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Table 4. Hazard ratios for the cardiovascular composite endpoint.

Univariate model

Age (year) 1.08 (1.05-1.11)

Hypertension (yes) 4.08 (2.07-8.05)

baPWV (m/sec) 1.00 (1.00-1.01)

UAER (p=10.30, P<0.001), and inversely correlated with HDL-
cholesterol (p=—0.21, P<0.001) and eGFR (p=-0.39, P<
0.001), although it was not correlated with HbAlc level (p=0.08,
P=0.12). Furthermore, the CVD-AI values in patients with
antihypertensive agents were higher than those without
(—1.54%+0.88 vs. —1.97+0.63, P<0.001), whereas the CVD-AI
values were not different among the three patient subgroups
stratified by antidiabetic medication (diet only, oral agents and
insulin therapy).

Compared with the AUC for ROC curve analysis, the CVD-AI
showed better discriminatory ability (0.72 [95% CI: 0.64-0.79])
than did the level of each ammo acid (Table 3). Even when
validated by LOOCYV analysis, the AUC of the CVD-AI ROC
was 0.68. ROC curve analysis showed that the CVD-AI cut-off
level for this outcome was —1.662. In Cox proportional hazards
regression analysis, patients with the CVD-AI above the cut-off
level showed a significantly higher unadjusted HR of 4.62 (95%
CI: 2.65-8.04) for the cardiovascular composite endpoint, as did
age, systolic BP, hypertension, HDL, UAER, ¢GFR, and baPWV
(Table 4). Even when adjusted for these variables shown to be
statistically significant in the univariate model, the CVD-AL as
well as age and UAER, was identified as an independent risk for
this outcome (adjusted HR: 2.86, [95% CI: 1.57-5.19], Table 4).

according to urinary albumin excretion rate and the CVD-AlL

< 0.001

<0.001

Multivariate model ®

1.07 (1.04-1.11)

1.56 (1.04-2.35) 0.03

0.008 1.00 (0.99-1.00) 0.42

The variables listed in Table 1 and CVD-Al were firstly assessed in the univariate analysis of the Cox proportional hazards regression model. Only variables shown to be
statistically significant in the univariate model are shown in this table.
®Each estimate was adjusted for all variables shown in this table.
Abbreviations: BP, blood pressure; Cl, confidence interval, CVD-A|, cardiovascular disease-amino acid based index; HDL, high density lipoprotein; UAER, urinary albumin
excretion rate; eGFR, estimated glomerular filtration rate; baPWV, brachial-ankle puise wave velocity.

doi:10.1371/journal.pone.0101219.t004

Next, we separately estimated the risk of the CVD-AI for two
conditions: coronary vascular events (myocardial infarction and
angina pectoris, n=40) and cerebrovascular events (stroke,
n=18). Unadjusted HR for coronary vascular events was 5.51
(95% CI: 2.85-10.64). Adjusted for variables listed in Table 4, the
risk of the CVD-AI for coronary vascular events did not change
(adjusted HR: 3.35 [95% CI: 1.64-6.83]). In contrast, the
unadjusted and adjusted HR for stroke were 2.61 (95% CI:
0.99-6.85) and 1.51 (95% CI: 0.52—4.37), respectively.

Combination effect of UAER and CVD-AI

In this study, UAER has also been identified as an independent
risk for cardiovascular outcome, as in previous reports, and the
AUC for ROC curve analysis of UAER (0.69 [95% CI. 0.62—
0.77]) was almost equally to that of the CVD-AI (0.72 [95% CI:
0.64-0.79]). We thus finally analyzed the combination effect of
UAER and CVD-AI in predicting cardiovascular composite
endpoints. For this purpose, patients were divided into four
subgroups: those with normoalbuminuria and above or below the
cut-off level of CVD-AI and those with albuminuria and above or
below the cut-off level of CVD-AI (Table 5). In patients with a
CVD-AI above the cut-off level, both those with normoalbumi-
nuria (unadjusted HR: 3.24 [95% CI: 1.54-6.82]) and albumin-

Table 5. Crude and multivariate-adjusted hazard ratios for the cardiovascular composite endpoint in patient subgroups stratified

Total (n} Case (n) {95% CI)

Subgroup category

UAER =20 pg/min + High CVD-Al 63 29

Crude Hazard ratio

UAER <20 pg/min + High CVD-Al 72 15 3.24 (1.54-6.82)

8.25 (4.28-15.9)

Adjusted Hazard

P value ratio ? (95% CI) P value

0.002 2.61 (1.23-5.54) 0.012

<0.001 4.52 (2.09-9.80) <0.001

Subjects were categorized as being above or below a UAER of 20 ug/min and above or below the CVD-AI cut-off value of —1.662. Crude (unadjusted) and adjusted
hazard ratios were calculated using Cox proportional hazards regression models.

®Estimates were adjusted for the conventional risk factors of cardiovascular disease, including age, sex, HbA1c, total cholesterol, triglyceride, high density lipoprotein
cholesterol, estimated glomerular filtration rate, body mass index and hypertension.

Abbreviations: CVD-Al, cardiovascular disease-amino acid based index; UAER, urinary albumin excretion rate.

doi:10.1371/journal.pone.0101219.t005
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Figure 1. Results of area under the curve of receiver-operator characteristics curve analysis for both CVD-Al and urinary album
excretion rate to distinguish cases from controls in all subjects and those with/without albuminuria.

doi:10.1371/journal.pone.0101219.g001

uria (unadjusted HR: 8.25 [95% CIL: 4.28-15.9]) were at
significantly higher risk for the onset of cardiovascular composite
endpoints. Even after adjustment for the conventional risk factors
of cardiovascular discase, both groups remained at risk (Table 5).
In contrast, patients with a CVD-AI below the cut-off level, even
those with albuminuria (HR: 1.48 [95% CI: 0.55-3.99]), were not
at significant risk for this outcome.

We found that the GVD-AI could distinguish cases from
controls even when patients with normoalbuminuria (AUC: 0.66,
95% CI: 0.54-0.77, P=0.007) and those with albuminuria (AUC:
0.72, 95% CI. 0.62-0.83, P<0.001) were separately analyzed
(Figure 1). In contrast, UAER was unable to distinguish cases from
controls, both in patients with normoalbuminuria (AUC: 0.61,
95% CI: 0.48-0.73, P=0.07) and those with albuminuria (AUC:
0.59, 95% CI: 0.46-0.69, P=0.21).

Discussion

Identification of a reliable surrogate marker or index for
predicting the onset of CVD is essential in the care of patients with
diabetes. Using high-throughput PFAA profiling and the data of
our ongoing prospective observational follow-up study we
constructed the diagnostic index, the CVD-AI, to predict the
onset of GVD in patients with type 2 diabetes. Interestingly, this
predictive effect was independent of the levels of albuminuria and
the conventional risk factors of CVD, indicating that altered PFAA
profiles were able to effectively identify high risk patients, even
those without albuminuria. These findings suggest that the PFAA
profile is a clinically useful index for improving the discriminative
capability for coronary artery disease in diabetic patients in
addition to conventional risk factors and better risk stratification
even among those with normoalbuminuria, who are at relatively
low risk for CVD.

