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lymphoma growth in vivo in IL-28R™" mice after i.p. inoculation is depicted by images taken every 5 d from one of these independent experiments in S/
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Statistical analysis was performed using a Mantel-Cox test; ***P < 0.001, n = 1013 per group. (C and D). Groups of 20 male C57BL/6 WT or gene-targeted
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cytokines in vivo. In particular, NK cells are critical endogenous
IFN-of targets during the development of protective antitumor
responses (11, 54), and NK cells may require a combination of
IFNAR1 and IL-28R signaling (direct or indirect) to be com-
pletely antimetastatic. One alternate mechanism is inhibited
angiogenesis in vivo because type I and type IIT IFNs up-regulate
Mig and IP-10, both of which suppress neoangiogenesis within
tumors. In addition, IFN-A has been shown to augment the ex-
pression of MHC class I molecules, which subsequently in-
creased the expression levels of putative tumor antigens (55).
Alternatively, several experimental models showed that activated
NK cells were primarily responsible for IFN-A-mediated anti-
tumor effects (17, 19). However, an antitumor role of type T and
IIT IFN via additional mechanisms, such as regulating tumor cell
proliferation, apoptosis, and autophagy, needs to be explored.
These studies suggest that mechanisms of type III IFN-mediated
antitumor effects are dependent on the tumor model used and
that many factors influence the type III IFN-induced activities.
Combinatorial therapy using IFN-off and IFN-A may achieve
antimetastatic activity by inducing complementary mechanisms
and engaging both IFNARI1 and IL-28R.

Materials and Methods

Mice. C57BL/6J WT mice were purchased from the Walter and Eliza Hall In-
stitute for Medical Research and housed at the QIMR Berghofer Medical
Research Institute. C57BL/6 IL-28R™~ mice, described by Ank et al. (21), were
kindly provided by Bristol-Myers Squibb. C57BL/6 IFNAR1™, Ifny™~, and
RAGZ2™""yc™'~ mice have been previously described (11, 28, 56) and were bred
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at the QIMR Berghofer Medical Research Institute. IL-28R™'~ x IFNART™
mice were generated at the QIMR Berghofer Medical Research Institute by
crossing the strains as above. These mice were maintained on a C57BL6
background at the QIMR Berghofer Medical Research Institute. All mice
were used between the ages of 6 and 14 wk. All experiments were approved
by the QIMR Berghofer Medical Research Institute animal ethics committee.

Cell Culture. B16F10 melanoma and RM-1 prostate adenocarcinoma cell lines
were cultured as previously described (42, 57) in Dulbecco’s modified Eagle
medium supplemented with 10% (vol/vol) heat-inactivated FCS (Thermo),
glutamax (Gibco), and penicillin-streptomycin (Gibco). B16F10 were sourced
from the American Type Culture Collection whereas RM-1 was obtained from
Pamela Russell, Queensland University of Technology, Brisbane, Australia.
YAC-1 (a Moloney murine leukemia virus-induced T-cell lymphoma of
the A/Sn strain) and RMAs [a TAP2"9/H-2b"®¢ variant of RMA cells (a Raucher
virus-induced T-cell lymphoma RBL-5, H-2b™)] cell lines were cultured as
previously described (58) in RPMI medium 1640 supplemented with 10%
heat-inactivated FCS (Thermo), glutamax (Gibco), and penicillin-strepto-
mycin (Gibco). The generation of RMAs stably transduced with luciferase was
performed in the same growth medium with 8 pg/mL polybrene at 75%
confluency with 10 multiplicity of infection of lentivirus carrying the venus-
luciferase (v2luc) expression plasmid. V2luc was generated by inserting the
luciferase coding sequence into the LeGO-iV2 parent vector and was kindly
provided by Michael Milsom, German Cancer Research Center, Heidelberg,
Germany. After 4 h of incubation at 37 °C, virus- and polybrene-containing
medium was replaced with fresh complete growth medium. Cells were kept
for an additional 48 h in culture and were subsequently fluorescence-acti-
vated cell sorted on the basis of venus expression. All cell lines were tested
for Mycoplasma detection by the QIMR Berghofer Medical Research In-
stitute’s scientific services.
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In Vivo LPS Challenge. As previous described (28), LPS (from E. coli 0127:88;
Sigma-Aldrich) suspended in PBS was injected intraperitoneally into mice at
the described doses (0.10, 0.75, 1.00, or 1.25 mg/30 g mouse). For survival
experiments, mice were checked hourly for symptoms of endotoxicosis. Se-
rum from these mice was taken for cytokine analysis by retroorbital or
cardiac bleeding. Spleens were also taken from mice after 6 h post-LPS in-
jection to analyze CD69 and intracellular IFN-y expression by NK cells.

