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Figure 1. Characteristics of gemcitabine-resistant MiaPaCa2 cell clones (MiaPaCa2-RGs) and PSN1 cell clones (PSN1-RGs). (A, B) MTT assay
showed significantly lower antitumour effect of gemcitabine in MiaPaCa2-RGs than in parental MiaPaCa2 cells (MiaPaCa2-P) and in PSN1-RGs than
in parental PSN1 cells (PSN1-P). Data are mean *s.d. of triplicate independent experiments. *P<0.05 compared with parental cells. (C) Schematic
diagram of the results of microarray analysis. The protocol identified eight miRNAs in common with > 1.5 average fold relative to parental, keeping
adequate expression quantities and excluding miRNA*s both in MiaPaCa2-RGs and PSN1-RGs. (D) Real-time gRT-PCR demonstrated significantly
higher miR-320c expression in MiaPaCa2-RGs than in MiaPaca2-P. Data are mean + s.d. of triplicate independent experiments. *P<0.05.

[ Fold change (relative to MiaPaCa2-P) ” Fold change (relative to PSN1-P) I

miR no. Fold change MiaPaCa2-RGs P-value PSN1-RGs P-value Ref sequence ID
(average) (average) (average)

hsa-miR-320c . MIMAT0005793
hsa-miR-2%a 1.85 213 0.0097 1.57 0.2751 MIMAT0000086
hsa-miR-10a 1.69 1.64 0.0202 1.73 0.0606 MIMAT0000253
hsa-miR-30c 1.68 1.54 0.0222 1.81 0.0384 MIMAT0000244
hsa-miR-30a 1.65 1.51 0.0243 ) 179 0.2634 MIMAT0000087
hsa-miR-29b 1.58 1.53 0.0026 1.63 0.3311 MIMAT0000100

hsa-miR-320a 1.56 1.51 0.0142 1.61 0.0556 MIMATO0000510

hsé—miRJ 246 . . . MIMAT0005898

Abbreviations: MiaPaCa-P = parental MiaPaCa2 cells; MiaPaCa2-RGs = gemcitabine-resistant clones of MiaPaCa2; miR and miRNA = microRNA; PSN1-P = parental PSN1 cells; PSN1-RGs =
gemcitabine-resistant clones of PSN1.

(Figure 2C). To further assess the effect of miR-320c on the demonstrated significant reduction of viability of anti-miR-320c-
gemcitabine resistance, anti-miR-320c was transfected into Mia- transfected cells compared with the control cells (Figure 2D). These
PaCa2-RG1. Real-time qRT-PCR showed sufficient inhibition of results indicate that, at least partially, miR-320c induces gemcita-
miR-320c expression for over 72 h (Figure 2B), and the MTT assay  bine resistance in MiaPaCa2 cells.
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Figure 2. miR-320c induced gemcitabine resistance in MiaPaCa2 cells. (A, B) Real-time qRT-PCR confirmed overexpression (MiaPaCa2-P
transfected with pre-miR-320c) and suppression (MiaPaCa2-RG1 transfected with anti-miR-320c) of miR-320c for >72h. (C, D) MTT assay showed
significant changes in resistance to gemcitabine by gain-of-function of miR-320c in MiaPaCa2-P and loss-of-function in MiaPaCa2-RG1. Data are

mean t s.d. of triplicate independent experiments. *P<0.05.

miR-320c inhibits the response to gemcitabine by targeting
SMARCCI. Few studies have reported miR-320 expression in
gastrointestinal cancers, and little is known about the function of
this miRNA. As putative targets of miR-320c, 539 genes were
predicted by TargetScan. Among them, SMARCCI, a component
of the chromatin remodeling complex, also known as a tumour
suppressor, was selected for further analysis. SMARCCI expression
was lower in MiaPaCa2-RG1 than in MiaPaCa2-P (Figure 3A). We
investigated direct binding of miR-320c and the SMARCCI gene
by luciferase assay in MiaPaCa2-P and observed reduction of the
luciferase activity in the pre-miR-320c-treated cells in comparison
with negative control (Supplementary Figure S1). Pre-miR-320c
transfection decreased SMARCCI1 expression, and anti-miR-320c
transfection increased it (Figures 3B and C), suggesting that
SMARCCI is one of the target genes of miR-320c in MiaPaCa2
cells. Next, we used siRNA for SMARCCI to validate its
involvement in the resistance to gemcitabine. Knockdown of
SMARCCI1 was confirmed by western blot analysis (Figure 3D).
The MTT assay demonstrated that transfection of siSMARCCI1
enhanced the resistance of MiaPaCa2-P to gemcitabine
(Figure 3E). These results suggest that SMARCC1 mediates, at
least in part, the miR-320c-related resistance to gemcitabine.

SMARCC1 expression in clinical pancreatic cancer samples.
Pancreatic cancer samples of 66 patients who underwent RO
resection were immunohistochemically stained for SMARCCI1
expression. Whereas the expression of SMARCCI in pancreatic
cancer lesions varied among the patients, a homogeneous staining
for SMARCC1 was observed in the nucleus in normal pancreatic
duct cells (Figure 4A). Although SMARCCI1 has shown to appear
not only in the nucleus but also in the cytoplasm in the previous
study (Andersen et al, 2009), functional SMARCCI1 protein is

considered to localise in the nucleus, therefore we defined
SMARCCI-positive samples as having the spotted granular nuclear
pattern (Figure 4B) and SMARCCI1-negative samples as having the
cytoplasmic pattern (not stained in the nucleus) (Figure 4C) or the
negative pattern (not stained in the nucleus or the cytoplasm)
(Figure 4D) in pancreatic cancer lesions. Among the 66 patients
examined, 31 (47.0%) showed positive staining whereas 35 (53.0%)
patients were negative for SMARCCI.

SMARCCI expression was not associated with overall and
disease-free survival. Of all the 66 patients, the median overall
survival was 17.0 months (3.5~147.7), and the median disease-free
survival was 11.1 months (2.0-147.7). There were no significant
differences between the groups who were SMARCCI1 expression
positive and negative with respect to age, sex, histopathological
type (well/mod/poor), tumour size, tumour location (head/body/
tail), pathological depth of tumour (pT1/T2/T3), and whether or
not gemcitabine was used as chemotherapy. However, pathological
lymph node metastasis and pathological stage were significantly
different in the two groups (P=0.0383, P=0.0383, respectively)
(Supplementary Table S4). The Kaplan-Meier overall survival
estimates were not significantly different for patients who were
SMARCCI positive compared with those with SMARCC1-negative
expression (median overall survival: 1.693 wvs 2.189 years,
P=10.5585; Supplementary Figure S2A). With regard to disease-
free survival, there was no significant difference between the
SMARCCI1-positive and -negative groups (median disease-free
survival, 0.956 vs 1.334 years, P=0.5633; Supplementary Figure
S2B).

SMARCC1 was a useful predictor of clinical response to
gemcitabine therapy. Of the 66 patients, 26 received therapy
with single-agent gemcitabine. In 23 patients, this treatment was
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Figure 3. The miR-320c-related resistance to gemcitabine treatment is mediated through SMARCC1. (A) Real-time gqRT-PCR and western blot
analysis confirmed the significantly low SMARCC1 expression in MiaPaCa2-RG1 compared with MiaPaCa2-P. (B) SMARCC1 gene and protein
expression was confirmed to be significantly suppressed by pre-miR-320c transfection in real-time gRT-PCR and western blot analysis. (C) real-time
gRT-PCR and westemn blot analysis showed enhancement of SMARCC1 gene and protein expression levels by anti-miR-320c transfection.

