED2, and ED3 antibodies were applied to the fresh
frozen sections as the primary reaction, followed by a
second reaction with rodamin-labeled anti-mouse IgG
antibody. Then FITC-labeled anti-rat OX-6 antibody was
double-stained. Intraglomerular EDI-, ED2-, ED3- and
0OX-6-positive cells were counted in 10 glomeruli from
each animal (total 50 glomeruli for each group). The
average number per glomerulus was used for estimation.
ICAM-1 and type IV collagen were also detected by the
indirect immunofluorescence method. Briefly, sections
were fixed with cold acetone for 3 min and stained with
each monoclonal antibody for 24 h at 4 °C. The sections
were then stained with each FITC-labeled anti-IgG anti-
body for 30 min at room temperature. The sections were
washed in phosphate buffered saline, mounted with Per-
maFluor (Shandon, Pittsburgh, PA, USA) and examined
under a fluorescence microscope (LSM-510; Carl Zeiss,
Jena, Germany). The intensity of ICAM-1 and type IV
collagen in the glomeruli was evaluated semi-quantita-
tively from O to 3+.

The distribution of a-SMA was evaluated by immunop-
eroxidase assays using Vectastain (Vector, Burlingame,
CA, USA). In brief, the frozen sections (4-um thick) were
fixed with cold acetone for 3 min and nonspecific protein
binding was blocked by incubation with normal goat serum
and avidin for 20 min. The sections were first incubated
with each monoclonal antibody for 24 h at 4 °C. The sec-
tions were then incubated with biotin-labeled anti-IgG

antibody for 30 min at room temperature. Endogenous -

peroxidase activity was blocked by incubating the sections
in methanol containing 0.3 % hydrogen peroxide for

30 min; the sections were then stained with a Vectastain
ABC kit and counterstained with Mayer’s hematoxylin and
the percentage of u~-SMA-positive glomeruli was evaluated.

Light microscopy

Renal tissues were fixed in 10 % formalin and embedded in
paraffin in a routine fashion. Tissue sections were cut at 4-um
thickness, dewaxed and stained with PAM. To evaluate
glomerular size, 5 randomly selected glomeruli from the
cortex of each animal were examined under high magnifi-
cation (200 x). The mesangial matrix area was defined as the
PAM-positive area within the tuft area and was measured
using Photoshop software Ver. 6 (Adobe Systems, San Jose,
CA, USA) and analyzed by Scion Image Ver.4.0.2. The
results are expressed as mean = SEM (pmz).

Cell culture

The human monocytic cell line THP-1 (Japanese Collec-
tion of Research Bioresources, Tokyo, Japan) was cultured
in RPMI-1640 (Gibco-Invitrogen, Carlsbad, CA, USA)
supplemented with heat-inactivated 10 % (v/v) fetal bovine
serum (Thermo-Fisher Scientific, Waltham, MA, USA).
Cells were cultured at 37 °C in humidified air containing
5 % carbon dioxide. For experiments, the cells were
adjusted to the cell density of 10° cells/ml in the same
culture medium. Cells were stimulated with recombinant
human tumor necrosis factor-a (TNF-o; 0.01—10 pg/l)
(R&D Systems, Minneapolis, MN, USA), recombinant
human IL-18 (0.01—10 pg/l) (R&D Systems), recombinant
human IL-4 (10 pg/l) (R&D Systems) and recombinant
human transforming growth factor-f1 (TGF-f1; 10 ug/l)
(R&D Systems). Cells were also stimulated under hyper-
glycemic conditions (5.4 g/l p-glucose) (Sigma-Aldrich);
as an osmotic control, p-Mannitol (3.63 g/l) (Sigma-
Aldrich) was added to culture medium in simultaneous
wells. Total RNA was extracted from THP-1 cells 24 h
after stimulation.