Alterations in the composition of PFAAs have been reported to
reflect the pathological status or preconditions in numerous
diseases including CVD, suggesting that these alterations may be
involved in disease development processes [18-21]. Several
clinical studies using this new technology have reported on the
association between the altered composition of PPFAs and the
predictive effect for CVD. Shah ¢t al. demonstrated that plasma
metabolomic profiles, including several amino acids, have been
found to predict cardiovascular events and improve risk discrim-
ination beyond the degree possible using readily available clinical
characteristics [20,21]. Magnusson ¢ al. also reported that an
amino acid index consisting of branched-chain and aromatic
amino acids was found to strongly predict the development of
CVD during 12 years of follow-up [19]. As with these previous
reports, branched-chain amino acids and aromatic amino acids in
the current study were found to correlate with obesity- and
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dyslipidemia-related risks for GVD. However, the predictive
power of each amino acid for CVD was relatively weak, although
some amino acids showed significanty different plasma levels
between cases and controls. The CVD-AI based on the PFAA
profiles, called “Aminolndex™™ technology” [11-13], improved
the predictive effect for CVD in comparison to individual PFAAs.
These results suggest that the CVD-AI is a more sensitive and
effective predictive index than the conventional risk factors to
identify patients at risk for CVD, although we need to validate the
predictive effect of this CVD-AL

The ability to identify patients at high risk of CVD before its
onset is particularly important in diabetes care, because CVD can
greatly affect mortality and quality of life in patients with diabetes.
Albuminuria is a strong predictor for CVD, making the prevention
of increased albuminuria and the reduction of albuminuria a
therapeutic target for the prevention of CVD [2-7]. Although
albuminuria was one of the risk factors for CVD in our population,
as well as in previous reports, the CVD-AI showed almost equal or
slightly better discriminatory capability than UAER in ROC curve
analysis. In addition, the CVD-AI was identified as an indepen-
dent risk factor for the onset of CVD even after adjusting the
conventional risk factors including albuminuria in the Cox
proportional hazards regression model. Interestingly, this predic-
tive effect was observed even in patients with normoalbuminuria
as well as those with albuminuria. Thus, PFAA profiles may be
clinically useful as a novel index for identifying diabetic patients at
high risk for CVD regardless of the degree of albuminuria or
improving the discriminative capability by combining it with
albuminuria.

It remains unclear whether the association between altered
PFAA profiles and CVD onset represents a cause-effect relation-
ship. Metabolic profiles have been reported to be highly heritable
in families with early-onset CVD [22]. Thus, the susceptibility of
diabetic patients to the onset of CVD may be due in part to
genetically determined metabolic components. In this study, the
CVD-AI significantly correlated with cardiovascular risk factors,
particularly dyslipidemia, renal function and hypertension,
whereas it did not correlate with HbAlc. This may mean that
the CVD-AI reflects the influence of atherosclerosis rather than
glycemic control. Also, amino acids are reported to directly
contribute to insulin resistance by disrupting insulin signaling [23].
Because insulin resistance promotes the development of athero-
sclerosis, the altered PFAA profiles associated with insulin
resistance may be indirectly associated with the onset of CVD.
Unfortunately, we could not investigate the association between
the CVD-AI and insulin resistance in this study. Further studies
are needed to clarify whether the CVD-AI is a specific index for
patients with diabetes mellitus.
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This study had several limitations. This study was designed as a
retrospective analysis of samples and data obtained during our
prospective observational follow-up study, not as an interventional
study. Thus, treatment protocols including dietary regimens were
not controlled, and the influence of cofounders during the
observational period was not analyzed. The time-dependent
changes in PFAAs during follow-up periods were also not assessed.
Therefore, it remains unclear as to whether the correction of these
altered PFAA profiles represents a new therapeutic target to
prevent CVD in patients with diabetes. Furthermore, we need to
validate the CVD-AI using the PFAA profiles identified in this
study, and further prospective studies are required to confirm
whether our CVD-AI is most suitable for predicting the onset of
CVD and to determine whether correcting the altered PFAA
profiles can improve prognosis in patients with diabetes mellitus.

Conclusions

This study has demonstrated that altered PFAA profiles can
predict the onset of GVD in patients with type 2 diabetes over a

10-year follow-up period. These alterations predicted the onset of

CVD regardless of the degree of albuminuria and other
conventional risk factors for CVD. Further prospective studies
are required to validate the clinical utility of these PFAA
measurements and to construct an optimal CVD-AI that can be
used to identify diabetic patients at high risk for CVD in clinical
practice.
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Aims: The association between a low ankle brachial index (ABI) and mortality and vascular morbid-
ity in Japanese individuals with diabetes and the independence of this asseciation from other risk fac-
tors have not yet been examined in the primary care setting among a large number of patients.
Methods: An observational prospective cohort study was performed among 3,004 Japanese individu-
als (2,598 patients with diabetes) to examine all-cause death and cardiovascular disease (CVD) in
relation to low ABI (<0.9) values and other risk factors.

Resuls: Low ABI values were found in 127 subjects (4.2%) and was associated with smoking, diabe-
tes, hypertension, pulse pressure, glycosylated hemoglobin Aic, lipid profiles, glomerular fileration
rate, uric acid and prevalent CVD at baseline. Over 13,242 person-years, 93 deaths and 117 cases of
CVD occurred. In a multivariate Cox reggression analysis, the hazard ratio for low-normal ABI values
was 3.97 (95% Cl, 2.29 to 6.88) for all-cause death and 2.86 (95% CI, 1.83-4.49) for fatal and non-
fatal CVD and all-cause death. Similar hazard ratios were found when the subjects wete confined to
those with diabetes. Al risk analyses indicated that age, a low ABI, diabetes, a history of CVD and
smoking remained significantly and independently predictive of CVD and all-cause death.
Conclusions: A low ABI exhibits significant cross-sectional associations with conventional risk factors
and fucther more with the glomerular filtration rate, uric acid level and presence of prevalent CVD at
baseline, and a low ABI independently predicts subsequent death and cardiovascular events. These
findings support the concept that a low ABI is an integrated marker of an excess risk of death and
cardiovascular events, independent of conventional risk factors.