(D) Knockdown of SMARCC1 in MiaPaCa2-P was confirmed in western blot analysis. (E) MTT assay showed that knockdown of SMARCC1 induced
resistance to gemcitabine treatment. Data are mean *s.d. of triplicate independent experiments. *P<0.05.

initiated at the time of tumour recurrence. To elucidate the
relationship between SMARCCI expression and gemcitabine
therapy, we used survival after recurrence, which represented the
period from starting gemcitabine therapy or other therapies in 51
patients with relapse, until death. There were no significant
differences between patients with and without gemcitabine therapy
in clinicopathological factors (Table 2). First, we examined the
survival benefit of gemcitabine. The 23 patients who were treated

with gemcitabine had a significantly better survival than those who
did not (P =0.0046; Supplementary Figure S3). After dividing
patients who were treated with gemcitabine into SMARCCI-
positive and -negative groups, only patients who were SMARCC1
positive benefited from gemcitabine therapy (P=0.0463). The
relationship between SMARCCI and survival after recurrence was
not significant in patients treated without gemcitabine therapy
(P=0.9095; Figure 5).
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Figure 4. Immunohistochemistry for SMARCC1 in clinical samples. (A-D) Haematoxylin and eosin staining on the left side and SMARCC1
staining on the right side. (A) A normal pancreatic duct sample. SMARCC1 expression was identified in the nucleus homogeneously in
normal pancreatic duct cells. (B) A representative SMARCC1-positive sample. SMARCC1 staining was in the spotted granular nuclear pattern
in pancreatic carcinoma cells. (C, D) Representative SMARCC1-negative samples. SMARCCT1 staining was in the cytoplasmic pattemn (not
stained in the nucleus) or in the negative pattern (not stained in the nucleus and the cytoplasm) in pancreatic carcinoma cells. Bar= 100 um.

DISCUSSION

Several studies have examined the involvement of miR-320c in
various types of cancer. It has been reported that miR-320c is
upregulated in breast cancer (Yan et al, 2008), retinoblastoma
(Zhao et al, 2009), and malignant transformed bronchial epithelial
cells (Shen et al, 2009; Duan et al, 2010), whereas it is
downregulated in lung cancer (Gao et al, 2011) and in

cholangiocarcinoma (Chen et al, 2009). It has also been reported
that miR-320 is regulated by PTEN in mammary stromal
fibroblasts (Bronisz et al, 2012), correlates with recurrence-free
survival in colon cancer (Schepeler et al, 2008), and inhibits
proliferation in leukaemia (Schaar ef al, 2009). Regarding the
association of miR-320 and drug resistance, it has recently been
reported that miR-320 facilitates chemotherapeutic drug-triggered
apoptosis in cholangiocarcinoma (Chen et al, 2009). The present
study identified miR-320c as one of the common upregulated
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Table 2. Relationship between gemcitabine therapy and

clinicopathological factors

| Gemcitabine therapy |

Treated Not treated Povalue

(n=23) (n=28)
Age (<65: = 65 years) 13:10 12:16 0.3314
Sex (male:female) 11:12 14:14 0.8772
Histopathological type (well 21:2 22:6 0.2134
or mod:poor)
Tumour size 12:11 12:16 0.5071
(<27: 227 mm)
Tumour location (head:body 18:5 22:6 0.9786
or tail)
Pathological depth of 2:21 1:27 0.4390
invasion pT (T1 or T2:T3)
Pathological lymph node 5:18 11:17 0.1790
metastasis pN
(negative:positive)
Pathological stage (IA or IB 5:18 11:17 0.1790
or lIAIB or IV)
SMARCC1 expression 11:12 15:13 0.6830
(~:4)
Abbreviations: mod=moderately differentiated; poor=poorly differentiated; well =well
differentiated.
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Figure 5. Relationship between SMARCC1 expression and survival
after recurrence. Survival after recurrence curves showed a significantly
better survival rate for SMARCC1-positive patients than for SMARCC1-
negative patients treated with gemcitabine therapy (*P=0.0463), but
survival was not significantly different in patients treated without
gemcitabine therapy (P=0.9095).

miRNAs in gemcitabine-resistant pancreatic cancer cells compared
with their parental cells, and we showed that miR-320c induced the
resistance to gemcitabine. Among the putative targets of miR-320c
by TargetScan, we focussed on SMARCCI, a switch/sucrose
nonfermentable (SWI/SNF)-related matrix-associated actin-depen-
dent regulator of chromatin subfamily C member 1, also known as
BAF155 (BRGl-associated factor 155), as a candidate molecule
responsible for miR-320-mediated drug resistance because of

recent studies suggesting a role of chromatin remodeling in some
cancers. Drug resistance is the major cause of treatment failure in
cancer, yet the multifactorial mechanisms responsible for resis-
tance remain largely unknown. Recently, several studies reported
the contribution of chromatin remodeling in drug resistance in
varjous types of cancer, such as the DEK oncogene in melanoma
(Khodadoust et al, 2009), remodeling and spacing factor 1 in
ovarian cancer (Choi et al, 2009), enhancer of zeste homolog 2 in
pancreatic cancer (Ougolkov ef al, 2008), and chromatin remodel-
ing at the topoisomerase II-beta promoter in neuroblastoma (Das
et al, 2010). Unlike DNA mutations, which are essentially
irreversible in cancer, chromatin alterations, including both
histone modifications and nucleosome remodeling, are potentially
reversible and thus might constitute attractive therapeutic targets
(Wilson and Roberts, 2011). The SWI/SNF chromatin remodeling
complex is a 2-Mda multisubunit complex first identified in yeast
and highly conserved among eukaryotes (Peterson, 1996).
Transcriptional activation and efficient transcription of genes
require dynamic structural changes in chromatin, and the ATP-
dependent SWI/SNF complex is involved in chromatin restructur-
ing (Percipalle and Farrants, 2006).

The SWI/SNF chromatin remodeling complex consists of a
catalytic ATPase subunit, core subunits, and variant subunits.
SMARCCI is contained in the core subunits. The SWI/SNF
complexes have a widespread role in tumour suppression (Wilson
and Roberts, 2011). Inactivating deletion and mutations in SWI/
SNF subunits have been reported at high frequency in various
cancers, such as SNF5 in rhabdoid tumours (Versteege et al, 1998),
BAF180 and ARID1A in renal cell carcinoma (Varela ef al, 2011),
ARID1A (Jones et al, 2010; Wiegand et al, 2010) and BAF155
(DelBove et al, 2011) in ovarian carcinoma, and BRGI1, BRM,
ARID1A, ARID1B, and BAF180 in pancreatic cancer (Shain ef al,
2012). In addition, some SWI/SNF subunit deficiencies correlate
with malignant potential, including drug resistance and shorter
survival in melanoma (Lin ef al, 2009) and in ovarian carcinoma
(Katagiri et al, 2012) and glucocorticoid resistance in acute
lymphoblastic leukaemia (Pottier et al, 2008), and as a severe risk
factor for histologically malignant gastric cancer (Yamamichi et al,
2007). Some studies have reported that SMARCCI1 deficiency
prevents DNA damage-induced cell death (Ahn et al, 2011) and
predicts short-term survival of colorectal cancer (Andersen et al,
2009). In addition, knockdown of SMARCC1 promotes self-
renewal gene expression in embryonic stem cells (Schaniel et al,
2009). In the present study, we used MiaPaCa2-P and MiaPaCa2-
RGl and showed that knockdown of SMARCCI induced
gemcitabine resistance, and both gain-of-function and loss-of-
function of miR-320c inversely altered the expression level of
SMARCCI protein. Although SMARCC1 may be only one of the
responsible molecules, the molecule is shown to be involved, at
least partly, in the miR-320c-related drug-resistance.