RNA extraction and quantitative real-time reverse
transcription-polymerase chain reaction (RT-PCR)

Total RNA was extracted using the RNeasy Plus Mini Kit
(Qiagen, Valencia, CA, USA) according to the manufac-
tarer’s instructions. Single-strand complementary DNA
was synthesized from the extracted RNA using a GeneAmp
RNA PCR Core kit (Applied Biosystems, Foster City, CA,
USA) according to the manufacturer’s instructions. To
evaluate mRNA expression of Sn in THP-1 cells, and IL-
1p and TNF-« in rat kidney, quantitative real-time RT-PCR
was performed using a Light Cycler (Roche Diagnostics,
Tokyo, Japan) and SYBR Premix Ex Taq II (Takara Bio,
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Shiga, Japan) as previously described [22]. The mRNA
expression was normalized with a house-keeping gene
(GAPDH or f-actin) in each sample by calculating the
relative expression ratio. For amplification of the comple-
mentary DNA, the following oligonucleotide primers were
purchased from Takara Bio: Sn, sense 5'-CTGCGAAT
CAGGGACCAACA-3', antisense 5'-TTTCAACCCAAA
TCCTAGAGCAGAG-3'; IL-18, sense 5'-GCTGTGGCAG
CTACCTATGTCTTG-3/, antisense 5'-AGGTCGTCATC
ATCCCACGAG-3’; TNF-¢, sense 5'-TCAGTTCCATG
GCCCAGAC-3', antisense 5'-GTTGTCTTTGAGATCCA
TGCCATT-'; GAPDH, sense 5'-GCACCGTCAAGGCT-
GAGAAC-3', antisense 5'-TGGTGAAGACGCCAGTGG
A-3'; B-actin, sense 5-GGAGATTACTGCCCTGGCTCC
TA-3', antisense 5'-GACTCATCGTACTCCTGCTTGCT
G-3'. Each experiment was performed twice.

Statistical analysis

All values are expressed as the mean == SEM. Differences
between groups were examined for statistical significance
using one-way analysis of variance (ANOVA) followed by
Scheffe’s test. A P value <0.05 denoted the presence of a
statistically significant difference.

Results

Metabolic data

Body weight, kidney weight, urinary albumin excretion, and

glycosylated hemoglobin are shown in Table 1. Diabetic rats
had a significantly lower body weight and higher kidney

Table 1 Changes in metabolic data after induction of diabetes in rats

weight per body weight from 4 weeks after induction of
diabetes. An increase in urinary albumin excretion was
observed after 4 weeks. All diabetic rats were moderately
hyperglycemic. The serum HbAlc concentration in the dia-
betic group was significantly higher than in the control group.

Phenotype of macrophage in the glomeruli

Throughout the experiment, ED1-, ED2-, ED3- and OX-6-
positive macrophages were analyzed in the glomeruli of
control rats and of animals with STZ-induced diabetes
(Fig. 1). When the sections were incubated with irrelevant
mouse IgG, no staining was observed. The glomeruli of
control rats showed only a few EDI1-, ED2-, and ED3-
positive macrophages. In the rats with STZ-induced dia-
betes, ED1, which is expressed in pan macrophage, peaked
at 1 week and maintained to 24 weeks; most of these
macrophages were positive for MHC class II (OX-6) in the
glomeruli. ED2, which is expressed in resident macro-
phage, was not increased in diabetic glomeruli. Sn-positive
macrophage (ED3-positive) continued to increase gradu-
ally and most of these macrophages were also positive for
MHC class II in the glomeruli (Fig. 1).

Expression of ICAM-1

In normal rat glomeruli, ICAM-1 staining was weakly
detected. In the glomeruli of STZ-induced diabetes, ICAM-
1 fluorescence intensity increased early after diabetes
induction, reaching a peak at 12 weeks and was signifi-
cantly higher than in the control animals (Fig. 2). A linear
ICAM-1 staining pattern was detectable along the capillary
walls and the mesangial area.

ow 1w 4w 12W 24W

Body weight (g) Control 122 4+12 189 £ 7.3 366 £+ 8.7 568 + 14.6 6317 £203
Diabetic 162 £ 3.4% 2364 £ 12.9+F 259 &+ 33.2% 233.3 £ 18.5%
Diabetic + insulin 329+£214

Kidney weight (mg/g BW)  Control 57+02 5.08 £0.2 4.1 £0.05 3.09 £ 0.1 2.78 £ 0.1
Diabetic 595 +02 6.84 & 0.2+F 7.14 £+ 1.1%* 8.08 £ 0.7*
Diabetic + insulin 4.03 +04