J Atheroscler Thromb, 2014; 21:574-581.
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Introduction

The ankle brachial index (ABI) represents the
ratio of the ankle to brachial systolic pressure. In
patients with atherosclerotic stenosis in the lower
extremities, the decreased pressure in the ankle arteries
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results in a lower ABI. The detection of a low ABI is
useful for confirming the diagnosis and severity of
peripheral artery disease (PAD) in the legs and is
reportedly associated with an increased risk of all-
cause death and cardiovascular disease (CVD) in the
general population in Western countries'. The valid-
ity of a low ABI may be decreased in patients with
diabetes, as the ankle pressure may be elevated due to
medial arterial calcification and/or arterial stiffening,
which occur more frequently in diabetes®. However,
most prospective studies that have investigated the
predictive value of a low ABI in patients with CVD
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included less than 500 subjects with diabetes* 72, and
some studies have indicated that the association
between a low ABI and mortality in Caucasians is
weak among subjects with diabetes compared to that
observed in those without diabetes® * . While ethnic
differences profoundly affect the prevalence of PAD'?,
no such prospective studies have been performed in
Japanese subjects, who are characterized by a lower
prevalence of PAD than Caucasian individuals'*'9. A
large-scale study of Japanese individuals including
subjects with diabetes is needed to elucidate the asso-
ciation and predictive value of a low ABI with respect
to the incidence of CVD.

In the primary care setting, screening for low
ABI values is strongly recommended in subjects with
diabetes, as these patients are often asymptomatic due
to diabetic neuropathy, even when complicated with
PAD? ', However, this recommendation has not
been universally embraced, and measurement of the
ABI is rarely applied in routine clinical practice'®. We
have obrained measurements of the ABI ar the first
visit to the clinic in routine clinical pracrice for more
than 10 years. The present study investigated the cross-
sectional associations between low ABI values and
other cardiovascular risk factors at baseline and
assessed the prognostic value of a low ABI for predict-
ing death and cardiovascular events. This study
included a large number of Japanese subjects with and
without diabetes and explored whether the impact of
a low ABI on outcomes is independent of other car-
diovascular risk factors.

Subjects and Methods

Patient Recruitment

A prospective cohort study was performed to
investigate the associations between low ABI values
and cardiovascular risk factors at baseline and whether
a low ABI is predictive of all-cause death and cardio-
vascular events independent of other risk factors. The
health care system in Japan provides healtheare ser-
vices with the patient accepting responsibility for 30%
of the cost and the government paying the remaining
70%. Payment for personal medical services is offered
through a universal health care insurance system that
provides relative equality of access. Patients are free to
select physicians or facilities of their choice. All con-
secutive patients 20 years of age or older who visited
the outpatient clinic of Jiyugaoka Internal Medicine
between 2001 and 2011 were enrolled in this study.
The study was performed in a primary care setting, All
of the subjects, most of whom had type 2 diabetes,
hypertension or dyslipidemia, underwent ABI mea-

surement at their first visit as a baseline routine exami-
nation (/N=3501). Subjects who discontinued the vis-
its within three months, primarily due to visiting
other hospitals or moving to other cities, were excluded,
leaving 3,004 subjects (non-diabetes: 406, type 2 dia-
betes: 2,572, type 1 diabetes: 26) eligible for this
cohort. Those who discontinued visits were similar to
the remaining patients with respect to clinical features.
The study protocol was approved by the local ethics
committee and carried out in accordance with the

Helsinki Declaration II.

Baseline Examinations

A short physical examination and medical his-
tory assessment were performed at baseline in each
patient. The presence of prevalent CVD at baseline
included a history of coronary heart disease (CHD),
cerebrovascular disease and/or PAD. The definition of
CVD was the same as that described below. The
smoking status was defined as current or not. Type 2
and type 1 diabetes was defined according to the Japan
Diabetes Society criteria. Blood pressure (BP) was
measured in the sitting position after a rest of more
than five minutes. Hypertension was defined as a BP
of 2140/90 mmHg or the current use of antihyperten-
sive agents. Non-fasting blood samples were obtained
for measurements of the glycosylated hemoglobin Aic
level (HbA ¢, normal range: 4.6-6.2%) and serum cre-
atinine (Cr), uric acid and lipid concentrations. Dys-
lipidemia was defined as a serum concentration of
total cholesterol of 2 220 mg/dL, triglycerides of 2 150
mg/dL or high-density lipoprotein (HDL) cholesterol
of <40 mg/dL and/or the current use of lipid-lower-
ing agents. The non-HDL cholesterol level was calcu-
lated by subtracting the HDL cholesterol level from
the total cholesterol level. The serum concentration of
Cr was measured using an enzymatic method. The
estimated glomerular filtration rate (eGFR) was calcu-
lated using the following equation proposed by the
Japanese Society of Nephrology: eGFR (ml/min per
1.73 m?)=194x(age [years]) ™% x (serum Cr [mg/
dL]) "% 0,739 (if female).

The ABI was measured at baseline under stan-
dardized conditions. Doppler-assisted systolic blood
pressure measurements were obtained from the bra-
chial and posterior tibial arteries on both sides using
12-cm cuffs (Colin Co., Lid., Komaki, Japan). The
ABI was calculated for each leg using the highest ankie
pressure divided by the highest systolic brachial pres-
sure. An ABI of <0.9 in ecither leg was considered
abnormal. Although an ABI of >1.4 has been indi-
cated to be abnormally high as a result of poor arterial
compressibility due to arterial stiffening and calcifica-
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tion¥, there were only 16 subjects in this cohort;
therefore, this parameter was not defined separately.

Main Qutcomes

The subjects attended the clinic monthly and
were followed from the baseline visit until the end of
observation (August, 2012) or an event. Fatal and
non-fatal CVD events included onset of coronary
heart disease (CHD), ischemic cerebrovascular stroke
and PAD. Information regarding the onset of cardio-
vascular events and the cause of death was provided by
the medical doctors (e.g., cardiologists, neurologists
and vascular surgeons) who managed the event. Three
outcomes were assessed: 1) all-cause death, 2) the
occurrence of cardiovascular events and 3) composite
endpoints, including death and the occurrence of car-
diovascular events.

Diagnosis of CVD

Non-fatal CHD included acute myocardial
infarction with survival of more than 24 hours after
the onset of symptoms, percutaneous coronary inter-
vention, coronary artery bypass and new-onset unsta-
ble angina pectoris. A non-fatal ischemic stroke was
defined as an acute focal neurological deficit lasting
for longer than 24 hours. PAD was diagnosed in cases
involving intermittent claudication with confirmation
of an ABI of <0.9 or significant peripheral artery ste-
nosis on angiography and/or leg amputation above the
ankle due to diabetes. We classified sudden death as a
cardiovascular event, unless there was a clear non-vas-
cular cause. An independent panel, working with the
endpoint adjudication committee, assessed all poten-
tial endpoints and classified them in accordance with
the predefined criteria.

Statistical Analysis

The data are expressed as the meanSD, unless
otherwise stated. For comparisons between two
groups, unpaired Student’s s-test, the Mann-Whicney
U test for variables with a skewed distribucion and the
x? test for categorical variables were used. A logistic
regression analysis was used to assess the associations
between the baseline risk factors and the concomitant
presence of a low ABI following adjustment for the
traditional cardiovascular risk factors of age, sex, BMI
and smoking status. The follow-up time was calcu-
lated as the time between the baseline examination
and either the date of the main outcome or the end of
observation (December 31, 2011). For subjects who
discontinued clinic attendance, the date of the final
visic in cases in which no occurrence of events was
confirmed was employed. The time to event distribu-

tion according to the ABI group was summarized with
Kaplan-Meier curves. Cox regression models examin-
ing the effects of a low ABI on each event rate were
adjusted for potential confounders. As to potential
confounders, the conventional risk factors of age sex,
BMI and smoking status were entered in the model,
and diabetes, hypertension, dyslipidemia, eGFR and a
past history of CVD were additionally considered.
P-values under 5% (two-tailed) were considered to be
significant. All analyses were performed using the sta-
tistical software package SPSS (SPSS Japan Inc.,
Tokyo, Japan).

