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Fig. 5 MRKO003 might be effective for CD44-high and CD133-low
GICs. a Sensitive lines were high CD44-FITC positive percentage
(range 87.9-100 %). On the other hand. resistant lines were broad
CD44-FITC positive percentage (range 0.24-87.7 %). b Sensitive
lines exhibited a low CDI33-PE positive percentage (range

MRKO003. Therefore, MRKOO3 might be effective to
mesenchymal subtype of GBM.

We performed sphere forming assay with other y-secretase
inhibitor, DAPT and L685.458. DAPT had the strong effect for
30R which was a relatively sensitive line to MRKO003 (sup-
plementary Fig. 4). On the other hand, L685,458 reduced
sphere formation not only in 30R but also in TGSO1 and
TGS04 (data not shown). Generally, y-secretase inhibitors can
be classified according to the chemical structures and phar-
macological modes of action. MRK003, DAPT and 1.685.458

IC50 of MRKO003 (nM)

0-33.4 %). Resistant lines exhibited high CDI133-PE positive per-
centage (range 84.2-99.4 %). ¢ ICs, of MRKO003 for GICs correlated
to both CD44 and CDI33 expression. Data shown was scafter
diagram of nine GICs. X-axis was ICsq (LM) of MRKOO03. Y-axis was
expression (%) of CD44 or CD133

are a sulfonamide-containing non-transition state analog, an
azepine-containing non-transition state analog and an azepine-
containing transition state analog, respectively [42, 49]. The
different experimental results with three y-secretase inhibitors
might be caused by different pharmacological modes of
action. These inhibitors might modulate different downstream
signaling pathways. In fact, these inhibitors affect various
intracellular signaling including PI3K/Akt signaling [50].

A further point of investigation in our study was to
confirm the role of Notch pathway inhibition in effecting
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the MRKO0O3 response, since the possibility of MRK003
acting via off-targets cannot be ruled out. However, accu-
mulated evidence confirmed the strong effect of MRKO003
for cancer initiating cells including leukemia [22, 27],
lymphoma [25], breast [24. 26], and pancreas [23] in vitro
and in vivo. In this study also, MRKOO3 provided a ther-
apeutic advantage against the chemo resistant population of
GICs derived from the nine patients. Regardless of the
specificity of MRKOO3. it promises to be an effective target
therapy for GBM.

In conclusion, results of this study suggested that
MRKO003 might have significant therapeutic potential for
CD44-high and CD133-low expressed GICs (supplemen-
tary Fig. 5). However, additional pre-clinical studies will
be required to address whether MRKOO3 contributes ben-
eficially to GBM treatment.
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Abstract

other treatment modalities.

We treated a 54-year-old Japanese female with a recurrent radiation-induced osteosarcoma arising from left occipital
skull, by reactor-based boron neutron capture therapy (BNCT). Her tumor grew rapidly with subcutaneous and epidural
extension. She eventually could not walk because of cerebellar ataxia. The turnor was inoperable and radioresistant.
BNCT showed a marked initial therapeutic effect: the subcutaneous/epidural tumor reduced without radiation darnage
of the scalp except hair loss and the patient could walk again only 3 weeks after BNCT. BNCT seems to be a safe and
very effective modality in the management of radiation-induced osteosarcomas that are not eligible for operation and

Introduction

The incidence of radiation-induced sarcoma has been
estimated to be between 0.03% and 0.3% of all patients
who have received radiation therapy [1,2]. Radiation-
induced osteosarcomas are being encountered more
frequently as the use of radiation therapy becomes more
common, and the number of long-term cancer survi-
vors has increased. The original diagnostic criteria for
radiation-induced osteosarcomas were proposed in 1948
by Cahan et al. [3], and a short latency period was re-
cently accepted for these tumors [1,4,5]. The diagnosis of
radiation-induced osteosarcoma must fulfill the following
four criteria: (1) the sarcoma must arise in a previously
irradiated field, (2) the sarcoma must be histologically
distinct from the original neoplasm, (3) there was no evi-
dence of tumor in the involved bone at the time of initial
irradiation, and (4) there must be a latency period between
the irradiation and the development of the sarcoma at
least 3 years.

Radiation-induced osteosarcoma of the head is a dev-
astating complication of radiation therapy. It is very rare
but aggressive, with high recurrence and a poor progno-
sis [6]. The median overall survival time was reported to
be 29 months [1]. Osteosarcoma is thought to be radio-
resistant [7,8]. Therefore, complete surgical resection
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has been described as the most important prognostic
factor [9] and the first choice of treatment for radiation-
induced osteosarcoma. However, if complete surgical re-
section is difficult (as it was in the present case), adjuvant
chemotherapy and radiotherapy should be considered.
These therapeutic effects have thus far been found to
be insufficient, however. We report here the case of a
patient with recurrent radiation-induced osteosarcoma
who was treated effectively by boron neutron capture
therapy (BNCT).