Albuminuria (mg/day) Control 97 £+ 21.1 113.7 & 32.0 1347 £ 114 136.9 + 13.3 1755 £ 17.1
Diabetic 1185 £ 11.0  815.1 = 15.0%" 1037.8 + 31.6 1583.1 £ 47.8*
Diabetic + insulin 330.6 £ 44.5

HbAlc (%) Control 33+0.1 37 +0.1 38 £ 0.6 36+ 0.2 3.7+02
Diabetic 3.8 4+ 0.2% 8.9 4 0.5+ 10.0 £ 0.7* 9.6 4+ 0.3*
Diabetic 4 insulin 4.6 +£03

Data are mean &= SEM
* p < 0.05 vs. control
T p < 0.05 vs. diabetic + insulin
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Fig. 1 Identification of macrophages in diabetic rat glomeruli.
Indirect immunofluorescent micrographs from diabetic rat glomeruli
24 weeks after STZ injection, stained with anti-ED1 (pan-macro-
phages) (a), anti-ED3 (Sn-positive macrophages) (d), anti-OX-6
(MHC class II-positive cells) (b, e), anti-ED1 + anti-OX-6 (c), anti-
ED3 + anti-OX-6 (f), magnification x200. Intraglomerular infiltra-
tion by pan-macrophages (ED1) (g), resident macrophages (ED2) (h),

and Sn-positive macrophages (ED3) (i) in diabetic rats (open circle),
in control rats (closed circle) at 0, 1, 4, 12, and 24 weeks, and insulin-
treated diabetic rats (open square) at 4 weeks. A straight line
represents ED1, ED2, and ED3 and a broken line represents EDI,
ED2, and ED3 plus OX-6. Data are means & SEM of 50 glomeruli,
respectively.  *p < 0.05 vs. control, *¥p <0.01 vs. control,
#EEp < 0.005 vs. control
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Staining for a-SMA

In control rats, a-SMA was expressed in the arterioles but
not in the glomerular cells. The rate of a-SMA-positive
glomeruli increased gradually, particularly from 12 to
24 weeks in diabetic rats (Fig. 3).

Staining for type IV collagen

In control rats, there was weak staining for type IV colla-
gen throughout the experimental period. The expression of
type IV collagen increased between 12 and 24 weeks in
diabetic rats (Fig. 4).

Mesangial matrix area
Representative glomeruli in PAM-stained sections are

shown in Fig. 5. Glomerular hypertrophy and mesan-
gial matrix expansion were observed in diabetic rats.

Fig. 2 Identification of ICAM-1 in diabetic glomeruli. Indirect
immunofluorescent micrographs from control rats at 24 weeks
(a) and diabetic rats at 24 weeks after STZ injection (b), stained
with ICAM-1, magnification x200. ¢ Intraglomerular ICAM-1

Fig. 3 Identification of «-SMA in diabetic glomeruli. Immunoper-
oxidase staining for «-SMA in control rats at 24 weeks (a) and
diabetic rats at 24 weeks after STZ injection (b), magnification x200.
¢ Intraglomerular o-SMA expression in control rats (closed circle),
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In STZ-induced diabetic rats, the mesangial matrix
area increased significantly larger than in control rats
(Fig. 5).

Effect of insulin treatment

A significantly higher body weight and lower kidney
weight per body weight were observed in the insulin-
treated diabetic group than in the untreated diabetic group
(Table 1). After 4 weeks of insulin treatment, macrophages
infiltrated into diabetic glomeruli decreased to the same
level of control rats (Fig. 1), and ICAM-1 expression in the
diabetic rats was comparable to that in the control rats
(Fig. 2). The expression of «-SMA and type IV collagen,
and mesangial matrix area were also suppressed as same as
the control rats (Figs. 3, 4, 5). These results indicated that
hyperglycemia but not STZ induced the infiltration of
macrophages and subsequent histological changes in the
glomeruli of diabetic rats.

c« Aesfesds g
3
e
2
£
<1

0 L 4 12 24

week

expression in control rats (closed circle), diabetic rats (open circle)
at 0, 1, 4, 12, and 24 weeks, and insulin-treated diabetic rats (open
square) at 4 weeks. **¥p < 0.005 vs. control

40
20

10

a-SMA-positive glomeruli (%)