Evaluating the expression of miR-320c in clinical specimens
may be crucial in predicting the drug-resistance, yet SMARCC1
may be practically easier and more useful than miR-320c. Thus, in
the present study, we evaluated the clinical importance of
SMARCCI rather than miR-320c. We have previously reported
RRM1 expression as the beneficial predictor of the clinical
response to gemcitabine in pancreatic cancer patients after a
complete resection (Akita et al, 2009). The present study revealed a
significant association between SMARCCI1 expression and the
clinical response to gemcitabine therapy in completely resected
pancreatic cancer patients. Therefore, RRMI, the key enzyme
involved in DNA synthesis, and SMARCC]I, the core subunit of the
SWI/SNF chromatin remodeling complex, appear to make a
contribution to drug-resistance mechanisms in separate processes
and not to depend on each other. SMARCC1 expression could be a
newly independent predictor of the clinical response to gemcita-
bine in pancreatic cancer patients.
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In conclusion, we demonstrated in the present study that miR-
320c inhibited the anti-cancer effect of gemcitabine in pancreatic
cells and that SMARCC1 mediated this effect. The response to
gemcitabine in MiaPaCa2 cells was controlled by genetic
manipulation of miR-320c and SMARCCI. In addition, clinical
examination revealed that only patients who were SMARCCI
positive benefited from gemcitabine therapy with regard to survival
after recurrence. Considered together, the results suggest that miR-
320c/SMARCCI1-mediated gemcitabine resistance is a potential
legitimate target for the treatment of pancreatic cancer.

We thank Nariaki Matsuura (Department of Molecular Pathology,
Graduate School of Medicine, Osaka University, Osaka, Japan) for
advice on immunohistochemical analysis.
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We established an angioimmunoblastic T-cell lymphoma (AITL) mouse model using NOD/Shi-scid, IL-
2Ry™! mice as recipients. The immunohistological findings of the AITL mice were almost identical to
those of patients with AITL. In addition, substantial amounts of human immunoglobulin G/A/M were
detected in the sera of the AITL mice. This result indicates that AITL tumor cells helped antibody produc-
tion by B cells or plasma cells. This is the first report of reconstituting follicular helper T (TFH) function
in AITL cells in an experimental model, and this is consistent with the theory that TFH cell is the cell of
origin of AITL tumor cells.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Angioimmunoblastic T-cell lymphoma (AITL) represents a dis-
tinct clinicopathological entity among nodal peripheral T-cell
lymphomas. A complex network of interactions between AITL
tumor cells and the various reactive cellular components of the
tumor microenvironment forms the clinical and histological fea-
tures of AITL [1]. Because of its complexity, analysis of the
immunopathogenesis of AITL in vitro seems to be impossible. On
the other hand, recent advances in the development of novel mouse
models, in which human hematopoietic and/or immune systems
could be reconstituted, have contributed to analyzing the patho-
genesis of various human diseases and evaluating the effects of
therapeutic agents [2-6]. In the present study, we aimed to estab-
lish a novel AITL mouse model in which both primary tumor
cells of human AITL and microenvironmental reactive cells engraft
and interact with each other, using NOD/Shi-scid, IL-2Ry™! (NOG)
mice [7,8] as recipients, and analyzed the immunopathogenesis of
AITL.

* Corresponding author. Tel.: +81 52 853 8216; fax: +81 52 852 0849.
E-mail address: itakashi@med.nagoya-cu.ac.jp (T. Ishida).

0145-2126/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.leukres.2012.09.009

2. Materials and methods
2.1. Human cells

The donors of tumor cells provided written informed consent before sampling
in accordance with the Declaration of Helsinki. The present study was approved
by the institutional ethics committee of Nagoya City University Graduate School of
Medical Sciences.

2.2. Animals

NOG mice were purchased from the Central Institute for Experimental Animals
and used at 6-8 weeks of age. All of the in vivo experiments were performed in
accordance with the United Kingdom Coordinating Committee on Cancer Research
Guidelines for the Welfare of Animals in Experimental Neoplasia, Second Edition,
and were approved by the ethics committee of the Center for Experimental Animal
Science, Nagoya City University Graduate School of Medical Sciences.

2.3. Primary AITL cell-bearing mouse model

The affected lymph node cells from two patients with AITL were suspended in

. RPMI-1640, and intraperitoneally (i.p.) injected into NOG mice. Lymph node cells

of AITL patient 1 were injected at a dose of 2.5 x 107 lymph node cells/mouse (total
2 mice), and those of patient 2 were injected at a dose of 4.0 x 108 lymph node
cells/mouse (total 3 mice). When mice that had received lymph node cells from
patient 1 or 2 became weakened, they were sacrificed at day 34 and 48, respectively.

2.4. Antibodies and flow cytometry

The following antibodies were used for flow cytometry: MultiTEST CD3 (clone
SK7) FITC/CD16 (B73.1)+CD56 (NCAM 16.2) PE/CD45 (2D1) PerCP/CD19 (SJ25C1)
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Fig. 1. Primary AITL cell-bearing NOG mouse model. (A) Microscopic images with hematoxylin and eosin staining of the affected lymph node of AITL patient 1 are shown.
(B) Macroscopic image of a primary AITL cell-bearing NOG mouse is shown. (C) Sections of the AlTL-affected mouse spleen with hematoxylin and eosin staining are shown.
(D) The presence of human CD45-positive cells in the infiltrate of the mouse spleen, bone marrow, and blood was determined by flow cytometric analysis of human CD3 and

CD19 expression.

APC Reagent, MultiTEST CD3 FITC/CD8 (SK1) PE/CD45 PerCP/CD4 (SK3) APC Reagent.
All antibodies were purchased from BD Biosciences (San Jose, CA, USA). Whole blood
cells from mice were treated with BD FACS lysing solution (BD Biosciences) for lysing
red blood cells. Cells were analyzed by a FACSCalibur (BD Biosciences) with the aid
of Flow]o software (Tree Star, Inc., Ashland, OR, USA).