In Vivo CLP-Induced Septic Shock. CLP was performed as previously described
(33). Briefly, mice were individually anesthetized by isoflurane, the abdomen
was shaved and disinfected by betadine antiseptic spray, a midline incision
was made, and 1 mL of saline was injected to prevent tissue dehydration.
Cecum was externalized, and a 75% portion was ligated and punctured once
using a 25-gauge needle to extrude a small amount of cecal content and
induce a high-grade sepsis (100% mortality within 10 d). The cecum was

returned to the abdomen, the peritoneum was closed via suture, and the

skin was sealed using an auto clip wound clip applier (Becton Dickinson).
Buprenorphin (Reckitt Benckiser Pharmaceutical) was applied at 0.05 mg per
kg body weight at the incision site for postoperative analgesia.

NK Cell Activation in Vitro. Spleens from the indicated strains of mice were
stained with anti-NK1.1, anti-NKp46, and anti-TCRp mAbs, and NK cells were
sorted by FACS (BD FACSAria Ii; BD Biosciences). Two hundred thousand
freshly purified NK cells were plated in 96-well U bottom plates in NK cell
media (RPMI supplemented with 10% FCS, non essential amino acids, Py-
ruvate, Hepes, glutamax, 2-mercaptoethanol, penicillin/streptomycin) in the
presence of riL-10 (Biolegend), rIL-12 (eBiosciences), rlL-15/IL-15Rx complex
(eBiosciences), riL-18 (R&D Systems), and PEG-IL-28A (kindly donated by Sean
Doyle, Zymogenetics, Seattle) for 24 h. For NK cell-mediated cytotoxicity
assays, sorted NK cells were either cultured for 5 d in NK cell media with
supplementation of 10 ng/mL of rlL-15/IL-15Rx complex (in vitro priming) or
sorted from mice post 24 h Poly 1:C (100 ug per mice) i.p. injection {in vivo
priming). Target B16F10 or YAC-1 cells, labeled with 100 pCi/1 x 10° cells
of 5Cr, were cocultured for 4 h with the indicated ratio of primed
NK cells.

Flow Cytometry Analysis. Cells harvested from in vitro cultures or single cell
suspensions from various organs were incubated for 15 min in Fc blocking
buffer (2.4G2 antibody). Cells were then stained with the following anti-
bodies: anti-mouse-CD3 (17A2), -CD11b (M1/70), -CD27 (LG.3A10), -CD43
(eBioR2/60), -CD69 (H1.2F3), -DNAM-1 (480.1), -IFN-y (XMG1.2), -Ly49A (A1),
-Ly49C/I (14B11), -NKG2D (CX5), -NKG2A/C/E (20d5), -NKp46 (29A1.4), -NK1.1
(PK136), and -TCRp (H57-597). All of the mAbs were purchased from eBio-
sciences, BD Biosciences, or Biolegend. A Zombie Yellow or Zombie UV Fix-
able Viability Kit (Biolegend) was used to assess viability. Acquisition was
performed using an LSR Il Fortessa Flow Cytometer (BD Biosciences). Analysis
was achieved using Flowjo (Treestar) software. For NK cell purification,
spleen homogenates were first stained with Mouse NK Cell Isolation Kit If
(Miltenyi Biotec) and enriched by a depleting program by an AutoMACS-Pro
(Miltenyi Biotec). NK cell-enriched samples were then stained with NK1.1,
NKp46, TCR-B, or viability stain and sorted with high purity (viable, NK1.1%.
NKp46™", TCR"®9) using a FACS Aria |l (BD Biosciences).

