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Table 3. Rate of correct discrimination of nonlocomotive from locomotive activities.

1.12% 1.13 1.14 1.15 1.16#

Threshold

100.0 100.0 100.0 100.0 100.0 100.0

100.0

throwing a ball

climbing down 100.0 100.0 100.0 100.0

normal walking 100.0 100.0 100.0 100.0 100.0 100.0 ‘ 100.0

*shows the excellent cut-off value of children to discriminate between locomotive and nonlocomotive activity in this study.
#shows the cut-off value of adults to discriminate between locomotive and nonlocomotive activity which was proposed in our previous study [20].

doi:10.1371/journal.pone.0094940.t003
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Table 4. Absolute and percentage differences between measured and predicted METs from each equation model for nonlocomotive and locomotive activities in the cross-
validation group (n=20).

Predicted METs Measured METs Absolute difference % difference

P value

Nonlocomotive

Nintendo DS 0.09 <0.01

clearing away 2.77 0.40 3.01 0.58 —0.25 0.42 —6.5 128 NS

throwing a ball 4.26 0.78 3.76 0.82 0.48 0.45 14.9 134 <0.05

normal walking 2.54 0.21 2.58 0.24 —0.04 0.36 ~0.6 138 NS

Jogging 6.44 0.48 6.20 0.77 0.23 0.83 52 147 NS

P<0.05 and <0.01 show that mean values were significantly different compared with measured METs.
METs; metabolic equivalents, SD; standard deviation, NS; not significant.

doi:10.1371/journal.pone.0094940.t004
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Table 5. Effect of weight, age and sex on predictive ability by multiple regression analysis.

Independent variable

Model 1

weight

sex (boys:0, girls:1)

Model 1

Model 2

weight

sex (boys:0, girls:1)

Intercept

Adjusted R*

Regression coefficient Pvalue RMSE

NS

0.076 <0.05

0.032 <0.001

0.092 <0.05

RMSE; root mean square error, NS; not significant.
doi:10.1371/journal.pone.0094940.t005

the current study, we tried to examine whether the GRPACA,
which was developed in our calibration model for adults, is able to
discriminate various PAs in children, and to prove that this
discrimination method improves the estimation accuracy of the
prediction model for children using an accelerometer.

Our first key finding was that it might be possible to apply the
discrimination procedures developed in adults to any participant
with various activity components and patterns. In our previous
study, we found that the percentage of correct discrimination with
the GRPACA in adults was remarkable, 98.7%, when the ratio of
USA/FSA was 1.16 [21]. In the present study, when the threshold
of discrimination, which was similar to that in the previous study,
was 1.12, the rate of correct discrimination was excellent, at 99.1%
on average (Figure 1, Table 3). As the discrimination method that
used the coefficient of variation in a previous study was 97% for
locomotive activities and 89.5% for nonlocomotive activities [17],
our discrimination procedure had a better rate of correct
discrimination. It follows that our specific calibration model could
evaluate the PA intensity of children with an estimation accuracy
of a mean difference of —0.13 METs and limits of agreement
(2 SD) from +2.06 to —2.33 METs, similar to the success we
obtained with the adult model in our previous study for adults
[20,21]. This finding was supported by a strong linear relationship
in the two prediction formulas and a cross-validation trial with
another group of children (Table 4). These results suggested that
our specific model, established according to the procedure of the
adult model, was well suited to evaluate the PA of children.

We did not simultaneously compare our device with major
devices, such as ActiGraph. However, our calibration procedures
followed the procedures used in several calibration studies [11-
17], which enabled comparison of the results in the present study
with previous studies that used a common device. For example, a
proposed single equation using a common device such as
ActiGraph, Actical or RT3 provides average prediction errors of
more than about 20% for nonlocomotive activities, calculated
from average published values like VOj (ml/kg®’®/min), activity
energy expenditure (kcal/kg/min) and METs [14,33,34,35].

PLOS ONE | www.plosone.org

Moreover, when our model was compared with the 2 RM with
ActiGraph proposed recently, the differences between the
predicted METs and the measured METs in the current study
were slightly smaller than those of the previous study [17]. To be
more precise, the differences with ActiGraph for vigorous intensity
PAs, such as sportwall and running, were —1.8 to METs and
—1.1 METs [17], respectively, while the differences with our
model were 0.23 METs for similar-intensity PAs like jogging.
Furthermore, the difference with our model, which was within
0.50 METs for all PAs including sedentary to vigorous intensities,
except for climbing up and down, was slightly smaller than in the
previous study (within 0.6 METs) [17]. Actually, another study
also indicated that the 2 RM with ActiGraph had a disadvantage
for sedentary and high intensity PAs [36]. In the current study,
although there were significant differences between the measured
METs and the predicted values from standard equations in
washing the floor, throwing a ball, and climbing down and
climbing up, mean differences compared to the measured METs
in overall activities were small (—0.13%£1.09 METs). Mean
differences between the predicted METSs and the measured METs
only in sedentary behaviors to light intensity PAs (<3.0 METs),
which consumed the highest percentage of time per day [37], were
still minimal (—0.20%£0.33 METs5) in the current study.