2.5. Immunopathological analysis

Hematoxylin and eosin (HE) staining and immunostaining using antihuman
alpha-smooth muscle actin (a-SMA) (1A4; DAKO, Glostrup, Denmark), VEGF-A
(sc-152, rabbit polyclonal, Santa Cruz, Heidelberg, Germany), CD3 (SP7; SPRING
BIOSCIENCE, Pleasanton, CA, USA), CD20 (L26; DAKO), PD1 (programmed death 1,
CD279) (ab52587, Abcam, Cambridge, MA, USA), CD138 (B-B4, Serotec, Raleigh,
NC, USA), B cell lymphoma 6 (BCL6) (EP529Y; Epitomics, Burlingame, CA, USA),
CD45R0 (UCHL1, DAKO), immunoglobulin kappa (KP-53, Novocastra, Newcastle,
UK) and lambda light chain (HP-6054, Novocastra) were performed. The presence
of Epstein-Barr virus encoded RNA (EBER) was examined by in situ hybridization
using EBER Probe (Leica Microsystems, Newcastle, UK) on formalin-fixed, paraffin-
embedded sections. Double immunostaining analysis of human CD45R0 and human
BCL6 was performed as previously described [9]. Briefly, formalin-fixed, paraffin-
embedded sections of AITL-affected spleen were immunostained using antibodies
against human CD45R0 and human BCL6. CD45R0 protein in the membrane was

visualized in purple (Bajoran purple, Biocare Medical, Concord, CA, USA) and BCL6
protein in the nucleus was visualized in brown (DAB, Leica Microsystems).

2.6. Clonality assay

Clonal assessment of the AITL cells was performed using IdentiClone™ TCRB
Gene Clonality Assay (In vivoScribe Technologies, Inc., San Diego, CA, USA) according
to the instructions of the manufacturer. Southern blotting analysis of T cell receptor
CB1 gene was performed at SRL, Inc. (Tokyo, Japan).

2.7. Mouse serum protein

The mouse serum protein fraction was analyzed at SRL, Inc. Human
immunoglobulin (Ig) G/A/M in mice serum were also measured at SRL, Inc.

3. Results

3.1. Establishment of the primary AITL cell-bearing NOG mouse
model

Microscopic images of the affected lymph node of AITL patient 1
are shown in Fig. 1A. There was marked proliferation of arborizing
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CD20

Fig. 2. Immunohistochemical analysis of primary AITL cell-bearing NOG mouse model. (A) Microscopic images with hematoxylin and eosin staining, and staining by anti-CD3,
CD20, PD1, and CD138, of the affected lymph node of AITL patient 2 are shown. (B) Immunohistochemical images of sections of the spleen of a primary AlITL-affected mouse

that had been injected with affected lymph node cells from patient 2, with hematoxylin
kappa and lambda light chain, VEGF-A, and alpha-smooth muscle actin (x-SMA).

high endothelial venules (HEV). There was polymorphic infiltrate
composed of small to medium-sized lymphocytes with clear to
pale cytoplasm, distinct cell membranes and minimal cytological
atypia. The neoplastic cells were admixed with variable num-
bers of small reactive lymphocytes, eosinophils, plasma cells, and
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and eosin staining, and staining by anti-CD3, CD20, PD1, CD138, immunoglobulin

histiocytes. These histological findings are typical of AITL [10].
NOG mice bearing AITL cells from patient 1 presented marked
splenomegaly and mild hepatomegaly. The macroscopic appear-
ance of a primary AITL cell-bearing NOG mouse from patient 1 is
shown in Fig. 1B. Microscopic analysis revealed that the mice spleen
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architectures were partially replaced by the infiltration of small to
medium-sized lymphocytes with clear to pale cytoplasm, distinct
cell membranes and minimal cytological atypia. The infiltrate also
included plasma cells. Marked proliferation of HEV was seen in the
spleen (Fig. 1C).

Flow cytometric analysis demonstrated that human CD3-
positive T cells as well as CD19-positive B cells infiltrated into the
spleen of the mice (Fig. 1D, left 2 panels). Both human T and B
cells also infiltrated the mice bone marrow, but only T cells were
detected in the blood (Fig. 1D, right 2 panels).

Microscopic images of the affected lymph node of AITL patient
2 are shown in Fig. 2A. There was polymorphic infiltrate composed
of small to medium-sized lymphocytes including CD3-positive T
cells as well as CD20-positive B cells. Some of the infiltrated celis
were positive for PD1, which is known to be expressed on follicular
helper T (TFH) cells [11,12] as well as AITL tumor cells [13]. These
histological findings are also typical of AITL[10].

NOG mice bearing AITL cells from patient 2 presented marked
splenomegaly and mild hepatomegaly. Immunohistochemical
analyses of the AITL mice from patient 2 also demonstrated that the
mice spleen architectures were partially replaced by the infiltration
of small to medium-sized lymphocytes with clear to pale cytoplasm
(Fig. 2B, upper left 2 panels). CD3-positive T cells (Fig. 2B, upper
right 2 panels) as well as CD20-positive B cells (Fig. 2B, middle left 2
panels)infiltrated the mice spleen. Some of the infiltrated cells were
positive for PD1 (Fig. 2B, middle right 2 panels). The infiltrated cells
included CD138-positive plasma cells with no slanted distributions
of immunoglobulin kappa or lambda light chain (Fig. 2B, lower
left 3 panels). EBER-positive cells were not observed in the infil-
trate (data not shown). There were abundant SMA-positive blood
vessels in the spleen, and the infiltrate included VEGF-producing
cells, most of which were AITL tumor cells (Fig. 2B, lower right 2
panels). These observations collectively indicated that the infiltrate
consisted of PD1-positive AITL cells, a large number of reactive lym-
phocytes including both B and T cells, and polyclonal plasma cells,
and there was marked vascular proliferation in the spleen. These
immunohistological findings in the NOG AITL mice (Figs. 1Cand 2B)
were nearly identical to those in the respective donor AITL patients
(Figs. 1A and 2A).

3.2. Human antibody production in the AITL NOG mice

Given the observation that there were abundant reactive human
lymphocytes including B cells and plasma cells in AlTL-affected
mice spleen, we investigated whether they produced human Ig in
the AITL NOG mice. As shown in Fig. 3A, significant Ig fractions
and substantial amounts of human IgG/A/M were detected in the
AITL mice from both donors. Double immunostaining revealed that
human CD45RO- and BCL6-double-positive cells were detected in
AlTL-affected spleen (Fig. 3B). On the other hand, CD45R0O~BCL6*
cells were considered to be reactive B cells, because BCL6 is a trans-
criptional repressor expressed by germinal center B cells [14,15].
These observations collectively indicated that CD45RO*BCL6* AITL
tumor cells helped antibody production by B cells or plasma cells.
CD45R0O*BCL6~ cells were also detected in the spleen, and they
were reactive T cells with memory phenotype [16].

3.3. Serial transplantations in AITL NOG mice

Suspensions of spleen cells from the mice receiving primary
lymph node cells from AITL patient 1 were serially i.p. transplanted
into fresh NOG mice. The second NOG mice were sacrificed when
they became weakened. The second NOG mice presented marked
splenomegaly and mild hepatomegaly (data not shown). Flow cyto-
metric analysis demonstrated that human CD3-positive T cells,
including both CD4 and CD8 cells, infiltrated into the mice liver,

A AlTLmousel AlTL mouse 2 control mouse

@@ ©

et

1gG <£0.3 mg/dL
lgA <0.2 mg/dL
lgM <0.2 mg/dL

IgG 690 mg/dL
IgA 15.0mg/dL
IgM 138 mg/dL

IgG 756 mg/dL
lgA 15.5 mg/dL
1gM 42.9 mg/dL

Fig. 3. Human antibody production in the AITL NOG mice. (A) Serum protein frac-
tion of NOG mice that had been injected with affected lymph node cells from AITL
patient 1 and 2, and that of a naive NOG mouse. (B) Double immunostaining analy-
sis for human CD45R0 and BCL6 in the AlTL-affected mouse spleen. CD45R0 in the
membrane is visualized in purple and BCL6 in the nucleus is visualized in brown.