BNCT is based on the nuclear capture reactions that
occur when non-radioactive boron-10 is irradiated with
neutrons of the appropriate energy to yield high linear
energy transfer (LET) alpha particles (4He) and recoiling
lithium-7 (7Li) nuclei. Since these particles have short path-
lengths of approximately one cell diameter, their lethality
is primarily limited to boron-containing cells. Theoretic-
ally, high LET particles have the advantage to overcome
radioresistance to photon radiotherapies (such as X-rays).
BNCT can thus be regarded as tumor cell-selective and an
intensive particle radiation modality with minimal damage
to normal tissue, [10,11] even for X-ray-resistant tumors.
Here we report a successfully treated a case of radiation-
induced osteosarcoma by reactor-based BNCT.

Case report
A 54-year-old Japanese female was referred to our institute
for treatment by BNCT of a recurrent radiation-induced
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osteosarcoma involving the left occipital bone. Ten years
earlier, she was diagnosed with cancer of the uterine body
and underwent resection surgery. Two years after that
surgery, she underwent chemotherapy and whole-brain
radiation therapy (WBRT, total 30 Gy with 10 fractions)
including the cerebellum for brain metastasis. Six years
after the WBRT, she was diagnosed with a radiation-
induced osteosarcoma involving the left occipital bone,
and she underwent resection surgery and successive
chemotherapy using methotrexate. One year after that
surgery and chemotherapy, the subcutaneous tumor ap-
peared again in the left occipital region and rapidly
enlarged over a period of only 3 months (Figure 1A).
Magnetic resonance images (MRI) showed the epidural
tumor invasion (Figure 2A and A’). Eventually, the patient
could not walk because of acutely developing cerebellar
ataxia. This tumor was diagnosed as a recurrence of the
radiation-induced osteosarcoma in accord with the above
Cahan'’s criteria [3].

We performed BNCT for the radiation-induced osteo-
sarcoma because the lesion/normal brain (L/N) ratio of
fluoride-labeled boronophenylalanine positron emission
tomography (FBPA-PET) was enough high, as shown in
Figure 3A and B (L/N ratio: 3.8) [12]. For the BNCT,
neutron irradiation was applied at Kyoto University
Reactor.

The patient was administered 500 mg/kg of BPA intra-
venously for 3.2 hours (200 mg/kg for initial 2 hours,
prior to neutron irradiation, 100 mg/kg for 1.2 hours
during neutron irradiation). The boron concentration in
the blood was monitored by sampling every 1 hour after
boron compound administration until neutron irradiation
was completed. The boron concentrations from BPA in
the tumor and normal brain were estimated from the L/N
ratio of 18 F-BPA on PET. The neutron fluence rate was
simulated by the dose-planning system, SERA (Idaho
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National Engineering and Environmental Laboratory,
Idaho Falls, ID) and the total doses to the tumor and
normal brain were simulated. The neutron irradiation
time was determined not to exceed 13 Gy-Eq to the
normal brain in accordance with our recent protocol
of BNCT for high-grade meningiomas [10]. For this case,
irradiation time was 70 minutes and B10 concentration of
the venous blood was judged as 37.2 ppm during the neu-
tron irradiation. Here, Gy-Eq (Gy: Gray) means an X-ray
dose that can give biologically equivalent effects to total
BNCT radiation. The scalp just above the tumor was cov-
ered with the bolus composed of sodium polyacrylate with
1 cm-thickness to gain the superficial neutron flux. After
the treatment, the doses given were re-estimated precisely
and are shown in Table 1. We hypothesized the boron
concentrations of the blood, brain, and skin were equal, as
we did in the previous BNCT. RBE and CBE values
employed here were listed in Table 2.

Absorbed physical dose and X-ray-equivalent dose
(Gy-Eq) are calculated with the following formula;

Etotal = Eg10 + Ethermat + Erast + Ey

Egio = (Cgsn % CBEgsy + Cgpa X CBEgpa) X 7.43
x 107" X Ophermat

Ethermal = N X RBEThermat X 6.78 X 107 X ®rermal
Epast = RBEpast X Dragt
E, = RBE, x Dy
D: physical absorbed dose (Gy),
®Thermal: fluence of theraml neutron (cm-2),

N: nitrogen concentration (2%, here)
C: B10 concentration (ppm).

is el hard, and painful. B: Seven ¢
thout radiation da

e to the skin.