Cytokine Detection. All cytokines from in vivo assays were detected using
Cytometric Bead Array (CBA) technology (BD Biosciences) according to the
manufacturer’s instructions. IFN-y detection from purified NK cell superna-
tants from in vitro assays was measured by ELISA with the IFN-y Duoset Kit
(R&D Systems) according to the manufacturer’s instructions. For intracellular
cytokine detection, isolated splenocytes from LPS-injected mice or in vitro-
activated NK cells were stained for the indicated surface markers, fixed, and
permeabilized using BD cytofix/cytoperm (BD Biosciences) and then stained
with an anti-IFN-y antibody (XMG1.2).
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In Vive Tumor Imaging. Single cell suspensions of RMAs (5 x 10*to 5 x 10%) or
RMAs-Luciferase™® cells (5 x 10%) were injected i.p. into the indicated strains
of mice at day 0 (DO). Tumor burden was measured by bioluminescence
imaging and expressed as photon flux (photons per second) as previously
described (44). Luminescence was assessed at 5-d intervals by injection of
0.5 mg/mL o-luciferin (Everest) per mouse for 5 min, and luminescence
measure for 1 min in a Xenogen VIS Caliper (Perkin-Elmer). Overall survival
was calculated in parallel to the imaging kinetics.

Tumor Metastasis and MCA-Induced Fibrosarcoma. Single cell suspensions of
RM-1 (5 x 10%) or B16F10 melanoma cells (5 x 10° to 2 x 10°) were injected
i.v. into the tail vein of the indicated strains of mice. Lungs were harvested
on day 14, and tumor nodules were counted under a dissection microscope.
On day —1, 0, and 7 after tumor inoculation, some mice were treated with i.p.
injections of control Ig (clg) (2A3, 250 ug i.p), anti-mIFN-y mAb (H22, 250 ug
i.p), anti-mIFNART mAb (MARI-5A3, 250 ug i.p), or asGM1 mAbs (100 ug i.p
each). For MCA carcinogen-induced fibrosarcoma formation, groups of 8-20
male WT, IFNAR1T™~, IFN-y ™", or IL-28R™"~ mice were injected s.c. on the right
flank with 5 ug, 25 pg, or 300 pg of MCA and were monitored over 250 d for
fibrosarcoma development. Data were recorded as the percentage of mice
tumor-free. Some mice in these experiments were treated with control Ig
(clg) (2A3, 250 pug i.p), anti-mIFNART mAb (MARI-5A3, 250 ug i.p), or asGM1
mAbs (100 g i.p each) as indicated in the legends.

NK Cell Adoptive Transfer. NK cells (2 x 10°) freshly purified (NK1.1*, NKp46*,
TCRE™9) from WT or IL-28R™" mice were injected via the tail vein into
RAG2™"yc™'~ mice. Five days later, mice were injected either i.p with LPS
(0.1 mg/30 g mouse) or i.v with B16F10 melanoma ceils (5 — 10%). The NK cell
reconstitution of each mouse was analyzed by flow cytometry in the pe-
ripheral blood before and after the completion of each experiment, and we
observed no differences between IL-28R™~ and WT NK cell injected mice.

In Vivo Treatment with IFN-«p and IFN-)L. Single tumor cell suspensions of
2 - 10% B16F10 were injected i.v. into the indicated strains of mice at day 0.
Treatment groups consisted of rMOCK IFN-af}, riFN-af (50,000 U per mouse
per day), PEG-IL-28A (25 pg per mouse per day), or both rIFN-aff + PEG-IL-28A
(same concentration per mouse per day). Treatments were applied i.p. daily
from day 0 to day 5 post tumor inoculation, and overall survival was calcu-
lated. PEG-IL-28A was kindly provided by Sean Doyle, Zymogenetics, Seattle,
and rMOCK IFN-af and rIFN-af were kindly provided by Antonella Sistigu,
Institut Gustave Roussy, Paris.