spleen, and bone marrow. In contrast to the first AITL mice, infiltra-
tion of B cells (CD4 and CD8 double negative cells) was not observed
(Fig. 4A, left 6 panels). In the subsequent 3rd AITL mice, infiltration
of CD8 cells was markedly decreased, and in the 4th AITL mice, the
infiltrate of the liver, spleen, and bone marrow consisted of almost
exclusively CD4-positive T cells (Fig. 4A, right 6 panels). Along with
the disappearance of infiltrating B cells, human Ig was not detected
in the sera of 2nd, 3rd and 4th AITL NOG mice (Fig. 4B). Clonality
analysis by PCR detected clonal rearrangement of the T cell receptor
in the affected lymph node from AITL patient 1 (Fig. 4C, top panel),
which was confirmed by Southern blotting analysis of the T cell
receptor CB1 gene (Fig. 4D, left panels, arrows). Clonality analysis
by PCR demonstrated that there were two T cell clones in the spleen
cells of the first AITL NOG mice, and the product size of one of these
two was the same as that of the original AITL patient (Fig. 4C, upper
2 panels, arrows), indicating that a neoplastic T cell clone from the
original AITL patient engrafted and proliferated in the first AITL
NOG mice. This observation was confirmed by Southern blotting
analysis (Fig. 4D, arrows). The same two T cell clones were detected
in the 3rd and 4th AITL mice as those in the 1st AITL mice (Fig. 4C,
lower 3 panels, arrows and arrowheads).

3.4. Macroscopic and microscopic findings of 4th AITL mice

The 4th AITL mice presented marked splenomegaly and mild
hepatomegaly (Fig. 5A). Mice spleen architectures were almost
wholly replaced by the infiltration of small to medium-sized
lymphocytes with clear to pale cytoplasm. There was also marked
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Fig. 4. Serial transplantations of spleen cells from AITL NOG mice. (A) The presence of human CD45-positive cells in the liver, spleen and bone marrow of the 2nd, 3rd, and
4th AITL NOG mice was determined by human CD4 and CD8 expression. (B) Serum protein fraction of 2nd, 3rd, and 4th AITL NOG mice. (C) Clonality analysis by PCR. Arrow
and arrowhead indicate the clonal rearrangement of T cell receptor. (D) Clonality analysis by Southern blotting of T cell receptor C31 gene. 1, 2, and 3 indicate BamH I, EcoR
V, and Hind III, respectively. Arrow and arrowhead indicate the rearrangement band.
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Fig. 5. Macroscopic and microscopic findings of 4th AITL mice. (A) Macroscopic image of a 4th AITL mouse. (B) Immunohistochemical images of the 4th AITL mouse spleen
with hematoxylin and eosin staining, and staining by anti-BCLG, CD45R0, and CD20 antibodies.

vascular proliferation in the spleen. Most of the infiltrated cells
were positive for CD45R0 and BCLG. In contrast to the 1st AITLNOG
mice, there were no CD20- (Fig. 5B) or CD138-positive reactive cells
(data not shown), which were consistent with the results of flow
cytometric analyses (Fig. 4A).

4. Discussion

The recent identification of CD4* TFH cell as the cell of origin
of AITL provides a rationale to explain some of the clinical and
histological features of AITL. A fundamental function of TFH cells
is regulation of B cell-mediated humoral immunity. It has been
known that in humanized NOG mice reconstituted with human
CD34" hematopoietic stem cells, there was little IgG production
because of the inappropriate differentiation of human B cells in
the mouse environment [17-20]. Considering this fact, it was strik-
ing that the present AITL NOG mice produced polyclonal human Ig
including IgG. This was direct evidence that CD45RO*BCL6* AITL
tumor cells functioned as TFH cells, and to the best of our knowl-
edge, thisis the first report to reconstitute TFH function in AITL cells
in an experimental model either in vitro or in vivo. This could also
explain one of the characteristic clinical features of AITL patients,
hypergammaglobulinemia. In the AITL mice, human B cells were
observed in the spleen and bone marrow, but not in blood, sug-
gesting that antibody production mediated by T cells might need
a suitable microenvironment like the germinal center of lymph
nodes.

Serial transplantations of spleen cells of AITL NOG mice resulted
in the reduction of reactive components such as B cell lineage and
CD8-positive cells. CD4-positive AITL neoplastic cells can survive
for a long period of time only by interacting with mouse envi-
ronment cells. As a result, they failed to interact with human B
or plasma cells, leading to the absence of human Ig production in
the 2nd, 3rd, and 4th AITL NOG mice.

In general, not only monoclonal T cell receptor rearrangement,
butalsooligoclonal rearrangements were detected in AITL cases[1].
In the present study, although only one T cell clone (clone #1) was
detected in an AITL patient 1, another T cell clone (clone #2) was
also detected in the AITL NOG mice. We surmise that there were two
neoplastic clones in the patient’s affected lymph node, although the
level of clone #2 was below the detectable limit. Because NOG mice
have severe multiple immune dysfunctions, clone #2 was able to
increase in the mice to a detectable level.

The immunohistological findings of the present AITL mice were
almost identical to those of AITL patients; i.e., only a fraction of

AITL neoplastic cells, which were small to medium-sized cells with
clear cytoplasms and minimal cytologic atypia, were admixed with
areactive population of small lymphocytes including B and T cells,
and plasma cells, and the spleen showed prominent vasculariza-
tion. On the other hand, there was a lack of myeloid lineage cells
such as eosinophils, histiocytes, and follicular dendritic cells, in the
background inflammatory components, probably due to their fun-
damentally short life span. There was also a lack of EBV-positive
B cells in the infiltrate in the present AITL mice, which could
be explained by the fact that there was a lack of EBV-positive B
cells in the background inflammatory components in the affected
lymph node of both donors. In this type of analysis, attention
should be paid to cross-reaction of antihuman antigens antibod-
ies to mouse cells. The antihuman CD3, CD20, PD1, CD138, BCLG,
CD45R0, immunoglobulin kappa and lambda light chain antibod-
ies in the present study did not react with hematopoietic cells of
mice origin (data not shown), probably due to the lack of mice T, B,
and NK cells in NOG mice [7,8].

In conclusion, primary AITL tumor cells and reactive compo-
nents engrafted NOG mice, and AITL cells interacted with B and
plasma cells, and functioned as TFH cells. Human Igs including 1gG
were produced in the mice. The present observations strongly sup-
port the recent identification of TFH cell as the cell of origin of AITL.
The present procedures using NOG mice would be a powerful tool
to understand the immunopathogenesis of AITL.
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We report an adult T-cell leukemia/lymphoma patient suffering
from Stevens-Johnson Syndrome (SJS) during mogamulizumab
(humanized anti-CCR4 monoclonal antibody) treatment. There
was a durable significant reduction of the CD4*CD25M9"FOXP3*
regulatory T (Treg) cell subset in the patient’s PBMC, and the
affected inflamed skin almost completely lacked FOXP3-positive
cells. This implies an association between reduction of the Treg
subset by mogamulizimab and occurrence of SJS. The present
case should contribute not only to our understanding of human
pathology resulting from therapeutic depletion of Treg cells, but
also alert us to the possibility of immune-related severe adverse
events such as SJS when using mogamulizumab. We are currently
conducting a clinical trial of mogamulizumab for CCR4-negative
solid cancers (UMIN000010050), specifically aiming to deplete
Treg cells. (Cancer Sci 2013; 104: 647-650)