Resulls

Baseline Data '

Among the 3,004 subjects, 127 (4.2%) had low
ABI values, including four patients with symptoms of
PAD. Table 1 shows the baseline characteristics
according to the ABI group. The patients with a low
ABI were significantly older and had higher rates of
diabetes, hypertension and a history of CHD, stroke
and PAD, higher pulse pressure values and non-HDL
cholesterol, triglyceride and uric acid levels and lower
DBP, HDL and eGFR values. Data were available for
98.5% or more of the patients. The prevalence of a
low ABI among the subjects with diabetes was 4.6%
(120/2598), which was significantly higher than the
1.7% (7/406) observed in those withour diabetes
(p =0.01). Smoking was significantly associated with a
low ABI following adjustment for age, sex and body
mass index (BMI) (OR 1.87, 95%CI 1.27-2.77, p<
0.001). A logistic regression analysis performed fol-
lowing adjustment for age, sex, BMI and smoking
revealed that a low ABI was significantly associated
with diabetes, a history of CHD, stroke and PAD,
higher pulse pressure values and HbAic, non-HDL
cholesterol, triglyceride and uric acid levels and lower
diastolic pressure, HDL cholesterol and eGFR values.

Follow-Up

During a mean observation period of 4.4 years
(range, 0.3-11.7), 93 deaths and 117 cardiovascular
events (coronary heart disease: 39, stroke: 52, PAD: 5,
sudden death: 21) occurred. A total of 866 subjects
(28.8%) were lost to follow-up before reaching the
end of study period in whom being free from events
until the final visit was confirmed. The incidence of
each outcome according to the ABI group is shown in
Table 2. Compared with the subjects with an ABI of
2 0.9, those with an ABI of <0.9 had a significandy
increased risk of an outcome event. When the analysis
was confined to subjects with diabetes, a low ABI was
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Table 1. Clinical characreristics of the subjects according to the ABI group at baseline

ABI20.9 ABI<0.9 OR
N=2877 N=127 (adjusted, 95%CI)
Age, years 59+ 11 6415* -
Male, % 35 37 -
BMI, kg/m? 25.6x4.1 26.1%54 -
Smoking 33.5 38.6 -
Diabetes, % 86 94* 2.67 (1.23-5.86)"
Hypertension, % 55.6 69.3' 1.36 (0.91-2.03)
Andihypertensive agents, % 449 63.8* 1.66 (1.12-2.45)*
Dyslipidemia, % 64.2 70.9 1.34 (0.90-1.99)
Lipid lowering agents, % 26.7 322 1.30 (0.88-1.91)
Systolic BB, mmHg 13421 136220 1.00 (0.99-1.01)
Diastolic BR, mmHg 76213 70%13* 0.97 (0.95-0.98)*
Pulsc pressure, mmHg 5915 66%=21% 1.02 (1.01-1.03)!
HbAi, % 8.36%2.09 8.44%:2.07 1.09 (1.01-1.19)*
Total cholesterol, mg/dL 20541 20739 1.00 (1.00-1.01)
HDL cholesterol, mg/dL 5514 50%15' 0.97 (0.95-0.99)*
Non-HDL cholesterol, mg/dL 15040 157£37* 1.01 (1.00-1.01)"
Triglycerides, mg/dL® 134 (91-204) 156 (103-237)" 3.26 (1.57-6.76)’
¢GFR, ml/min/1.73 m? 8212224 71.6%29.4 0.98 (0.97-0.99)"
Uric acid, pmol/L 30087 31687 1.20 (1.05-1.37)
History of CHD, % 2 7! 2.65 (1.26-5.57)*
History of stroke, % 4 19* 4.03 (2.45-6.63)*
History of PAD, % 0.1 nt 142.6 (30.5-666.4)*

The odds ratios (ORs) indicate the effects of the risk factors on the presence of al low ABI at baseline, 3 identified bg 2 multiple

logistic regression analysis following adjustment for age, sex, BMI and smoking, *»<0.05, 'p<0.001, *$<0.0001.

Due to the

skewed distribution, the median (interquartile range) is shown, and the OR indicates per log10 (triglycerides).

Table 2. Person-years (PY) at risk, number of cases and incidence (/1,000 person-years) of all-cause death, fatal and non-fatal car-
diovascular events and the composite endpoint of death and cardiovascular events, according to the ABI group

Endpoint N PY No. of Incidence Adjusted HR
ac risk cases (95% CI) (95% CI)

All-cause death ABI20.9 2877 12814 74 5.8 (4.5-7.2) 3.97 (2.29-6.88)
ABI <0.9 127 427 19 44.5 (27.0-68.6)

Fatal and non-fatal cardiovascular event ABI 209 2877 12859 101 7.9 (6.4-9.5) 2.79 (1.60-4.87)
ABI <0.9 127 396 16 40.4 (23.3-64.8)

Cardiovascular event and all-cause death ABI20.9 2877 12859 156 12.1 (10.3-14.2)  2.86 (1.83-4.49)
ABI <0.9 127 396 25 63.1 (41.3-91.8)

The HR was computed using a multivariate Cox regression analysis adjusted for age, sex, BMI and smoking.

found to exhibit independent associations with all
three outcomes (adjusted HR [95% CI]; 4.15 (2.34-
7.34); 2.50 (1.41-4.42); 2.85 (1.80-4.51), respectively
for each outcome), which remained significant, even
after adjustment for diabetes, hypertension, dyslipid-
emia, eGFR and a past history of CVD, in addition to
age, sex, BMI and smoking. The times to event for all-
cause death and the composite endpoint of cardiovas-

cular events and all-cause death according to the ABI
group are illustrated wich Kaplan-Meier curves (Fig. 1).

The hazard ratios for the composite endpoint are
shown in Table 3. The multivariate Cox regression
analysis including all variables in Table 3 revealed age,
a low ABI, diabetes, a history of CVD and smoking to
be independently and significantly predictive of the
outcome. In order to explore the effects of a low ABI
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Fig. 1. Bvent-free survival according to the ABI group for all-cause death (A) and the composite endpoint of car-
diovascular events and all-cause death (B). The Kaplan-Meier analysis shows significant differences
between the two curves for the two outcomes (p<0.0001 according to the log-rank test, respectively).

on the presence or absence of each risk factor, the
adjusted hazard ratios of a low ABI according to each
risk group are shown in Table 3. The effects of a low
ABI on the outcome were significant with respect to
an age 2 70 years, diabetes, hypertension and no his-
tory of CVD or obesity. The effects of a low ABI
remained significant irrespective of risk factors such as
smoking, ¢GFR, gender and dyslipidemia.

