differences in the expressions of M| or P2X receptors among the three groups.

Histological examinations

The collagen-deposition was signiﬁcaﬁtly higher in both detrusor and whole
bladder wall of the O + AL group compared with the Y and O + CR groups. The values
were not significantly different between the Y and O + CR groups (Figures 4A-C, n =7

-8, N =7-28 in each group).

Body and bladder weights, heart rate and blood pressure
Body and bladder weights of the O + AL group were significantly higher than
those of the Y and O + CR groups, and additionally those of the O + CR group were
significantly lower than those of the Y group (Table 3A, N =15 - 16 in each group).
There were no significant differences in heart rate and blood pressure among

the three groups (Table 3B, N = 8 in each group).

Blood chemical analysis (Table 3C, N =15 - 16 in each group)
Compared with the Y group, the O + AL group had significantly higher values

of LDL- and total-Chol, and insulin, and lower values of testosterone. The O + CR
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group showed significantly lower values of LDL-Chol, triglyceride and free fatty acid

than the Y group. The O + AL group showed significantly higher values of LDL- and
total Chol, triglyceride, free fatty acid and insulin, and lower values of testosterone and

E2 compared with the O + CR group.

16



Discussion

In the present study. the contractile responses to high K of the detrusor strips
were similar in all groups, indicating no impairment of the intrinsic contractile
properties of the detrusor smooth muscle with aging. This is supported by findings in
isolated strips of human bladder, showing no decline in the detrusor contractility with
age. ¥ In contrast, the contractile responses to muscarinic stimulation and EFS were
impaired in the O + AL group compared with the Y group, which is consistent with a
previous report in rats. 7 The contractile responses to EFS after atropine and mATP
pre-treatment suggested that this was mainly due to an impairment of the cholinergic
component. This finding is consistent with a previous study reporting a decreased
cholinergic component and a compensatory increased purinergic component of
contraction in the aged human bladder, > although the compensatory inerease of
purinergic component was not observed in the aged rats.

To disclose a mechanism behind the decreased cholinergic contractility of the
O + AL group, the expressions of muscarinic (M;-Mj3) and purinergic (P2X) receptors
were evaluated by real time RT-PCR. These experiments revealed that the expression of
muscarinic Mj receptors, but not P2X; receptors, significantly decreased in the O + AL

group compared with the Y group, suggesting that the impairment of the detrusor
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contractility with aging is, at least partly, due to a reduced expression of muscarinic M3

receptors.

A previous report indicated that the collagen deposition in the bladder wall
increased with aging in Wistar male rats. " In the human bladder, widespread
degeneration of muscle cells and axons were proposed to correlate with the impaired
detrusor contractility of the aged detrusor. *® Other previous histologicalﬁexaminations
indicated an age-related increase of collagen deposition, > which may lead to contractile
impairments. *In agreement with these previous findings, the present histological
analysis indicated that fibrosis is progressing with age in the rat bladder. Thus,
age-related impairment of detrusor contractility may be linked with fibrosis directly or
indirectly.

In contrast to the changes in detrusor contractility and collagen deposition with
aging demonstraied in the present study, FV measurement failed to show significant
influence of aging on voiding behaviors except for feeding behaviors. The reasons
why the functional and morphological changes in vitro were not reflected in in vivo
voiding behavior are not known. It may be speculated that in vivo there are
compensatory mechanisms keeping voiding behavior within normal limits. Another

possible reason is that the insufficient number of FV measurement might mask the
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age-related changes of in vive voiding behaviors. In a previous study, aged rats

showed lower voiding frequency with higher voided volume per micturition, =' and
another previous study using cystometry demonstrated that aged rats showed higher
bladder capacity and post-void residual volume compared with young rats. " These
discrepancies may be due to experimental differences including the strains and ages of
the rats investigated.

The relaxant responses to isoproterenol were not different between the groups.
This is in contrast to previous investigations showing that B-adrenoceptor mediated
relaxation is decreased with aging. **** Again, the discrepancies may be due to
differences in experimental techniques, species and ages of animals used.

Interestingly, the present in vitro functional investigation clearly demonstrated
that long-term CR had a preventive effect against the age-related detrusor contractile
impairments. In addition, long-term CR restored the reduced M3 receptor expression
and decreased collagen deposition to the levels of the Y group. A possible prophylactic
effect of CR on age-related fibrosis has been demonstrated in the rat aorta and heart. **
Our findings are the first demonstration of the preventive effects of CR against the
age-related impairments of the detrusor contractility that may be linked to decreased M3

receptor expression and progressive fibrosis.