Adult T-cell leukemia/lymphoma (ATL) is an aggressive
peripheral T-cell neoplasm caused by HTLV-1. The dis-
ease is resistant to conventional chemotherapeutic agents, and
has a very poor prognosis."’ Mogamulizumab (KW-0761) is a
defucosylated humanized monoclonal antibody targeting CC
chemokine receptor 4 (CCR4).® A phase I clinical trial for
relapsed CCR4-positive peripheral T-cell neoplasms, including
ATL, and a phase II study for relapsed ATL have been con-
ducted with mogamulizumab.** This agent was subsequently
approved for the treatment of relapsed or refractory ATL in
Japan, the first country in the world to do so, in March 2012.
Mogamulizimab went on sale on 29 May 2012. The interim
report for the post-marketing surveillance from 29 May to 28
September 2012 revealed skin-related severe adverse events
(SAE), as defined by the Medical Dictionary for Regulatory
Activities Terminology/Japan, in nine patients. Thus, during
only the first 4 months of use, 9 skin-related SAE, including 4
cases of Stevens—Johnson Syndrome (SJS)/toxic epidermal
necrolysis (TEN) were reported, with 1 SIS/TEN fatality.
These skin-related, potentially fatal SAE are certainly a chal-
lenge to the free use of this agent and clearly require investi-
gation. Therefore, here we report an informative ATL patient
suffering from SJS on mogamulizumab treatment, focusing on
the reduction of the regulatory T (Treg) cell subset
(CD4*CD25ME"FOXP3*) caused by the antibody.

Case Report

A 71-year old woman was admitted due to elevation of her
lymphocyte count. She had been diagnosed as suffering from

doi: 10.1111/cas.12116
© 2013 Japanese Cancer Association

acute-type ATL nearly 5 months prior to admission. She had
received VCAP-AMP-VECP chemotherapy® followed by oral
sobuzoxane in another hospital, and achieved a transient partial
remission. We started mogamulizumab to treat the flare-up of
ATL disease (Fig. 1). Grade 1 skin eruptions appeared around
her neck after three antibody infusions. Because we were also
giving her antibacterial (ciprofloxacin hydrochloride), fungal
(itraconazole), pneumocystic (sulfamethoxazole-trimethoprim)
and viral (aciclovir) prophylaxes in addition to stomach medi-
cine (lansoprazole), we judged the skin event to be due to drug
eruption caused by one of these concomitant drugs. Therefore,
we stopped all five, but continued with mogamulizumab.
Despite their discontinuation and treatment with topical
steroids, the skin rashes continued to worsen. We started the
patient on 30 mg oral prednisolone, which improved the skin
symptoms. The patient was then able to complete the eight
planned infusions, and oral prednisolone was tapered off. She
was discharged from hospital 8 days after her eighth infusion
(day 65), and thereafter seen as an outpatient. However, she
had to be readmitted as an emergency patient at day 75
because of fulminant skin rashes. These included erythemas,
scale-like plaques, vesicles, blisters and erosions over many
areas of the body. Her lips were swollen and oral mucosa was
erosive (Fig. 2a). Skin biopsy revealed marked liquefaction,
degeneration and perivascular inflammation with dominant
CDB8-positive cells but almost complete lack of FOXP3-
positive cells (Fig. 2b). We diagnosed her as a SIS, and imme-
diately started steroid pulse therapy (methylprednisolone
500 mg/day x3 days), followed by oral prednisolone. Her
skin and mucosal lesions improved gradually, and became
inactive. At the same time, her general condition improved.
Thus, we again tapered the steroid dose, and she was dis-
charged at day 144. However, she had to come back yet again
as an emergency patient on day 151 for the same reason as
before, with fulminant skin rashes. We prescribed her
mini-steroid pulse therapy (methylprednisolone 125 mg/day
x 1 day), followed by oral prednisolone. Once more, her skin
lesions improved gradually. Over this whole period, complete
ATL remission was maintained by mogamulizumab. The
HTLV-1 provirus load in PBMC pre-treatment, and at
days 121 and 162 was 750.1, 0.0 (under the limit of detection)
and 0.8 copies/1000 cells, respectively. These post-treatment
values are strikingly low, considering that median HTLV-1

5To whom correspondence should be addressed.
E-mail: itakashi@med.nagoya-cu.ac.jp
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load in asymptomatic carriers reported by other investigators is
18.0 copies/1000 cells.®

We also analyzed CD4, CD25 and FOXP3 expression by
PBMC during and after antibody treatment (Fig. I, middle
panels). Before treatment, the majority of the patient’s PBMC
consisted of CD4-positive and CD25-positive ATL cells. Just
before the 5th antibody infusion (day 29), around the time
when her skin rash first appeared, the proportion of CD25Meh
FOXP3*/CD4* cells was markedly reduced, to 2.2%. This
is low even compared to healthy individuals (CD25"&"
FOXP3*/CD4" cells, mean 3.3%, median 3.3%, range 2.6—
4.4%) (Fig. 3). Around the time of SJS onset, the proportion
of cells in the Treg subset was further reduced. The proportion
of CD25"E"FOXP3"/CD4" cells at days 64, 85 and 114 was
1.8%, 1.6% and 0.7%, respectively. The striking reduction of
the Treg subset persisted until 4 months after the last of the
eight antibody infusions (day 171).

Discussion
Drugs often induce adverse cutaneous reactions of varying

severity, ranging from simple uncomplicated eruptions to
potentially fatal eruptions, such as SJS and TEN, within the

648

Clinical course of an ATL patient receiving mogamulizumab monotherapy. ATL; adult T-cell leukemia/lymphoma; mPSL, methyl-

spectrum of severe adverse reactions affecting skin and
mucosa. Although many factors that might cause variability in
the clinical course of such adverse reactions have been sug-
gested, it remains unknown which factors are predominantly
involved in these processes. The most prevalent severe drug
eruptions are thought to be mediated by drug-reactive
T-cells,” although we also need to be aware of the alternative
view that severe drug eruptions are due to a dysregulated
immune system. In this regard, an effect mediated by Treg
cells is a likely candidate in severe drug eruptions. Indeed, it
is reported that Treg cells can prevent experimentally-induced
epidermal injury mimicking TEN in an animal model.®® Fur-
thermore, Takahashi ez al. (2009) report that Treg cell function
is profoundly impaired in patients with TEN.®? Consistent with
these reports, a marked reduction of the Treg subset was
observed in the present case.

Mogamulizumab is the first therapeutic agent targeting
CCR4, which is expressed on Treg cells,(lo’“) to receive mar-
keting approval anywhere in the world. The reduction of the
Treg subset seen here was not specific to the present case, but
is commonly observed in ATL patients receiving mog-
amulizumab. In fact, skin rashes were observed as a frequent
non-hematologic adverse event (AE) (63%), mostly occurring

doi: 10.1111/cas.12116
© 2013 Japanese Cancer Association
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Fig. 2. (a) Macroscopic observations of the
patient’s skin on the day she was diagnosed
with Stevens-Johnson Syndrome. (b) Corresponding
skin biopsy showing liquefaction, degeneration
and perivascular inflammation with dominant
CD8-positive cells but almost no FOXP3-positive
cells.