Discussion

We found that the detection of a low ABI in rou-
tine clinical practice is highly predictive of all-cause
death and cardiovascular events based on the results of
our large-scale study of Japanese individuals, including
subjects with and without diabetes. The predictive
effect was significant and independent not only of
conventional risk factors, but also a low ¢GFR and
prevalent CVD, and remained significant in the sub-
jects without a history of CVD. This study suggests
that, even in a population characterized by a lower
prevalence of obesity and PAD'*'? and a lower inci-
dence of CHD and PAD', the detection of a low
ABI is useful for identifying diabetic subjects that
should be targeted for multifactorial intensive treat-
ment in the primary care setting in terms of improv-
ing all-cause mortality and cardiovascular morbidity.

The prevalence of PAD is higher in individuals
with diabetes than in those without, as observed in
this and other studies> 7 ' ', and is reportedly

increasing'". The prevalence of diabetes and the num-

ber of elderly subjects with diabetes are also increasing
in Japanm, and 30-40% of people with diabetes
smoke'. Only 3.1% (4/127) of such patients had
symptoms of PAD among the subjects with a low ABI
in this study, and underdiagnosis of PAD in primary
care practice can be a bartier to effective secondary
prevention of the high ischemic cardiovascular risks
associated with PAD* '), Therefore, screening for low
ABI values in routine clinical practice will become
more important and possibly essential, particularly in
individuals with diabetes and those receiving care for
primary prevention of CVD.

The present study only incorporated the baseline
measuremnents of ABI and other cardiovascular risk
factors. Approximately 30-50% of the subjects had
already received blood pressure- and/or lipid-lowering
agents at baseline. This study did not investigate the
effects of trearment, and further treatment was admin-
istered during the follow-up period (data not shown).
It is presumed that a low ABI at. baseline remains a
risk factor for a poor outcome, even after the adminis-
tration of aggressive treatment, which further rein-
forces the importance of routinely measuring the ABL

We found a low ABI to be a risk factor, indepen-
dent of other cardiovascular risk factors. Only a few
studies have investigated the predictive value of a low
ABI according to the presence or absence of CVD risk
factors® 12, In the present study, a low ABI was found
to be an independent significant risk factor among
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Table 3. Association of a low ABI and cardiovascular risk factors with subsequent development of the composite endpoint (all-cause

death and cardiovascular events)

Risk factor No. PY* atrisk  No. of cases Incidence HR of risk factor HR of low ABI
(95%CI) (adjusted, 95%CI) (adjusted, 95%CI)
Age (270 yr) No 2473 10971 108 9.8 (8.1-11.9) 3.11 (2.20-4.41) 1.14 (0.45-2.88)
Yes 531 2013 73 36.3 (28.5-45.4) 3.75 (2.04-6.90)
ABI<0.9 No 2877 12589 156 12.1 (10.3-14.2) 2.52(1.54-4.12) -
Yes 127 396 25 63.1 (41.3-91.8) -
Diabetes No 406 1483 8 5.4 (2.3-10.6) 2.41 (1.18-4.94) 2.29 (0.10-50.68)
Yes 2598 11501 173 15.0 (12.9-17.4) 2.22 (1.32-3.73)
History of CVD No 2822 12262 193 15.7 (13.6-18.1) 1.87 (1.24-2.82) 2.99 (1.55-5.79)
Yes 181 723 39 53.9 (38.6-73.0) 1.77 (0.83-3.77)
Smoking (current) No 1961 8448 116 13.7 (11.4-16.4) 1.42 (1.02-1.97) 2,16 (1.16-4.01)
Yes 998 4506 65 144 (11.1-18.3) 2.40 (1.03-5.59)
eGFR No 2555 11145 128 11.5 (9.6-13.6) 1.43 (0.99-2.07) 2.51 (1.21-5.19)
(<60 ml/min/1.73 m? Yes 425 1799 53 29.5 (22.1-38.4) 2.53 (1.30-4.93)
Hypertension No 1314 5074 60 11.8 (9.0-15.2) 1.35 (0.97-1.88) 3.06 (0.99-9.51)
Yes 1687 7203 121 16.8 (14.0-20.0) 2.49 (1.44-4.32)
BMI (2 30 kg/m?) No 2596 11299 158 14.0 (11.9-16.3) 1.06 (0.67-1.67) 3.21 (1.90-5.42)
Yes 408 1685 23 13.6 (8.7-20.4) 0.94 (0.20-4.36)
Male sex No 1957 8771 132 15.1(12.6-17.8) 0.83 (0.59-1.18) 2.53 (1.44-4.45)
Yes 1047 4214 49 11.6 (8.6-15.4) 2.92 (1.04-8.23)
Dyslipidemia No 1068 4726 80 16.9 (13.4-21.0) 0.72 (0.53-1.01) 4.14 (1.89-9.10)
Yes 1936 8258 101 12.2 (10.0-14.8) 1.98 (1.05-3.72)

The hazard ratio of each risk factor is indicated as the result of a Cox regression analysis adjusted for all variables in the Table. The hazard ratio of 2
low ABI according to the presence or absence of each risk factor is simulrancously indicated as the result of a Cox regression analysis adjusted for all

variables in the Table.
*
PY: person-years

subjects with an age of 2 70, hypertension, a BMI of
<25 and no history of CVD, which is in agreement
with the findings of some, but not all previous stud-
ies> 1, whereas most other studies did not specifically
examine this issue. While the present subjects with a
low ABI more often exhibited a history of CVD, we
found that a low ABI was predictive of CVD among
the subjects without prevalent CVD.

It was interesting to find an association between
hyperuricemia and a low ABI in the baseline analysis.
This is the first report of such an association to our
knowledge, and the results are in line with the find-
ings of several studies showing a relationship between
the serum uric acid level and the development of ath-
erosclerotic disease?® 2V, A significant association
between a reduced eGFR and a low ABI has previ-
ously been reported?, and this finding was confirmed
in our study at baseline.

Several limitations of the present study should be
mentioned. First, we should acknowledge the small
number of events in the non-diabetic subjects, who
demonstrated a lower prevalence of a low ABI. Sec-
ond, the generalizability of the subjects should be dis-
cussed. The incidence of all-cause death and cardio-
vascular events observed in the subjects with and with-
out diabetes in this cohort was slightly lower and/or
almost the same as that observed in Japanese popula-
tions reported in other studies®?9. These facts sup-
port the generalizability of the cohort. Third, approxi-
mately 29% of the participants were lost to follow-up
because they moved to other cities/clinics or discon-
tinued clinic attendance. We were unable to evaluate
their further outcomes because no regional or national
registries for death and disease identification systems
are available in Japan. In order to minimize this inher-
ent problem, a life-table analysis was used to cover the
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censored cases. Finally, whether an ABI of >1.4 occurs
more commonly in subjects with diabetes and is asso-
ciated with mortality requires further investigation.