0 1 4 12 24
week

diabetic rats (open circle) at 0, 1, 4, 12, and 24 weeks, and insulin-
treated diabetic rats (open square) at 4 weeks. *p < 0.05 vs. control,
**p < 0.01 vs. control
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Effects of cytokines and high glucose on the expression
of Sn on THP-1 cells

Sn mRNA expression was significantly increased with
concentration dependency by stimulation of IL-1 /5 and TNF-
o (Fig. 6). However, Sn expression was not induced by
hyperglycemic condition or stimulation with IL-4, and TGF-
B1. To confirm whether IL-1/ and TNF-« is upregulated in
vivo, we analyzed the gene expression of IL-1f and TNF-«
in the glomeruli of control and diabetic rats. As shown in
Fig. 7, mRNA expression of [L-1 and TNF-o is upregulated
in diabetic glomeruli. These results suggest that Sn might be
induced by these inflammatory cytokines in vivo.

Discussion

Sn is expressed on a subpopulation of macrophages with a
highly restricted tissue distribution in normal conditions

Fig. 4 Identification of type IV collagen in diabetic glomeruli.
Indirect immunofluorescent micrographs from control rats at
24 weeks (a) and diabetic rats at 24 weeks after STZ injection (b),
stained with type IV collagen, magnification x200. ¢ Intraglomerular

Fig. 5 Identification and quantification of PAM-positive area in
diabetic glomeruli. PAM staining of kidney sections in control rats at
24 weeks (a) and diabetic rats at 24 weeks after STZ injection (b),
magnification x200. ¢ Mesangial matrix area is defined as PAM-

including marginal zone macrophages of the spleen, sinus
macrophages of lymph nodes, and omentum macrophages
[23]. It is important to note that Sn can be rapidly induced in
response to serum factors [6], glucocorticoids, and cyto-
kines [7]. Recent studies in humans have shown that Sn can
be expressed abundantly on macrophages recruited during
pathological conditions including multiple sclerosis, ath-
erosclerosis, rheumatoid arthritis, and breast cancer [8].
Therefore, Sn is suggested to relate to chronic inflammation
and is considered as a marker of activated macrophages.
Only a few macrophages are seen in the glomeruli of
non-diabetic control rats. On the other hand, ED1 which is
expressed in pan macrophages, peaked at 1 week and
maintained to 24 weeks, and most of macrophages were
positive for MHC class II in the glomeruli (Fig. 1c, g). ED2
which is expressed in resident macrophages in the rats with
STZ-induced diabetes [13], did not increase in diabetic
glomeruli (Fig. th). Sn-positive macrophages continued to
increase gradually and most of these macrophages are also

3 c ek
=
g2
2,
5 :
Q 1 4 12 24
week

type IV collagen expression in control rats (closed circle), diabetic
rats (open circle) at 0, 1, 4, 12, and 24 weeks, and insulin-treated
diabetic rats (open square) at 4 weeks. *p < 0.05 vs. control,
*#p < 0.01 vs. control, **¥*p < 0.005 vs. control

(Iflﬂlz) EEe
800, C '

600

400

o 0 1 4 12 24

positive area in the tuft area in control rats (closed circle), diabetic
rats (open circle) at 0, 1, 4, 12, and 24 weeks, and insulin-treated
diabetic rats (open square) at 4 weeks. ***p < 0.005 vs. control
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Fig. 6 Transcriptional

regulation of Sn expression on
THP-1 cells. Sn mRNA
expression after 24 h exposure

2
o
i

to various cytokines or
hyperglycemic condition was
determined by quantitative real-
time RT-PCR. HG
hyperglycemic condition, HO
hyperosmotic control. n = 3 per
each group. Data are

mean £ SE. *p < 0.05
compared with vehicle

=
L
i

Sialoadhesin mRINA/GAPDH
55

—

(ANOVA) -
05+ T ey [R5
¢ ] ’ TR /2‘ L) L] * & ¥ W L]
Control  IL-1B (mg/l) TNF-¢ (mg/l) -4 T6F- g6 w
Bl
001 01 1.0 10 001 01 10 10
A * B * cells [20, 21] and to play a pivotal role in the accumulation
of extracellular matrix in diabetic nephropathy. The rate
33 12 of «-SMA-positive glomeruli increased gradually and
3 I . increased particularly from 12 to 24 weeks in diabetic rats
% . “é (Fig. 3). Furthermore, the expression of type IV collagen
& i} 8 increased between 12 and 24 weeks in diabetic rats
s é (Fig. 4), and the mesangial matrix area in diabetic rats
% 15 g increased significantly larger than in control rats (Fig. 5).
- . 3 4 Therefore, the phenotypic change of mesangial cells and
g 2 , accumulation of extracellular matrix was observed in par-
3 allel with an increase of Sn-positive macrophages.