Statistical Analysis. Statistical analysis was achieved using GraphPad Prism
Software V6. Data were considered to be statistically significant where the P
value was equal to or less than 0.05. Statistical tests used were the unpaired
Student’s t test, Mann-Whitney test, and the Mantel-Cox Log Rank test
for survival.

Supplementary figures and legends are detailed in 5/ Appendix.
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phorbol 12-myristate 13-acetate; Poly(I:C): polyriboinosinic-polyribocytoidylic acid; se:

subcutaneous; TIR: Toll-interleukin I receptor; TLR: Toll-like receptor; TRIF: TIR domain-

containing adaptor inducing [FN-f; WT: wild-type
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Abstract
The Toll-like receptor 3 (TLR3) agonist poly(I:C) is a promising adjuvant for cancer vaccines
because it induces strong anti-tumor responses, mainly through the activation of dendritic

cells (DCs) and natural killer (NK) cells. However, little is known about the role of TLR3

sensing of endogenous ligands in tumor immunosurveillance. Here, we investigated whet

when
y

nctions and protection against experimental metastasis.
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Introduction
Toll like receptor (TLRSs) initiate immune responses upon recognition of pathogen- and
damage-associated molecular patterns. Therefore, members of the TLR family play a crucial

role in the protection against microbial infections and the maintenance of host homeostasi

Among them, TLR3 is an endosomal receptor that senses viral dsRNA. > TLR3 is expr:

by various immune or non-immune cells, including DCs, *> macrophages, * NK.

fibroblasts ’ and epithelial cells. ® Sensing of viral dsSRNA by TLR3 leads to

regulates cell migration.

12, 13

Well known for its role in viral infegtion TLR3 can also protect against cancer. Indeed,

RNA analogue can also be recognised by the cytosolic sensor melanoma differentiation
associated protein 5 (MDAS). #* 2 In addition, little is known about TLR3 function in the
absence of administration of its agonist. Interestingly, a study reported that transplanted

mouse prostate adenocarcinoma grew faster in TLR3” mice compared with WT mice,
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supporting a protective role for endogenous triggering of TLR3. ?° In humans, high levels of

d 24,25

TLR3 expression have been associated either with goo or poor 2® prognosis, dependin
p g P progn p g

on the malignancies. Thus, the exact role of TLR3 in tumor immunosurveillance remains to

be characterized.

encoded activating and inhibitory receptors that recognjzé

DCs. % Poly(I:C) has been shown to induce

5,30

direct activation of TLR3 on NK cells or via

ontrolled the growth of Rae-1B expressing tumors as well as experimental B16F10 tumor
metastasis, all tumors known to be highly controlled on NK cell effector function. This study
demonstrates that TLR3 expression on immune cells regulates [FN-y secretion by NK cells

independently of the gut microbiota and is essential to control metastatic spread of cancer.
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Results

NK cells from TLR3™ mice are hyporesponsive to cytokine stimulation

The ability of the TLR3 ligand poly (1:C) to activate NK cells is well established.
However, nothing is known about the influence of TLR3 on NK cell priming in the abs
of administration of its agonist. To determine whether TLR3 signaling modulates:

ability to respond to cytokine stimulation, we purified NK cells from W

flammatory cytokines and chemokines by NK cells is defective in the absence of

R3. Altogether, these data demonstrates that the presence of TLR3 regulates NK cell
ability to produce of high levels of pro-inflammatory factors in response to cytokine

stimulation.
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NK cell development and Kkilling activity are not affected by TLR3 deficiency

The decreased ability of NK cells from TLR3™ mice to produce cytokines could have been
caused by a defect in NK cell development. To explore this possibility, NK cell numbers and

maturation status were analyzed by flow cytometry. TLR3” and WT mice showed si

kill target cells in vitro. TLR3 d

YAC-1 or B16F10 tumor cell

R3 is expressed on a wide range on immune cells but also on non-immune cells, including
fibroblasts and epithelial cells. > To determine the contribution of TLR3 expression on non-
hematopoietic cells to NK cell conditioning, we performed bone marrow chimera

experiments in which lethally irradiated WT or TLR3” mice were reconstituted with bone
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marrow cells from WT or TLR3™ mice. Eight weeks later, NK cells were purified from these
mice and stimulated with 1L-12/IL-18 (Fig. 3A and B). As expected, NK cells obtained from
TLR3” mice reconstituted with TLR3™ bone marrow produced much less IFN-y than NK

cells from WT mice reconstituted with WT bone marrow. Interestingly, NK cells from TLR3"