In conclusion, the present study suggests that a
low ABI is an integrated marker of tssue/vascular dam-
age affected by age, smoking, blood pressure, blood
glucose, lipids, uric acid, the renal function and preva-
lent CVD, indicating its role as an excess and inde-
pendent risk factor for all-cause death and cardiovas-
cular events.

Disclosures

None.
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Abstract Dyslipidemia is an independent risk factor for
the development and progression of diabetic nephropathy
(DN). In this review, we summarize mouse models with
both diabetes and dyslipidemia, and their associated com-
plications. We then discuss molecules potentially involved
in deterioration of DN by dyslipidemia. We focus espe-
cially upon toll-like receptor 4 (TLR4) and one of its
endogenous ligands, myeloid-related protein 8 (MRPS8 or
S100AB), since we have found that their mRNA levels are
commonly increased in glomeruli of type 1 (streptozotocin
[STZ]-induced) and type 2 (A-ZIP/F-1 lipoatrophic) dia-
betic mice. Gene expression of MRPS8 and 7Tlr4 is further
upregulated during worsening of STZ-induced DN by a
high fat diet (HFD). Moreover, these HFD-induced chan-
ges are accompanied by enhanced gene expression of
CCAAT element binding protein  and phosphorylation of
c-Jun N-terminal kinase in the kidney, which have also
been reported in pancreatic B cells under diabetic-
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hyperlipidemic conditions. Effects of a HFD upon DN are
cancelled in TIr4 knockout mice. Macrophages are the
predominant source of MRP8 in glomeruli. In cultured
macrophages, combinatorial treatment with high glucose
and palmitate amplifies MRP8 expression in a Tlr4-
dependent manner, and recombinant MRP8 protein mark-
edly increases gene expression of the inflammatory cyto-
kines interleukin-1f and tumor necrosis factor «. Here, we
propose ‘macrophage-mediated glucolipotoxicity’ via
activation of MRPS8/TLR4 signaling as a novel mechanism
of pathophysiology for DN.

Keywords Diabetic nephropathy - Glucolipotoxicity -
Macrophage - Toll-like receptor

Introduction

Since only one-third of patients with type 1 diabetes
develop diabetic nephropathy (DN), we should consider the
role of factors other than hyperglycemia in the patho-
physiology of DN, including genetic, epigenetic, environ-
mental and metabolic aspects. Several reports describe
hyperlipidemia or dyslipidemia as an independent risk
factor for the progression of DN in type 1 and type 2
diabetes, as well as for atherosclerotic complications [1—4].
Using type 1 (streptozotocin [STZ]-induced) and type 2
(db/db) diabetic mouse models, we have confirmed that
treatment of diabetic mice with a high fat diet (HFD)
exacerbates albuminuria and glomerular lesions [5]. Of
note, single nucleotide polymorphisms in acetyl-CoA car-
boxylase [ gene, which plays an important role in the
regulation of fatty acid metabolism, exhibit a potent asso-
ciation with proteinuria in patients with type 2 diabetes
[6, 7]. Accordingly, a concept of synergistic toxicity caused
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by glucose and lipid, described as ‘glucolipotoxicity’, has
emerged in recent years. However, the underlying molec-
ular mechanism is still obscure, especially in renal com-
plication [8]. Here we will discuss diabetic-hyperlipidemic
mouse models and glucolipotoxicity in the kidney.

Diabetic-hyperlipidemic mouse models

As described above, several clinical and experimental
phenomena have highlighted the synergistic effects of
hyperglycemia and hyperlipidemia upon the development
and progression of diabetic complications including
nephropathy. Despite the fact that there are several limi-
tations associated with the difference in hyperlipidemia
between rodents and humans, mouse models are still most
widely used to study complications caused by diabetes and
hyperlipidemia. The reasons include small animal size,
short generation time, the ease of induction of diabetes,
hyperlipidemia or gene manipulation, and cost effective-
ness [9]. Hence, in the last decade diabetic-hyperlipidemic
mouse models have been used for genetic modification,
pharmacological treatment and/or some particular chow
diets that abundantly contain fat and/or cholesterol. In this
section, representative mouse models are summarized.

Apolipoprotein E-deficient mice treated
with streptozotocin (ApoE KO + STZ)

ApoE KO -+ STZ mice are one of the most popular dia-
betic-hyperlipidemic mouse models. This model shows not
only hypercholesterolemia and hypertriglyceridemia, but
also accelerated aortic atherosclerotic lesions [10-12] and
nephropathy [13-15] associated with diabetes. These
reports revealed that advanced glycation end-products [13,
14] and endoplasmic reticulum (ER) stress [16, 17] are
candidate mediators of glucolipotoxicity in ApoE KO +
STZ mice.

Fig. 1 Effects of STZ and/or

HFD upon mesangial expansion A
(a), urine volume (b) and 2000 -
creatinine clearance (c) in wild- &
type mice. nSTZ-ND non STZ- _§,_ 1500 |
normal diet, nSTZ-HFD non et
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STZ-normal diet, STZ-HFD < 1000+
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*p < 0.01, **p < 0.001. 3
Modified from Kuwabara and = 0

others [5]
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Low-density lipoprotein (LDL) receptor-deficient mice
treated with STZ (LDLR KO + STZ)

LDLR KO + STZ mice show dyslipidemia including high
LDL cholesterol, low high-density lipoprotein (HDL)
cholesterol levels and hypertriglyceridemia, mimicking
human metabolic syndrome [18]. Moreover, addition of a
HFD exacerbates hypertriglyceridemia, hypercholesterol-
emia, and diabetic renal lesions (including glomerular and
tubulointerstitial macrophage infiltration) in this model
[19]. The authors [19] referred to an earlier work indicating
that irradiation-induced depletion of bone marrow cells
(including monocytes) reduces renal injury in STZ-diabetic
rats [20].

STZ-induced diabetic mice with HFD feeding
(STZ + HFD)

A supplemental HFD on STZ-treated diabetic mice
increases blood triglyceride and free fatty acid concentra-
tions, at least in part, because of insulin deficiency, sug-
gesting that this model might be useful especially for
analyzing pathophysiology by high triglyceride-rich lipo-
protein and/or high free fatty acids coexisting with high
glucose conditions. In STZ + HFD mice, there are several
reports describing vascular complications such as cardio-
vascular dysfunction [21], retinopathy [22], neuropathy
[23] and nephropathy [5, 24].