o Sn was originally defined as a sheep erythrocyte

Control Diabetic Control Diabetic

Fig. 7 Cytokine expressions in rat kidney. mRNA expression of IL-
18 and TNF-« was determined by quantitative real-time RT-PCR.
mRNA expression of IL-18 and TNF-« is upregulated in diabetic

glomeruli. » = 3 per each group. Data are mean + SE. *p < 0.05
compared with vehicle (ANOVA)

positive for MHC class II in the diabetic glomeruli (Fig. 1f,
i). Since ICAM-1 expression was significantly upregulated
in diabetic rats compared to control animals (Fig. 2),
ICAM-1 may be involved in the infiltration of total and Sn-
positive macrophages in diabetic glomeruli. Sn-negative
activated macrophages are infiltrated in the glomeruli in the
early phase of diabetic nephropathy, but the proportion of
Sn-positive activated macrophages was increased during
the progression of diabetic nephropathy. These results
indicated that Sn-positive macrophages may contribute to
chronic inflammation in diabetic nephropathy.

We further investigated the correlation of phenotypic
change between macrophages and mesangial cells in the
glomeruli of STZ-induced diabetic rats. «-SMA is consid-
ered as a marker for the phenotypic change of mesangial
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receptor on mouse macrophages [5, 6]. In both mice and
humans, the cDNA for Sn encodes a 185-kDa type 1
transmembrane glycoprotein, made up of 17 immuno-
globulin-like domains and a short cytoplasmic tail [24, 25].
Sn is a prototypic member of the Siglec family of sialic
acid-binding immunoglobulin-like lectins and is also
referred to as Siglec-1 [26]. Sn was designated CD169 at
the seventh Human Leukocyte Differentiation Antigen
workshop. The large extracellular region of Sn contains a
sialic acid-binding site within the membrane-distal V-set
domain and is assumed to extend away from the glycocalyx
on the cell surface to mediate cell to cell interactions [27].
To investigate the mechanism of the induction of Sn in
macrophages, gene expression of Sn was induced by sev-
eral conditions in the THP-1 human monocytic cell line. Sn
mRNA expression was significantly increased by stimula-
tion of IL-1f and TNF-o dose dependently (Fig. 6).
However, Sn expression was not induced by hyperglyce-
mic conditions or stimulation with IL-4, and TGF-f1
(Fig. 6). Furthermore, we confirmed that mRNA expres-
sion of IL-18 and TNF-z is upregulated in diabetic
glomeruli (Fig. 7). These data indicate that inflammatory
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cytokines, i.e., IL-1/ and TNF-o, but not hyperglycemia,
stimulate the expression of Sn in macrophages.

Hyperglycemia causes glomerular hyperfiltration and
glomerular hypertrophy [28, 29]. Increased intraglomeru-
lar pressure caused by hyperfiltration may activate the
mesangial cells because phenotypic change of mesangial
cells is brought about by mechanical stress in vitro [30].
Growth factors including insulin-like growth factor-1
(IGF-1) and platelet-derived growth factor (PDGF) are
known to be involved in glomerular hypertrophy [31-33]
and may play an important role in the phenotypic change
of mesangial cells. Growth factors such as IGF-1 and
PDGF are synthesized by macrophages, mesangial cells
and others [34, 35]. From these findings, phenotypic
change of mesangial cells might be caused by macro-
phages derived growth factors. Although our current study
showed that the phenotypic change of mesangial cells was
in parallel with increase of Sn-positive macrophages, the
mechanism of interaction between macrophages and
mesangial cells remains unclear and further studies are
needed.

In conclusion, the current results suggest that macro-
phages are activated in diabetic glomeruli and Sn-positive
activated macrophages may contribute to the progression
of diabetic nephropathy through activation of mesangial
cells.
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