" mice reconstituted with WT bone marrow were proficient in IFN-y production w

lower IFN-y levels were produced by NK cells from WT mice reconstituted W
bone marrow. These data indicate that TLR3 expression on immune cells

and sufficient for the pre-conditioning of NK cells to cytokine stimulati

CD8a DCs are not required for TLR3-dependent NK cell condit

conditioning, we performed intracellular TLR3staini ‘ use splenocytes. We found that

TLR3 was expressed at much higher levg

gnaling in the absence of infection. Given that NK cell responses are compromised in

rm-free mice ** and that bacterial RNA can potentially activate TLR3, ** we hypothesized

that a defective sensing of the microbiota would account for the defective NK cells
conditioning in TLR3™ mice. To explore this possibility, WT and TLR3” mice were co-

housed for at least 6 six weeks before testing NK cell IFN-y production (Sup. Fig. 2A). NK
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cells from TLR3™ mice were still poor IFN-y producers compared with WT NK cells, even
when the mice were co-housed. To confirm these data, we treated TLR3” and WT mice with
broad-spectrum antibiotics known to strongly reduce the gut microbiota ** for 3 to 4 weeks.

IFN-y production by TLR3™ NK cells was still reduced compared with WT (Sup. Fig. 2B).

These results strongly indicate that the acquisition of full effector functions by NK cell

independent of bacterial RNA sensing.

TRIF is not necessary for efficient NK cell response to cytokines

from both mice secreted comparable level

stimulation.

TLR3 is inv

."37 We asked whether TLR3 would be involved in the recognition and/or killing of
ae-1 expressing tumor cells by NK cells. To this aim, WT and TLR3™ mice were inoculated
subcutaneously with RMAS tumor cells transfected with an empty vector (RMAS-MSCV) or
with the Rae-1p molecule (RMAS- Rae-1f). Both mouse strains had equal outgrowth of the

RMAS-MSCYV cell line (Fig. 4A). By contrast, the growth of RMAS-Raelf cells was
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significantly reduced in WT compared with TLR3™ mice (Fig. 4B). These results
demonstrate that TLR3 is also involved in NKG2D-dependent NK cell-mediated tumor

suppression.

TLR3 is dispensable for the control of primary tumors or carcinogen-indu

fibrosarcoma

and TLR3” mice (Fig. 5C). We next wante

participate in the immunosurveillance of: of tumorigenesis. For that, we took

s studies have established a fundamental role of NK cells in the control of B16F10
experimental metastasis. *° This prompted us to investigate the role of TLR3 in this model.
We found that TLR3™" mice displayed significantly higher numbers of lung metastases than
WT mice following intravenous inoculation of B16F10 cells (Fig. 6A). Thus, despite a

negligible effect upon primary tumor growth, TLR3 controls metastasis of B16F10 cells. By

10
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contrast, carcinogenesis, primary tumor growth and metastasis were unaffected in the TRIF™"
mice (Sup. Fig. 4). These experiments establish the importance of TRIF-independent

signaling of TLR3 in the control of experimental B16F 10 metastasis.

Finally, we aimed to investigate the mechanisms by which TLR3 controls metastasis. M

particularly, we asked whether NK cells and the secretion of IFN-y were involved iii*thi
2
process. Mice injected intravenously with B16F10 cells were treated with .an

as
>

metastasis >* 40

and indicate that these two components ar
TLR3 signaling. Importantly, no significant differen : erved between WT and TLR3

" mice when those mice were treated with an

ion of any agonist, TLR3 considerably increased NK cell production of pro-

flammatory cytokines and protected against experimental metastasis.