Treatment of wild-type mice with STZ and HFD syn-
ergistically increases albuminuria [5] and expands mesan-
gial area (Fig. 1). Induction of diabetes by STZ causes a
marked increase in urine volume and creatinine clearance
of normal diet-fed and HFD-fed animals, respectively,
suggesting that glomerular hyperfiltration has occurred. On
the other hand, HFD treatment reduces urine volume and
creatinine clearance in STZ mice (Fig. 1), suggesting that
HFD is not causing more hyperfiltration but is causing non-
hemodynamic actions which will be discussed below.
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A-ZIP/F-1 lipoatrophic diabetic mice

A-ZIP/F-1 mice are a genetic mouse model of lipoatrophic
diabetes, characterized by severe insulin resistance, dysli-
pidemia including hypertriglyceridemia and high free fatty
acids, and fatty liver [25, 26]. This model is based upon
dominant-negative expression of B-ZIP transcription fac-
tors of both C/EBP and Jun families under the control of
aP2 enhancer/promoter, causing paucity of adipose tissue.
A-ZIP/F-1 mice may serve as a useful tool for studying
DN, because they manifest severe nephrotic syndrome and
typical histopathological renal lesions which are glomeru-
lar hypertrophy, diffuse and pronounced mesangial
expansion and accumulation of extracellular matrix [27].
Notably, these renal changes are reversible to some extent
by replacement therapy with a fat-derived hormone leptin
[27].

Other mouse models

There are a few other diabetic-hyperlipidemic mouse
models such as non-obese diabetic mice or Ins2*"* dia-
betic mice combined with HFD feeding [28, 29], but their
renal involvement has not been characterized well.
Regardless of the models described above, differences in
genetic backgrounds critically affect glucose and lipid
metabolism among mouse strains [30]. Furthermore, even
similar levels of hyperglycemia cause distinct renal chan-
ges among different strains and species. For instance, the
DBA/2 strain is highly susceptible to DN, whereas the
C57BL/6 strain is relatively resistant [31-33]. In addition,
since cholesteryl ester transfer protein is inactive in
rodents, HDL is the dominant lipoprotein in mice [34].
Apolipoprotein B in rodents also differs from that in
humans [35].

Molecules involved in glucolipotoxicity in the kidney
and pancreatic f cells

Although glucotoxicity and lipotoxicity were originally
proposed as independent concepts, Prentki et al. reported a
novel concept of glucolipotoxicity in pancreatic B cells in
1996. They reported that elevated ambient levels of glu-
cose and free fatty acid cause synergistic inhibition of
insulin secretion [36]. On the other hand, they reported that
increased intracellular glucose-derived metabolites inhibit
enzymes for B-oxidation, leading to cytosolic accumulation
of lipids [37]. Subsequently, there have been several
reports about the molecular mechanism underlying gluco-
lipotoxicity involved in pancreatic B cell dysfunction and
insulin resistance [38-40]. Furthermore, phenomena of
glucolipotoxicity are also observed in DN of humans [1-4]

@ Springer

and rodents [41, 42], but their pathophysiology remains
largely unknown [8]. Here, we will compare glucolipo-
toxicity upon pancreatic B cell dysfunction and DN.

c-Jun N-terminal kinase (JNK)

JNK plays a pivotal role in ER stress-induced ‘unfolded
protein response’ in innate immune system [43]. It was later
revealed that ER stress-induced JNK activation is associated
with chronic inflammation or high ambient fatty acid levels
in obesity or type 2 diabetes [44, 45]. In pancreatic B-cells,
high glucose concentrations augment lipotoxicity through
JNK activation, at least partly, in an ER stress-dependent
manner [46, 47]. In our diabetic-hyperlipidemic model [5],
treatment with STZ and HFD synergistically increases
phosphorylation of IxkB and mRNA expression of pro-
inflammatory genes in the kidney, in parallel with phos-
phorylation of JNK, but not with phosphorylation of other
mitogen-activated protein (MAP) kinases such as p38 or
extracellular signal-regulated kinase (ERK) (Fig. 2).

CCAAT element binding protein beta (C/EBPB)

CCAAT element binding protein beta (C/EBPp) is one of
the transcriptional repressors of insulin gene and induced

nSTZ-ND
nSTZ-HFD
STZ-ND
STZ-HFD

p-p38

-p38

PERK

tERK

pJNK
1JNK

plxB

GAPDH

Fig. 2 Western blot analysis for phosphorylation of MAP kinases
and IxB in kidney of STZ + HFD mice. p-/t-p38 phosphorylated/total
p38 MAP kinase, p/tERK phosphorylated/total extracellular signal-
regulated kinase, p/tJNK phosphorylated/total c-Jun N-terminal
kinase, plkB phosphorylated inhibitor of kB. Modified from Kuwa-
bara and others [5]
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by chronic hyperglycemia [48]. C/EBPJ is increased by
fatty acids through the Per-Arnt-Sim kinase (PASK)
pathway [49] in pancreatic B cells. Since PASK is also
induced by high glucose conditions, these mechanisms may
possibly exert glucolipotoxic effects. In the kidney,
C/EBP is increased in diabetic rats, but not other C/EBP
isoforms [50]. Furthermore, renal upregulation of C/EBPf
mRNA in STZ-induced diabetic mice is further enhanced
by additional HFD feeding in our experiments [5].

Of note, JNK/AP-1 and C/EBPJ pathways may also
contribute to glucolipotoxicity-induced renal damage
through upregulation of myeloid-related protein 8 (MRPS,
also known as S100AS8 or calgranulin A), whose gene
promoter region contains AP-1 binding site [51, 52] and
C/EBP motif [53, 54], as discussed in the next section.

Fetuin A

Over the last few years, there has been growing evidence
for fatty acid-induced lipotoxicity, such as insulin resis-
tance, through toll-like receptor 4 (TLR4) [55-57]. How-
ever, it is still controversial whether fatty acid stimulates
TLR4 directly or indirectly. Recently, fetuin A has been
identified as an adopter protein combining fatty acids and
TLR4 [58], and its plasma levels are elevated in diabetic
humans and mice [59, 60]. ER stress induced by high
glucose and palmitate increases the expression of fetuin A
[60], suggesting that fetuin A could hypothetically partic-
ipate in glucolipotoxicity upon macrophages.

MRPS8/TLR4

MRP8 was originally identified as a cytoplasmic calcium-
binding protein in neutrophils and monocytes [61]. MRPS,
by making a heterodimer with MRP14 (or S100A9), has
become widely recognized as a potent endogenous ligand
for TLR4 in various diseases including septic shock and
vascular and autoimmune disorders [62-64]. To identify
candidate disease-modifying molecules in DN, we have
performed microarray analysis using isolated glomeruli
from two different diabetic models of mice—STZ-induced
insulin-dependent diabetic mice and lipoatrophic insulin-
resistant A-ZIP/F-1 mice. We then focused upon MRPS
and Tlr4, because expression of both genes is commonly
increased in these two models [5]. It is noteworthy that
diabetic-hyperlipidemic mice such as STZ-HFD mice or A-
ZIP/F-1 mice show remarkable upregulation of MRP8 and
T1r4 compared to control non-diabetic mice (Fig. 3). Since
macrophages are identified as the major source of MRP8 in
the glomeruli of STZ-HFD mice [5], we examined the
effects of high glucose and fatty acid on the expression of
MRPS8 (Fig. 4) and Tlr4 in cultured macrophages. This
in vitro study showed that treatment with fatty acid
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Fig. 3 Glomerular gene expression of MRP8 (a) and TIr4 (b) in
STZ + HFD and lipoatrophic A-ZIP/F-1 mice determined by Tag-
Man real-time PCR. White bars non-diabetic control group, striped
bars diabetic group, black bars diabetic-hyperlipidemic group. Data
are mean + SEM. n = 4-7. *p < 0.01, **p < 0.001. Modified from
Kuwabara and others [5]