Fig. 3.

after the fourth or subsequent infusions in the phase II study.®
The present case was one of these patients. It has been
reported that alterations in CD4"CD25"FOXP3* Treg cell fre-
quencies and/or function may contribute to various types of
autoimmune diseases."? Because the CCR4 molecule aids
lymphocyte skin-specific homing,"'® it is not unexpected

Ishida et al.

S —————— o

+*¢ s .
30 4 b4
oy 30’
20 31 o2
. 2
10
1
0 0
CD4*/PBMC cD25"¢" FOXP3*/
{%) CD4 + cells {%)
Mean 26.1 3.3
Median 25.9 3.3
Range 14.5-33.3 2.6-4.4

CD4*CD25M9"FOXP3* regulatory T cells in PBMC from healthy volunteers (n = 10).

that skin rashes, which could be an immune-related AE, will
be frequently observed in ATL patients receiving mog-
amulizumab. Because it is an urgent issue to identify which
factors determine the severity of immune-related skin disorders
associated with mogamulizumab treatment, further investiga-
tion on this matter are clearly warranted.

Cancer Sci | May 2013 | vol. 104 | no.5 | 649
© 2013 Japanese Cancer Association
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However, reduction of Treg cells is a promising strategy for
boosting antitumor immunity in cancer patients, because these
cells are increased in the tumor microenvironment and may
play an important role in tumor escape from host immunity in
several different types of cancer.""*' Thus, reduction of Treg
cells by mogamulizumab in cancer patients would have both
potential benefits leading to enhanced antitumor immunity, but
also pose risks of autoimmune disease. The skin-related SAE,
including SIS/TEN, are representative of the latter. Currently,
several clinical trials of mogamulizumab are being conducted
worldwide, not only for ATL, but also other types of lym-
phoma. In addition, we are currently conducting a clinical trial
of mogamulizumab for CCR4-negative solid cancers
(UMINO000010050), specifically aiming to deplete Treg cells.
Therefore, it is a matter of some urgency to establish the safest
and most effective treatment strategies for using mog-
amulizumab not only in ATL patients but also other types of
cancer, to maximize benefit and minimize risk.

In summary, the present case should contribute not only to
our understanding of human pathology resulting from thera-
peutic depletion of Treg cells, but also alert us to the possibil-
ity of immune-related SAE, such as SJS/TEN, when using
mogamulizumab.

References

Ishida T, Ueda R. Antibody therapy for Adult T-cell leukemia-lymphoma.
Int J Hematol 2011; 94: 443-52.

2 Ishii T, Ishida T, Utsunomiya A et al. Defucosylated humanized
anti-CCR4 monoclonal antibody KW-0761 as a novel immunotherapeutic
agent for adult T-cell leukemia/lymphoma. Clin Cancer Res 2010; 16:
1520-31.

Yamamoto K, Utsunomiya A, Tobinai K er al. Phase I study of KW-0761, a
defucosylated humanized anti-CCR4 antibody, in relapsed patients with adult
T-cell leukemia-lymphoma and peripheral T-cell lymphoma. J Clin Oncol
2010; 28: 1591-8.

4 Ishida T, Joh T, Uike N et al. Defucosylated anti-CCR4 monoclonal anti-
body (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter
phase ii study. J Clin Oncol 2012; 30: 837-42.

Tsukasaki K, Utsunomiya A, Fukuda H et al. VCAP-AMP-VECP compared
with biweekly CHOP for adult T-cell leukemia-lymphoma: Japan Clinical
Oncology Group Study JCOG9801. J Clin Oncol 2007; 25: 5458—64.

6 Sonoda J, Koriyama C, Yamamoto S et al. HTLV-1 provirus load in periph-
eral blood lymphocytes of HTLV-1 carriers is diminished by green tea drink-
ing. Cancer Sci 2004; 95: 596-601.

Nassif A, Bensussan A, Boumsell L et al. Toxic epidermal necrolysis: effec-
tor cells are drug-specific cytotoxic T cells. J Allergy Clin Immunol 2004;
114: 1209-15.

w

w

~3

650

Acknowledgments

The authors thank the husband of the patient for consenting to the pub-
lication of her clinical details. The present study was supported by
Grants-in-Aid for Young Scientists (A) (No. 22689029), Scientific
Research (B) (No. 22300333), and Scientific Support Programs for
Cancer Research (No. 221S0001) from the Ministry of Education, Cul-
ture, Sports, Science and Technology of Japan, a Grant-in-Aid from
the National Cancer Center Research and Development Fund (No. 23-
A-17), and Health and Labour Sciences Research Grants (H22-Clinical
Cancer Research-general-028 and H23-Third Term Comprehensive
Control Research for Cancer-general-011) from the Ministry of Health,
Labour and Welfare, Japan.

Disclosure Statement

Nagoya City University Graduate School of Medical Sciences has
received research grant support from Kyowa Hakko Kirin for works
provided by Takashi Ishida. Takashi Ishida received honoraria from
Kyowa Hakko Kirin for his works. Shiro Akinaga is an employee of
Kyowa Hakko Kirin. No other conflict of interest relevant to this
article is reported.

oo

Azukizawa H, Sano S, Kosaka H, Sumikawa Y, Itami S. Prevention of toxic
epidermal necrolysis by regulatory T cells. Eur J Immunol 2005; 35: 1722—
30.

Takahashi R, Kano Y, Yamazaki Y, Kimishima M, Mizukawa Y, Shiohara

T. Defective regulatory T cells in patients with severe drug eruptions: timing

of the dysfunction is associated with the pathological phenotype and out-

come. J Immunol 2009; 182: 8071-9.

10 Iellem A, Mariani M, Lang R er al. Unique chemotactic response profile and
specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)
CD25(+) regulatory T cells. J Exp Med 2001; 194: 847-53.

11 Ishida T, Ishii T, Inagaki A et al. Specific recruitment of CC chemokine
receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune
privilege. Cancer Res 2006; 66: 5716-22.

12 Michels-van Amelsfort JM, Walter GJ, Taams LS. CD4* CD25* regulatory
T cells in systemic sclerosis and other rheumatic diseases. Expert Rev Clin
Immunol 2011; 7: 499-514.

13 Campbell JJ, Haraldsen G, Pan J er al. The chemokine receptor CCR4 in
vascular recognition by cutaneous but not intestinal memory T cells. Nature
1999; 400: 776--80.

14 Jacobs JF, Nierkens S, Figdor CG, de Vries IJ, Adema GJ. Regulatory
T cells in melanoma: the final hurdle towards effective immunotherapy?
Lancet Oncol 2012; 13: e32-42.

15 Ishida T, Ueda R. Immunopathogenesis of lymphoma: focus on CCR4.

Cancer Sci 2011; 102: 44-50.