The finding that our procedure could lead to comparable
estimation accuracy in both nonlocomotive and locomotive
activities was also significant. The cause might depend on the
fact that our model could assess upper-body activities such as
sweeping up, clearing away, and throwing a ball accurately.
Oshima et al. [21] indicated that when the acceleration sensor was
attached to the waist of the individual, the USA/FSA ratio
reflected dynamic changes in body posture. The waist is not in the
upper body, but the inclination of the upper body accompanies
that of the waist in most instances. Therefore, the gravitational
acceleration signal at the waist reflects postural changes of the
upper body during nonlocomotive activities, like household
activities, to some degree.

April 2014 | Volume 9 | Issue 4 | 94940
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Table 6. Comparison between predicted METs from each equation and measured METs (n=68).

Standard equation Multiple regression equation ANOVA

Mean sD Mean SD Mean sD Mean SD Mean SD

desk work 1.32 0.06 0.17 0.11 132 0.29 0.17 0.28 115 0.10 St, Mu>Me

washing the floor 3.98 048 —0.65 0.88 3.96 0.46 -0.66 0.70 4.62 0.78 ‘ Me>St, Mu

Locomotive

climbing u 0.74 2.39 530

3.34 0.34 0.16 0.36 3.29 045 0.09 0.32 3.16 0.33 S>Me

*Mean and SD mean the difference between predicted METs from each equation and meausred METSs.
METs; metabolic equivalents, SD; standard deviation, ANOVA; analysis of variance, NS; not significant; St, standard equation; Mu, multiple regression equation; Me, measured.
>(a sign of inequality) means a significant difference among equations.

doi:10.1371/journal.pone.0094940.t006

ANNDY [edIsAyd JO uonewsy



A)
4.0
k]
2
-
v
503
@
£
i)
k-3
&
2
k<)
Q
T
-6.0 ¥ : : : ¥ . + ; :
00 10 20 30 40 50 60 7.0 8.0 9.0 100
Measured METs
B)
4.0
°
2
S 20 -
0
3
£ 0.0
§ 20 -
2
g 4.0 -
o
-6.0 ¥ : ! v + ¢ v ¢
00 10 20 30 40 50 60 70 8.0 9.0 100

Measured METs

Figure 3. Differences between predicted and measured METs
from each equation by Bland and Altman plot analysis. The
solid line represents mean differences between measured and
predicted values. The 2 dashed lines represent the upper and lower
limits of agreement, calculated as mean difference =2 SD. Upper figure
(A) and lower figure (B) shows the standard equation’s plots and the
multiple regression equation’s plots, respectively.
doi:10.1371/journal.pone.0094940.g003

In the present study, we also found that the adjusted
determination coefficient (R% and the root mean square error
(RMSE) were slightly better when weight, chronological age, and
sex were added as independent variables into the standard
predictive equations when combining the development group
with the cross-validation group (Table 5). However, we did not
observe significant differences between the multiple regression
equation and the standard equation (not controlled) when looking
at the average prediction error for each activity (Table 6). As this
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would mean that the integrated acceleration from the three
dimensions associated with a child’s motion includes the effects of
biological factors, it might not be necessary to control for weight,
age, and sex, similar to several other calibration studies [15,16].

Limitations

Given the limitations of this study, we must be very careful
when interpreting our results. We cannot conclude that this
predictive model is superior to previous calibration models
proposed using common devices, because we did not directly
compare our model to other models using the same experimental
conditions (i.e. device, ethnic group, targeted activities, and
calculation of energy expenditure in the resting state). To truly
prove superiority, it would be necessary to compare the different
methods under free-living conditions. Furthermore, in the future,
we must determine whether our developed model is applicable for
estimating PAs not including calibration tasks, because the
predictive accuracy of the existing model is significantly reduced
when applied to non-calibration activities [17,35].

Conclusions

The results of this study indicate that a specific calibration
model that discriminates between nonlocomotive and locomotive
activities for children can be useful to evaluate the sedentary to
vigorous PAs of both nonlocomotive and locomotive activities.
One of the main reasons why the differences between predicted
and measured METs with our model were smaller than those
reported in previous calibration studies using common devices
may be the model’s high rate of correct discrimination between
locomotive and nonlocomotive activities.
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