amplifies MRPS8 expression only under high ambient glu-
cose conditions. Although 71r4 is expressed slightly more
in high glucose conditions than in low glucose conditions,
fatty acid does not alter TIr4 expression [5]. In addition,
synergistic effects with high glucose and fatty acid on
macrophages and diabetic kidneys are abrogated by Tir4
deletion [5] (Fig. 4). Moreover, we have observed that
recombinant MRPS protein markedly increases gene
expression of the inflammatory cytokines interleukin-1f
and fumor necrosis factor o (TNF-¢) in cultured macro-
phages (submitted) [62]. Similarly, macrophages also play
an important role in insulin resistance and B-cell dysfunc-
tion through fatty acid-induced TLR4 activation [65, 66].
Particularly in the kidney, MRPS8 produced by infiltrated
macrophages might exert glucolipotoxic effects upon dia-
betic glomeruli in a paracrine manner, potentially leading
to mesangial expansion, podocyte injury, glomerular scle-
rosis and albuminuria (Fig. 5), because TLR4 is reportedly
expressed in healthy or injured glomerular intrinsic cells
including mesangial cells [67, 68], endothelial cells [67,
69] and podocytes [70, 71]. Taken together, we propose
‘macrophage-mediated glucolipotoxicity’ via activation of
MRPS/TLR4 signaling as a novel concept for pathophysi-
ology of DN (Fig. 5).

To understand the clinical implication of MRP8 expres-
sion in humans, we have carried out immunohistochemical
analysis of MRP8 expression in renal biopsy samples from
patients with DN, obesity-related glomerulopathy (ORG)
and non-obese, non-diabetic controls (which are minor glo-
merular abnormality [MGA] and minimal change nephrotic
syndrome [MCNS]). We have not been able to obtain reliable
antibody against TLR4 to date. The rank orders of glomer-
ular and tubulointerstitial MRP8 protein expression levels
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Fig. 4 Gene expression of MRPS and effects of glucose or fatty acid
in bone marrow-derived macrophages (BMDMs) determined by
TagMan real-time PCR. BMDMs generated from wild-type (WT, a)
or Tlr4 knockout (KO, b) mice were cultured under low-glucose
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(100 mg/dl, white bars) or high-glucose (450 mg/dl, black bars)
conditions, and were stimulated with palmitate (0, 10, 50, and
200 pM, respectively, from the left) for 24 h. Data are mean == SEM.
n = 6. *p < 0.05. Modified from Kuwabara and others [5]
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Fig. 5 Proposed mechanism of macrophage-mediated glucolipotox-
icity in diabetic nephropathy. Hyperlipidemia (or high free fatty
acids) activates circulating macrophages through TLR4-mediated
upregulation of MRPS, specifically under hyperglycemic conditions.
These synergistic effects upon MRPa8 production in macrophages
might be mediated by fetuin A and transcription factors AP-1 and
CEBP/B. Macrophage activation is enhanced by a positive feedback,
mediated by MRP8/TLR4 interaction in an autocrine fashion. Since

are DN > ORG > MCNS > MGA. Glomerular MRP8
expression is strongly correlated to the extent of proteinuria
at 1 year after renal biopsy, whereas tubulointerstitial MRP8
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glomerular intrinsic cells (such as podocytes, mesangial cells and
endothelial cells) reportedly express TLR4, they can be activated
through multiple pathways including (1) MRP8 from blood circula-
tion, (2) MRPS8 and inflammatory cytokines produced by glomerulus-
infiltrating macrophages, and (3) hyperlipidemia. Activation of
glomerular cells results in mesangial expansion and podocyte injury,
further leading to glomerular sclerosis (fibrosis) and albuminuria

expression is associated with worsening of renal function
within a year, suggesting that renal MRPS expression may
become a new biomarker for DN (submitted).
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Fig. 6 Glomerular gene
expression of M1 (a) and M2
(b) macrophage markers in 16
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The role of M1 and M2 macrophages in DN
with glucolipotoxicity

There are several subtypes of macrophages including M1
and M2 in tissue injury and repair [72-74]. During the
course of renal ischemia/reperfusion injury [75] and uni-
lateral ureteral obstruction [76], switch from proinflam-
matory M1 to anti-inflammatory or profibrotic M2 subtype
occurs in macrophages infiltrating the tubulointerstitium.
Here, we have carried out preliminary analysis of M1 and
M2 macrophages in glomeruli of STZ + HFD mice by
studying gene expression levels of CDIIc (or Itgax) and
CD206 (or Mrcl) as markers of M1 and M2 subtypes,
respectively [77, 78] (Fig. 6). In wild-type mice, treatment
with STZ alone does not affect glomerular expression of
CDl1lc and CD206 genes, and addition of HFD to STZ
causes a 100 % increase in CDIIc and a 30 % increase in
CD206, suggesting relative predominance of M1 subtype
in diabetic-hyperlipidemic conditions. Furthermore, in T1r4
KO mice, the stimulatory effects of HFD upon STZ treat-
ment are canceled both for CDIIc and CD206 genes, and
simple STZ treatment increases CDIIc expression by two-
fold and increases CD206 expression by three-fold, sug-
gesting the presence of M2 predominant status. These
results imply that TLR4-mediated signal is partially sup-
pressing M2 subtype in STZ-normal diet mice and
enhancing M1 subtype in STZ-HFD mice. These findings
are in good agreement with previous reports indicating that
treatment of macrophages with MRPS8 induces M1 subtype
(through TLR4 as lipopolysaccharide does) [61, 72, 76]
and MRP8-expressing macrophages exhibits M1 charac-
teristics by secretion of TNF-o and interleukin-6 [74, 79].
Formally, M1/M2 subtype analysis had to be carried out by
analyzing isolated macrophages extracted from tissues.
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Furthermore, in STZ + HFD animals, the levels of
macrophage infiltration and extracellular matrix accumu-
lation are proportional and progressive, suggesting that
M1-M2 switching does not occur spontaneously in this
model of DN. In glomeruli of STZ -+ HFD mice, >80 % of
MRPS signals co-localize with macrophage marker Mac2
(or Lgals3) [5], whereas collecting duct epithelial cells are
the main source of MRP8 expression in unilateral ureteral
obstruction [76].

In conclusion, a number of epidemiological and exper-
imental studies have revealed that glucotoxicity and lipo-
toxicity cause synergistic effects upon the development and
progression of DN. Macrophages have emerged as a
potential contributor for mediating glucolipotoxicity
through activation of MRP8/TLR4 signaling in diabetic
glomeruli in our experiments. Although further studies are
needed to understand regulation and potential role of
MRP8/TLR4 signaling, targeting key molecules involved
in this pathway may lead to novel therapeutic strategy to
combat DN.
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