=

doi: 10.1111/cas.12116
© 2013 Japanese Cancer Association

=777 -



!
|

global cancer control %

| @uicc

E
:31 SIS

1JC

International Journal of Cancer

Induction of CD8 T-cell responses restricted to multiple HLA
class I alleles in a cancer patient by immunization with a

20-mer NY-ESO-1f (NY-ESO-1 91-110) peptide

Shingo Eikawa'?, Kazuhiro Kakimi®
Kazuhiro lkeuchi®

, Midori Isobe?, Kiyotaka Kuzushima®, Immanue! Luescher®, Yoshihiro Ohue?,
, Akiko Uenaka®, Hiroyoshi Nishikawa’, Heiichiro Udono®, Mikio Oka? and Eiichi Nakayama®

* Department of iImmunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan

2 Department of Respiratory Medicine, Kawasaki Medical School, Kurashiki, Japan
3 Department of Immunotherapeutics, University of Tokyo Hospital, Tokyo, Japan

“Department of Immunology, Aichi Cancer Center, Nagoya, Japan

® Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
® Faculty of Health and Welfare, Kawasaki University of Medical Welfare, Kurashiki, Japan
7 Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
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The NY-ESO-1 antigen was originally identified in esophageal
cancer by serological expression cloning (SEREX) using autolo-
gous patient serum."* NY-ESO-1 expression is observed in a

Key words: cancer vaccine, NY-ESO-1, long peptide, CD8 T-cell
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wide range of human malignancies, but the expression is re-
stricted to germ cells in the testes in normal adult tissues.'™
Therefore, NY-ESO-1 has emerged as a prototype of a class of
cancer/testis (CT) antigens.” The efficacy of the NY-ESO-1
antigen as a cancer vaccine has been studied extensively using
various preparations, e.g., peptide, protein or DNA, etc. of the
antigen with various adjuvants.>** These studies established
the safety of the NY-ESO-1 vaccine and demonstrated its
immunogenicity.

In a phase I clinical trial, we immunized cancer patients
with a complex of cholesterol-bearing hydrophobized pullulan
and NY-ESO-1 whole protein (CHP-NY-ESO-1) and showed
that the vaccine had potent capacity to induce the NY-ESO-1
antibody in vaccinated patients.'>'* The most dominant sero-
logical antigenic epitope was NY-ESO-1 91-108. The CHP-
NY-ESO-1 vaccine also elicited CD4 and CD8 T-cell responses
in immunized patients."* Analysis of T cell responses against
overlapping peptides (OLPs) spanning the NY-ESO-1 mole-
cule revealed that two dominant NY-ESO-1 regions, regions II
(73-114) and III (121-144), were recognized by either CD4 or
CD8 T-cells in most patients irrespective of their HLA type.
Essentially similar findings were obtained by studies using
other preparations of NY-ESO-1 protein vaccine.'"'>!
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CD8 T-cells induced by immunization with NY-ESO-1
class I short epitope peptides have been shown to be of low
affinity and do not recognize naturally processed NY-ESO-1
on tumor cells.'® However, the advantage of synthetic long
peptides over short peptides for use as vaccines has been
reported.!” Long peptides do not bind to MHC class I mole-
cules directly, and require antigen processing by dendritic
cells to be presented. Therefore, the use of long peptides pre-
vents the antigen peptides from direct binding to MHC class
I molecules on nonprofessional antigen-presenting cells
(APC), which may cause transient activation and subsequent
anergy of CTLs in the absence of appropriate costimulatory
signals.'”"'” Based on these findings, we recently used a long
peptide spanning a peptide region NY-ESO-1 91-110 (NY-
ESO-1f peptide) which included the dominant serological an-
tigenic epitope and overlapped one of the two dominant
regions recognized by CD4 and CD8 T-cells for a vaccine in
a clinical trial.>® Ten patients received the NY-ESO-1f peptide
vaccine. The NY-ESO-1f peptide vaccine was well tolerated
and elicited humoral, CD4 and CD8 T-cell responses in
immunized patients.

In this study, we demonstrated that internalization of the
peptide was necessary to present CD8 T-cell epitopes on APC
treated with the long 20-mer NY-ESO-1f peptide. Analysis of
the CD8 T-cell response in an NY-ESO-1f peptide-immunized
patient revealed occurrence of responses restricted to all five
HLA class I alleles defined in the patient. The frequency of
A*24:02, B*35:01, B*52:01, C*03:03 and C*12:02-restricted CD8
T-cells in PBMCs was defined by clonal analysis revealing
B*35:01- and B*52:01-restricted CD8 T-cell responses as domi-
nant. By establishing clones from those HLA-restricted CD8 T-
cells, new epitopes on A*24:02, B*35:01, B*52:01 and C*12:02
were defined and peptide/HLA tetramers were prepared. Clonal
analysis showed that CD8 T-cells that recognize natural epitopes
on tumor cells were induced in a significant proportion by
immunization with the NY-ESO-1f peptide. Immunomonitoring
using the tetramers revealed that multiple CD8 T-cell responses
comprised the dominant response.

Material and Methods

Clinical trial

A phase I clinical trial of the NY-ESO-1f peptide vaccine was
conducted to evaluate the safety, immune response and tu-
mor response.”® Patients with advanced cancers that were re-
fractory to standard therapy and expressed NY-ESO-1 as
assessed by immunohistochemistry (IHC) were eligible. The
protocol was approved by the Ethics Committee of Tokyo,

Osaka and Okayama Universities in light of the Declaration
of Helsinki. Written informed consent was obtained from
each patient before enrolling in the study. The study was per-
formed in compliance with Good Clinical Practice. The study
was registered in the University hospital Medical Information
Network Clinical Trials Registry (UMIN-CTR) Clinical Trial
(Unique trial number: UMIN000001260) on July 24, 2008
(UMIN-CTRURL: http://www.umin.ac.jp/ctr/ index.htm).

Blood samples

Patient TK-f01 was a lung cancer patient who received a
right middle lobectomy in October, 2004.*° As the tumor
continued to grow despite chemotherapy, he was enrolled in
the study in June, 2008. The patient received 12 vaccinations
once every 3 weeks. Peripheral blood was drawn from patient
TK-f01 with informed consent for immunological monitor-
ing. Peripheral blood mononuclear cells (PBMCs) were iso-
lated from heparinized blood by density gradient centrifuga-
tion using a Histopaque 1077 (Sigma-Aldrich, St. Louis,
MO). CD4-, CD8- and CD19-positive cells were purified by
magnetic cell sorting (Miltenyi Biotec, Bergisch Gladbach,
Germany). The residual cells were kept for use as APC. The
cells were stored in liquid N, until use. HLA tying was done
with PBMCs by a sequence-specific oligonucleotide probe
and sequence-specific priming of genomic ¢cDNA using a
standard procedure.

Cell lines

LC99A and OU-LC-OK are lung cancer cell lines. SK-OV3 is
an ovarian cancer cell line and SK-MEL37 is a melanoma cell
line. These cell lines were kept by serial passage in tissue cul-
ture. EBV-B cells were generated from CD19-positive periph-
eral blood B cells using a culture supernatant from EBV-pro-
ducing B95-8 cells. The medium used to maintain these cell
lines was RPMI1640 supplemented with 10% FCS (JRM, Bio-
science, Lenexa, KA), 2 mmol/l Glutamax, antibitotics, and
10 mmol/l HEPES (Invitrogen, Carlsbad, CA).

Antibodies

Anti-human CD4, anti-human CD8, anti-HLA class I and
anti-HLA class II mAbs were purchased from BD Bioscience
(San Jose, CA).

Peptides

The following series of 28 18-mer OLPs and a C-terminal
30-mer peptide spanning the entire NY-ESO-1 protein were
used: 18.1 (1-18), 18.2 (7-24), 18.3 (13-30), 18.4 (19-36), 18.5
(25-42), 18.6 (31- 48), 18.7 (37-54), 18.8 (43-60), 18.9 (49-
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