Figure 1 Marked improvement of the subcutaneous tumor at 3 weeks after the application of BNCT. A: Just prior to the BNCT; the tumor
i i after the BNCT; the tumar is soft and no fonger painful. C: At 2 months after the BNCT, the tumor had




Futamura et al. Radiation Oncology 2014, 9:237
http://www.ro-journal.com/content/9/1/237

Page 3 of 6

L had disappeared.

Figure 2 MRI of the patient’s brain before and after the BNCT. White arrows indicate a venous angioma, which was recognized incidentally

and judged as a sectional standard of MRI. A: Gd-enhanced T1-weighted MRI of the brain 1 month before the BNCT. There was a subcutaneous
and epidural tumor mass. B: Gd-enhanced T1-weighted MRI at 4 days after BNCT. The tumor mass was reduced. C: Gd-enhanced T1-weighted
MRI of the brain 3 months after BNCT. The tumor mass was further reduced. A" Fluid-attenuated inversion recovery (FLAIR) MRI of the brain

1 month before BNCT. B FLAIR MRI of the brain 4 days after BNCT. The turmnor mass was reduced, but the edema had worsened. A black arrow
indicates the cerebellar edema: C: FLAIR MRI of the brain 3 months after BNCT. The tumor mass was further reduced, and the edema

For this patient, we estimated that the minimum tumor
and maximum normal brain and skin doses were 67.7,
12.7 and 12.4 Gy-Eq, respectively in the BNCT, simulated
from F-BPA-PET imaging and the blood BPA concentra-
tion (Table 1).

At one day after the BNCT, the patient’s gait disturbance
was aggravated. Computed tomography at that time showed
aggravation of peri-lesional edema (data not shown). Re-
markably, the MRI taken 4 days after the BNCT demon-
strated the definitive shrinkage of the mass, but the left
cerebellar edema was still there (Figure 2B and B’). We
then treated the edema with dehydrators and steroids.
The symptoms gradually improved.

At only 3 weeks after the BNCT, the patient was able to
walk again stably without aid. The subcutaneous tumor
was reduced dramatically without radiation injury of the
scalp, with time after BNCT, as shown in Figure 1B and C.
The only adverse effect was hair loss in neutron-irradiation
field, as shown in Figure 1C. MRI showed the further re-
duction of tumor and the disappearance of the cerebellar
edema (Figure 2C and C’), 3 months after BNCT. Also
F-BPA-PET taken 2 months after BNCT showed faint
tracer uptake, indicating some metabolic change at least
by this treatment (Figure 3A”and B, L/N ratio as 1.2).

Discussion

Radiation-induced osteosarcoma is not common. It has
an aggressive nature, high recurrence rate, and poor
prognosis. A standard therapy protocol has not yet been
established for non-resectable tumors, but it was re-
ported that particle radiotherapy (treatment with proton
and carbon beams) had a therapeutic effect on these
tumors [7,13].

In the present case, the tumor was chemo-resistant
and difficult to totally resect because it invaded the left
transverse and sigmoid venous sinuses. In addition, the
subcutaneously extended tumor invaded the surface of
the skin, and we thus suspected that a skin deficit due to
surgery was inevitable and that particle radiotherapy for
this tumor was likely to cause severe radiation-induced
adverse effects on the scalp. The tumor was radiation-
induced, and the cerebellum and overlying scalp had a
history of X-ray treatment. Moreover, osteosarcomas
have the characteristic of being radioresistant, ie, X-
ray-resistant. In light of these medical circumstances, we
chose BNCT as the treatment modality for this patient.
In the present case, the patient was successfully treated
by BNCT without skin damage even though her tumor
invaded the superficial scalp.
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Figure 3 Fluoride-labeled boronophenylalanine-PET imaging of the brain before and after BNCT. Fluoride-labeled boronophenylalanine-PET
imaging taken 1 month prior to BNCT (A and B) and 2 months after BNCT (A’ and B'). A and A" axial imaging, B and B coronal imaging. In A and B,
L/N ratio was ca

L/N ratio. 2 moriths after BNCT, A’ and B’ show the decreased L/N ratio as

1.2, indicating the marked effectiveness.