19



Age-related physiological and biological changes, such as hyperlipidemia,

hypertension, and diabetic mellitus, have received strong attention as a possible
background for urinary bladder disorders. > In the present study, blood chemical
analysis revealed significantly higher serum lipid levels in the O + AL group. In
addition, the insulin value significantly increased in the O + AL group compared with
the Y and O + CR groups. These findings were in line with previous reports suggesting
that the insulin levels increase with aging because of insulin resistance, and that CR
decreased the insulin levels owing to improvement of insulin sensitivity in rats %% and
humans. *’ Furthermore, serum testosterone level significantly decreased with aging,
which is similar to observations in humans. ** Interestingly, long-term CR maintained
high serum testosterone level in the present study, which is consistent with a previous
report that long-term CR can prevent reductions in steroidogenesis. >’

There are some limitations in the present study. To evaluate bladder
function in vivo more in detail cystometric investigations would be desirable, and to
explore the background of aging-induced changes, gene- and protein-molecular
examinations will be required. Such further studies may reveal a possible mechanism of

age-related urinary bladder dysfunction. Furthermore, under the current experimental

conditions, the influence of major co-morbidities could be avoided, implying that
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changes occurring under “real life” conditions would not be detected, and that the
alterations demonstrated in the study may have been quantitatively underes‘cimatéd. It
may be that potential effects of CR could be more conspicuous if tested in animal
models of disease. Previously preventive effects of CR on chronie disease, such as
type 2 diabetes and cardiovascular disease, were revealed in human and animal
trials.”> M 1t is, however, difficult to translate these results of rodent studies to
human health problems. Recently, Lorenzini suggested that there are two possible
interpretations of CR, one is that excess fat is deleterious for health, and the second
that leanness from a normal body weight might contribute to health. * In the
present study, we were not able to determine whether the effects of CR could be

explained by any of these interpretations.
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Conclusions

The present study demonstrates for the first time that CR has a preventive
effect against age-related functional and morphological changes of the rat urinary
bladder. Thus, age-related impairment of detrusor contractility seems to be related to
decreased expression of M3 receptors ancj fibrosis of the bladder wall. These findings
may contribute to an increased understanding of the mechanisms of age-related detrusor

underactivity.
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Figure legends

Figure 1. Contractile responses to high K” (A), carbachol (CCh, B), and adenosine
triphosphate (ATP, C) and relaxant responses to isoproterenol (D) in young (Y), old fed
with normal food (O + AL), and old with calorie restriction (O + CR) groups of rats.
Values are expressed as means &= SEM. *P<0.05 compared with the Y group according

to the Kruskal-Wallis H test with a post hoc test.

Figure 2. Contractile responses to electrical field stimulation (EFS, A), and their
cholinergic- (B) and purinergic- (C) components in young (Y), old fed with normal food
(O + AL), and old with calorie restriction (O -+ CR) groups of rats. *P<0.05 compared
with the Y group according to Kruskal-Wallis H test with a post hoc test. P <0.05.%p
<0.01 compared between two groups according to the Kruskal-Wallis H test with a post

hoc test.

Figure 3. cDNA expressions of muscarinic 1,2 and 3 (M;, M and Mj3) receptors and
P2X; receptor in young (Y), old fed with normal food (O + AL), and old with calorie
restriction (O + CR) groups of rats.

P <0.05, P <0.01 compared between two groups according to the Kruskal-Wallis H
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test with a post hoc test.

Figure 4. Representative mictroscopic images with Masson-trichrome staining of the
bladder (A: low power field (upper) and high power field (lower)) and the
collagen-deposition rate in the detrusor layer (B) and whole bladder layer (C) in young
(Y), old fed with normal food (O + AL), and old with calorie restriction (O + CR)
groups of rats.

*p <0.05, P <0.01 compared between two groups according to the Kruskal-Wallis H

test with a post hoc test.
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5°- GTCAACACCGAGCTCAAGA- CAG-3°

M 5’- CGTGGTATAGAGGTTCATGGAGAAG-3’
5’-TCCCGGGCAAGCAAGAGTAG-3’
Ve 5-CCATCACCACCAGGCATATTGTTA-3
5"- AGGACTCGAGTGGGACAGCTAC-3"
M 5- ATATGGTTCAGT- CAATCCACAGTTC-3"
Purinoceptor
5’-TCCGTCTGATCC- AGTTGGTG-3"
P2X, 5- GATGAGGTCACTTGAGGTCTGG-3"
Gapdh 5- ATCAACGGGAAACCCATCAC-3"

5-GACATACTCAGCACCAGCATCAC-3’




Table 2. Parameters of frequency volume measurements for 24 h in young (Y), old fed with normal food (O
+AL), and old with calorie restriction (O + CR) groups of rats