NK cells are innate effector cells that were initially thought to recognize and eliminate their
targets with fast kinetics, without prior sensitization. However, NK cell activity is tightly

regulated because only NK cells that can engage self-MHC become fully competent, a

11



Downloaded by [Juntendo University] at 02:27 08 May 2015

processed called licensing. *! In addition, similarly to T cells, NK cells need to be primed to
acquire full effector functions. 2 Here, we extended those concepts by demonstrating that
constant triggering of TLR3 keeps mature NK cells in a “ready to go” state. This process

takes place at steady-state and thus differs from NK cell-priming that occurs in a highly

5, 6,30

Data from the literature indicate that, unlike human NK cells, se NK cells

fail to respond to poly(I:C) in vitro. **** Thus, even if our res lts d b:t ormally exclude a

direct role of TLR3 signaling on NK cells, it is probable ssoty cells are required for

TLR3-dependent NK cell conditioning. Using BM m'ce; we demonstrated that the
expression of TLR3 on hematopoietic cells is and' sufficient for the acquisition of
full NK cell functions. These data are rem f results showing that TLR3 signaling in

BM-derived accessory cells, but stromal cells, drives NK cell activation. 2 Flow

. 2 Further work would be needed to identify the cell type(s) necessary for TLR3-
dependent conditioning of NK cells. Macrophages constitute a likely candidate since they

have been found to induce IFN-y production by NK cells when stimulated with poly(I:C). **

IL-18 has been described to regulate NK cell ability to produce IFN-y in response to cytokine

stimulation. *> An attractive hypothesis would be that TLR3 signaling controls IL-18

12
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production by accessory cells. However, we measured similar levels of IL-18 in the sera of
naive WT and TLR3" mice (data not shown). In addition, we failed to detect any production
of TNF-a or IL-12 p70 in the sera of naive mice. These data do not exclude the possibility

that cytokine levels are regulated locally in a TLR3-dependent manner.

Our result that NK cells are hyporesponsive in TLR3” mice suggests that repeti

stimulation by TLR3-ligand(s) controls NK cell activity. These ligands required:

on, adhesion and proliferation of multiple cell types and did not require gene-

duction. Thus, although TRIF is essential for TLR3-mediated response to virus or poly(I:C)
lgading to IRF3 and NF-1B activation, another facet of TLR3-signaling may regulate a
different kind of response in a TRIF-independent manner. It is tempting to speculate that
different pathways of TLR3 signaling could be triggered in response to different signals (e.g.

endogenous mRNA versus viral mRNA) or in different contexts (e.g. inflammation versus

13
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homeostasis). Further investigation is warranted to determine whether the Src pathway or
another yet unknown pathway is responsible for the TLR3-mediated control of NK cell

reactivity.

Despite substantive data emphasizing the anti-cancer properties of poly (I:C), '° it remai

-expressing cells at the tumor site are

by TLR3 (e.g. RMAS-Raelf tumor growth and

iously shown to be suppressed by NK cells. *” 49, 50

tumor microenvironment stimulate NK cell IFN-y production in WT mice, but

hyporesponsive NK cells in TLR3™"

mice would fail to secrete sufficient [IFN-y. Our finding
that protection against experimental B16F10 metastasis in WT mice requires both NK cells
and IFN-y support this hypothesis. Yet, the whole picture must be much more complicated

and probably includes several feedback loops and interactions between the various actors of

14
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the immune system. For instance, TLR3 signaling stimulates DCs or macrophages to prime
NK cells. > ** In turn, NK cells regulate DC functions as well as T cell responses. 2> >! Thus,

TLR3 may control the priming of innate responses (of NK cells more particularly), further

necessary to turn on adaptive immunity against cancer.

Materials and Methods

Mice

ere purchased from the Walter and Eliza Hall Institute of Medical

Antibodies and reagents

The flow cytometry antibodies anti-CD69 (H1.2F3), CD107a (1D4B) and NKp46 (29A1.4)

were purchased from Biolegend. Anti-IFN-y (XMG1.2), NK1.1 (PK136), CD3¢ (145-2C11)

15