We recently reported the effectiveness of BNCT for  may be ascribed to the difference in LET noted above and
radiation-refractory high-grade meningiomas [10]. In that  their fraction size [10].
report, we speculated that the difference in tumor shrink- Other types of particle radiotherapy and some stereo-
age between the alpha and lithium particles provided by  tactic radiotherapies which have been tried recently for
BNCT and other particles such as carbon and protons  tumors were applied as multi-fraction. The reduction of

Table 1 Estimated dose distribution at the central axis of neutron-irradiation field

Depth Total dose Total dose Total dose Total dose Thermal Fast y-ray Boron dose
(cm) (tumor) (Gy-eq) (skin) (Gy-eq) (mucosa) (Gy-eq) (brain) (Gy-eq) neutron (Gy-eq) neutron (Gy-eq) (Gy-eq) (tumor) (Gy-eq)
0.00 5.28E + 01 1.24E+01 208E+01 837E+00 5.05E-01 213E+00 1.00E+00 492E+01
050 6.79E + 01 e 261E+ 01 9.90E 400 6.56E-01 1.87E4 00 122E+00 641E+01
1.00 8.06E + 01 e 3.06E + 01 112E+01 7.83E-01 1.64E + 00 143E+00 7.67E+01
1.50 847E+01 e 3.20E+ 01 1.16E+ 01 8.24E-01 1.35E+00 1.63E+00 8.09E + 01
2.00 9.00E + 01 e 33%E+01 1.21E+01 8.77E-01 1.17E+00 1.80E+ 00 862E+01
250 9.38E +101 e 353E+01 1.26E + 01 9.13E-01 1.11E+00 1.92E4+ 00 B898E+01
3.00 9.55E + 01 —nn 358E+01 127+ 01 9.31E-01 9.77E-01 202E+00 9.16E+01
3.50 953E+01 e 3.57E+01 1278+ 01 9.30E-01 8.63E-01 209E+00 9.14E+01
4,00 9.18E + 01 e 344E+01 1.22E+01 8.94E-01 7.72E-01 211E+00 880E+01
450 862E + 01 E— 3.24E+01 1.16E + 01 8.38E-01 6.91E-01 210E+00 B.26E+01
5.00 7.97E + 01 e 3.00E+ 01 1.08E + 01 7.74E-01 5.18E-01 208E+00 7.62E+01
550 715E+01 et 270E 4+ 01 9.79E + 00 6.93E-01 5.54E-01 1.99E+00 6.82E+01

5.80 6.77E+0] s 256E+01 931E+00 6.55E-01 5.12E-01 1.95E+00 . 645E+01




Futamura et al. Radiation Oncology 2014, 9:237
hitp://veww ro-journal.com/content/9/1/237

Table 2 RBE (relative biological effectiveness) factor

Radiation Tumor Brain Skin
Thermal neuton 30 S 30 ) 30
Epithermal neution 30 30 30
B ma) Li BPA 38 135 25
y-ray dose 1.0 1.0 1.0

the tumor mass was thus not very prominent, and it
was difficult to improve the patients’ symptoms by means
other than BNCT. BNCT can deliver high dose particles
in a tumor-selective fashion in a single session, and
in some cases the resulting reduction of the tumor was
fast; this rapid shrinkage mlght contribute to the prompt
elimination of symptoms [10]. Indéed, the present patient,
within a very short time, exhibited improvement of her
gait disturbance due to cerebellar ataxia.

Only a couple of articles were published with regard

to pre-clinical study of BNCT for osteosarcoma in in vitro
cell culture and animal experiments [14-17]. Among
them, Russian research group reported successful treat-
ment of dog osteosarcoma case by BNCT. Also only one
preliminary veport was published with regard to a BNCT-
treated osteosarcoma case in head and neck region with
limited description, so far [18]. We are not sure of the
compound biological effectiveness (CBE) of BPA for
osteosarcomas, and we were only able to estimate CBE as
being the same for glioblastoma (i.e, 3.8) [19] as we did
for high-grade meningioma [10]. For the estimation of the
prescribed dose for this case, we adopted the reported
value of CBE and relative biological effectiveness of neu-
tron itself for tumors and normal tissues [20]. Thereafter
the estimated tumor dose was uncertain in this case. How-
ever, as a result of the BNCT, the tumor shrank rapidly,
the patient’s clinical symptoms improved, metabolically
scarce uptake of the amino-acid tracer was observed in
the follow-up PET imaging and no serious damage was
observed in the scalp and brain, so far at 6 months after
BNCT, although the obsetvation period was short.

Based on this outcome, we found that BNCT was an
effective treatment for our patient. However, careful
follow-up or the use of bevacizumab may be necessary in
some cases [21], because WBRT that has been already
performed may cause brain radiation necrosis.

We experienced only a case of successful treatment
of BNCT for radiation-induced osteosacoma. Hopefully
these potential therapeutic effects will be applicable for
non-radiation-induced osteosarcomas which are generally
refractory for other treatment modalities.

Conclusions

BNCT is an effective treatment for non-resectable radiation-
induced skull osteosarcoma. We suggest that BNCT iz the
only effective therapy for tumnors that have invaded the

B "—N mr’sﬁ vedd of the
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skin. Further applications of BNCT for similar cases are
expected.
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