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even lower in the N subpopulation derived from asymp-
tomatic carriers and indolent/acute ATLs (Fig. 6A). In
addition, examination of Helios mRNA transcript variants
revealed that expression levels of Hel-2, which lacks part
of exon 3, were upregulated in the D and N subpopula-
tions of asymptomatic carriers and indolent ATLs, and it
was dominantly expressed in the N subpopulation of
acute ATLs (Fig. 6B).

Supplementary Fig. S5 presents a summary of this study.
The representative flow-cytometric profile shows how the
CADM1 versus CD7 plot reflects disease progression in
HTLV-I infection. The plot together with the gene expres-
sion profiles clearly distinguished the subpopulations of
distinct oncogenic stages. The groups classified according to
gene expression profile are shown as blue, yellow, and red
and are superimposed on the CADM1 versus CD7 plot.
Collectively, our data suggest that CADM1 expression and
stepwise downregulation of CD7 were closely associated

with clonal expansion of HTLV-I-infected cells in ATL
progression.

Discussion

We showed that the CADM]1 versus CD7 plot is capable
of discriminating clonally expanding HTLV-I-infected
cells in indolent ATLs and even in asymptomatic carriers,
as well as in acute-type ATLs. Our analysis demonstrated
efficient enrichment of HTLV-I-infected cells in the
CADM™" subpopulations (D and N in the CADM1 vs.
CD7 plot), based on the results of real-time PCR (PVL
analysis), semiquantitative PCR analysis of the HBZ gene,
and FISH analysis (Fig. 2 and Supplementary Fig. S2).
Furthermore, the CADM1 versus CD7 plot was shown to
discriminate the three subpopulations more clearly than
the CD3 versus CD7 plot (Fig. 1). Clonality analysis of
ATLs and asymptomatic carriers (Fig. 4A and B) revealed
that CADM1" subpopulations (D and N) contained
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clonally expanded HTLV-I-infected cells, whereas cells in
the P subpopulation (CADM17) did not show clonal
expansion in this analysis. Current molecular analyses
of ATL cells have been limited to HTLV-I-infected cell
lines and primary cells from acute/lymphoma type ATL,
because in these cases, the predominant expanding clones
are readily available with relatively high purity. However,
the separation of clonally expanding ATL cells from
indolent ATLs and asymptomatic carriers has not yet been
achieved. The CADM1 versus CD7 plot from FACS allows
efficient purification of such clones in vitro.

In an unsupervised clustering analysis of the gene expres-
sion data, the D and N subpopulations of asymptomatic
carriers/indolent ATLs were grouped together, suggesting
that the biologic characteristics of these subpopulations are
similar (Fig. 5A and B) but distinct from the N subpopu-
lation of acute-type ATLs (Fig. 5D). These results support the
notion that in indolent ATLs and even in asymptomatic
carriers, the D and N subpopulations are clonally expanding
cells representing the intermediate oncogenic stage.
Although the D and N subpopulations have similar gene
expression profiles (Fig. 5C), there are potentially important
differences distinguishing these subpopulations, according
to the apparent decrease in the D subpopulation and
increase in the N subpopulation that were observed as the
disease progressed from indolent to acute-type ATL (Fig. 3).
Detailed analysis of the genomic and epigenomic differ-
ences between these two subpopulations will provide us
with information about the genomic and epigenomic
lesions that are involved in disease progression. Another
important finding is that the expression profiles of cells in
the N subpopulation of indolent and acute-type ATLs
showed significant differences, even though the majority
of the genes were common to both groups (Fig. 5D).
Characterization of the genes that show distinct expression
patterns will reveal the molecular events that contribute to
the progression from indolent to aggressive ATLs.

To address whether the emerging molecular hallmark of
ATL was conserved in the novel subpopulations identified,
we examined the miR-31 level and Helios mRNA pattern in
sorted subpopulations (Fig. 6). Through integrative analy-
ses of ATL cells, we recently showed that the expression of
miR-31, which negatively regulates noncanonical NF-xB
signaling by targeting NIK, is genetically and epigenetically
suppressed in ATL cells, leading to persistent NF-xB activa-
tion, and is thus inversely correlated with the malignancy of
the cells (31). The miR-31 levels in the P subpopulations in
asymptomatic carriers and indolent ATLs were as high as
those in normal P subpopulations, PBMCs, and resting T
cells, whereas those in the D subpopulations decreased
significantly and those in the N subpopulations were as
low as in acute-type N subpopulations (Fig. 6A). Previously,
we also identified ATL-specific aberrant splicing of Helios
mRNA and demonstrated its functional involvement in ATL
(32). Asshown in Fig. 6B, the Hel-2 type variant, which lacks
part of exon 3 and thus lacks one of the four DNA-binding
zinc-finger domains, accumulated in the D and N subpo-
pulations of asymptomatic carriers and indolent ATLs, and

was dominantly expressed in the N subpopulation of acute-
type ATLs. Collectively, the molecular abnormality of ATL
cells became evident in the gradual progression from P to D
to N, even in asymptomatic carriers, strongly supporting the
notion that the CADM1/CD7 expression pattern correlates
with the multistep oncogenesis of ATL.

One of the more remarkable findings in the expression
profile analysis was that the D and N subpopulations of
asymptomatic carriers clustered within the same group as
those of the indolent ATL cases (Fig. 5A and B). The
asymptomatic carriers used in this analysis had high PVLs
and relatively high proportions of the D and N subpopula-
tions (Supplementary Table S1). In addition, mono- or
oligoclonal expansion of the HTLV-I-infected cells was
demonstrated in these cases. HTLV-I-infected cells in the
D and N subpopulations of these asymptomatic carriers
comprise clonally expanding cells that are potentially at the
premalignant and intermediate stages according to their
clonality, comprehensive gene expression profile, miR31
expression, and aberrant RNA splicing, all indicating that
they can be categorized as asymptomatic carriers with high
risk of developing into ATL, requiring careful follow-up
(15, 30, 33, 34). Our flow-cytometric analysis of PBMCs
from asymptomatic carriers using the CADM1 versus CD7
plot may provide a powerful tool for identifying high-risk
asymptomatic carriers. Certain indolent ATL cases are dif-
ficult to distinguish from asymptomatic carriers, according
to Shimoyama’s criteria based on the morphologic char-
acteristics determined by microscopic examination. Char-
acterization of peripheral blood T cells by the CADM1
versus CD7 plot may provide useful information for clinical
diagnosis.

According to Masuda and colleagues, manipulation of
CADM]1 gene expression in leukemic cell lines suggested
that CADM1 expression confers upon ATL cells tissue inva-
siveness and a growth advantage (35). The mechanism by
which HTLV-I infection regulates CADM1 expression and
the significance of CADM1 expression in ATL oncogenesis
will require clarification by future studies.

Finally, as summarized in Supplementary Fig. S5, we
demonstrated that (1) HTLV-I-infected and clonally
expanded cells are efficiently enriched in CADM1* subpo-
pulations; (2) the proportions of the three subpopulations
in the CADM1 versus CD7 plot, discriminated by CADM1
expression and stepwise downregulation of CD7, accurately
reflect the disease stage in HTLV-I infection; and (3) the
CADM1+CD79™/7¢8 subpopulations are at the intermedi-
ate stage of ATL progression and can be identified even in
asymptomatic carriers. These findings will help to elucidate
the molecular events involved in multistep oncogenesis of
ATL.
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