Y (N=28) O+AL(N=38) O+CR(N=38)
Voiding frequency
; 14.88+1.11 14.38+2.08 18.13 £ 1.53
(times)
P value 0.427 (vs O + AL) 0.113 (vs O +CR) 0.100 (vs Y)
Voided volume in a day
10.01 £1.26 9.69 +2.87 9.19+0.77

(ml)

P value
Voided volume per micturition
(ml/time)

P value
Mean uroflow rate
(ml/s)

P value
Water intake
(ml)

P value
Food intake
(2)

P value

0.208 (vs O + AL)
0.70+0.10
0.753 (vs O + AL)
0.21 £0.02
0.298 (vs O + AL)
15.12 £ 4.02
0.397 (vs O + AL)
14.20 £ 1.30

0.529 (vs O + AL)

0.294 (vs O + CR)
0.62 £ 0.08
0.208 (vs O + CR)
0.18 + 0.02
0.401 (vs O + CR)
12.88+5.56"
0.012 (vs O + CR)
12.66+2.24"

0.046 ( vs O + CR)

0.674 (vs Y)
0.51+0.02
0.208 (vs Y)
0.17 +0.003
0.121 (vs Y)
25.68 +1.35
0.058 (vs Y)
19.52+1.06 "

0.006 (vs Y)

The values are expressed as mean + SEM.

N = number of animals

**P<0.01 : significant difference from Y (Kruskal-Wallis H test with a post hoc test)
#p<0.05 : significant difference from O + CR (Kruskal-Wallis H test with a post hoc test)



Table 3. , , ) in
young (Y), old fed with normal food (O + AL), and old with calorie restriction (O + CR) groups of rats
A: body and bladder weights
Y (N=16) O+AL(N=15) O+ CR(N=106)
Body weight iy
© 369.19 + 7.75 407.8 £ 11.39 #* ™ 255.94 £ 3.13 ***
o
L
Bladder weight ; ~ "
, 93.38 £2.59 108.7543.98 ** 7 82.37 £ 1.58 **
(mg)
Bladder / body weight 44 ,
0.25+0.01 0.27+0.027 0.32 £ 0.01 **=*
(mg/g)
B: cardiac parameters
Y (N=238) O+ AL (N=28) O+CR(N=3§)

Heart rate
(bpm)
Systolic blood pressure

403.96 £ 17.41

35213+ 24.13

368.63 £ 10.39

119.54+3.90 122.08 £7.22 119.79 £ 3.01
(mmHg)
Diastolic blood pressure
96.88 +2.81 94.92 £ 6.16 97.96 + 3.87
(mmHg)
Mean blood pressure
. 85.67+£2.82 80.08 £ 6.83 87.25 £4.55
(mmHg)
C: blood chemical analysis
Y (N=38) O+AL(N=238) O+CR(N=23)
Albumin (g/dl) 373 +£0.02 3.6 £0.11 3.61 +=0.09
BUN (mg/dl) 22.1+0.34 17.33 £ 0.57 *** 16.7 = 0.85 *#*
Creatinine (mg/dl) 0.29 +0.01 0.33+0.01 ** 0.22 £ 0.01 **
HDL-Chol (mg/dl) 23.75+0.84 30.75+£2.15 % 27.88+2.70
LDL-Chol (mg/dl) 8.0+0.24 19.75 & 1.47 ##x 7 5.63 %+ 0.32 **
Total-Chol (mg/dl) 69.63 = 1.31 152.25 4 13,55 ##% # 62.38 +3.18
Triglyceride (mg/dl) 86.25 + 8.86 114.75 1832 % 32.13 4 3.22 **
free fat acid (LEQ/1) 344,75 £ 68.28 311.13+30.39 % 153.75 £ 47.56 **
Glucose (mg/dl) 158.5+11.58 15043 £7.34 147.38 £ 10.91
HbAlc (%) 5.64+0.13 4.67 £ 0.10 *** (n=7) 4,93 +0.06 ***
insulin (ng/ml) 1.31+£0.27 246+ 029 %7 1.41+0.23
testosterone (ng/ml) 3.42+1.02 0.28+0.11 **, * 2.05+0.57
E2 (pg/ml) 25.25+0.97 3113 22,12 %, # 38.5 4+ 3.96 ***
ADH (pg/ml) 110.95+27.65 162.24 £ 41.78 (n=7) 126.71 = 19.08

The values are expressed as mean = SEM. N = number of animals
*P<0.05, **P<0.01, ***P<0.001: significant difference from Y (Kruskal-Wallis H test with a post hoc test)
#p<0.05, #P<0.01, #P<0.001: significant difference from O + CR (Kruskal-Wallis H test with a post hoc

test)
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