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Fig. 2. Metformin improves the multifunctionality of antigen-specific CD8" TiLs
in vivo. (4) Mice inoculated with 2 x 10° MOS5 cells were treated with or without
metformin from day 7, as indicated by the shadowed rectangle, and tumor
growth was monitored. The results are representative of two independent
experiments. n = 5 per group. (B) On days 7, 10, and 13, TILs were recovered
from tumor masses and examined for KP>-OVA,s7.564 and KP-TRP24gq 155 tetramer
binding {n = 7-13). (C) TILs recovered on days 7, 10, and 13 from five mice per
group [with (+) or without (-) metformin] were pooled and stimulated with
DC2.4 cells that had been prepulsed with OVA,s;_5¢5 peptide (1076 M) for 8 h; TIL
cytokine-producing ability was later examined.
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Annexin V (Fig. 1F and Fig. S34), and that metformin sup-
pressed apoptosis induction in all subsets, including PD-1"Tim-
3*CD8*TILs (Fig. S3 B-E). Of note, the physiologically essential
apoptotic process of CD4"CD8* thymocytes, which depends on
a mitochondrial pathway (32), was not down-regulated by met-
formin (Fig. S4), suggesting that an apoptotic mechanism unique
to the tumor microenvironment is metformin-sensitive.

We next examined the metformin effects in another tumor
system. MOS5 is a subclone of B16 melanoma cells expressing
ovalbumin (OVA) (33). Metformin administration induced sig-
nificant antitumor activity (Fig. 24). OVA- and TRP2-specific
CD8* TILs were identified by specific tetramers. Both TIL
populations in untreated mice decreased gradually from day
7-13; in contrast, metformin administration maintained or in-
creased these populations (Fig. 2B). CD8" TILs again underwent
apoptosis, which was suppressed by metformin administration
(Fig. S5 A and B). The Annexin V-positive populations among
OVA tetramer-positive and -negative (includes TRP-2—positive
population) CD8* TILs were near 80% at day 10; however,
metformin suppressed this rate to <20-40% (Fig. S5 C and D).
These results are consistent with those observed in the RLmalel
model. Next, to examine the functional state of antigen-specific
TILs, magnet-purified CD8* TILs isolated from tumor tissues
were incubated with DC-like DC2.4 cells that had been pulsed
with an epitope peptide (OVAjs7.-264); TILs were later examined
for their cytokine production capacity. Only IFNy-producing
cells or very small populations producing both IFNy and TNFa
or IL-2 could be identified in untreated mice, whereas a marked
increase in the population producing both IFNy and TNFa was
observed with metformin (Fig. 2C).
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Influence of Metformin on the TCM/TEM Ratio of CD8*TILs. CD8"
TILs in the context of memory T cells are poorly understood.
Elegant studies with an acute viral infection model have pro-
posed classification of memory T cells into central memory
(TCM; CD44*, CD62L"e") and effector memory (TEM; CD44*,
CD62L'°%) (34, 35). TCM were shown to mediate viral-specific
recall responses. Based on this model, we investigated TCM and
TEM CD8* TILs. Without metformin, the staining of CD8*
TILs from an RLmalel tumor using antibodies against CD62L
and CD44 revealed that proportions of TCM and TEM were
nearly equal on day 7 and 10 but shifted to TCM dominance on
day 13. In contrast, metformin maintained TEM dominance
from day 10 to day 13 (Fig. 34). Further dissection of the TIL
compartment based on CD62L and KLLRG1 expression revealed
that short-lived effector T cells (TE; CD62L'"YKLRG1"&") were
visible on day 7 but gradually decreased by day 13. In contrast,
metformin yielded increases in both TEM and TE populations
on day 13 (Fig. 3B), coinciding with tumor regression (Fig. 14).
In the MOS5 model, metformin again caused TEM dominant over
TCM (Fig. 3 C and D). At this stage, we concluded that TEM
and/or TE are more responsible than TCM for tumor rejection.

Metformin Induced Multifunctional CD8* TEM Expressing the Exhaustion
Marker Tim-3. We next investigated the capacity for triple cytokine
(IL-2, TNFa, IFNy) production or the multifunctionality of CD8*
TILs in the context of TCM/TEM classification. CD8* TILs re-
covered from RLmalel tumor masses were stimulated with PMA/
ionomycin for 6 h in vitro and monitored for cytokine production.
Without metformin, the cytokine-producing cells on day 10 were
mainly identified as TCM (Fig. 44). In contrast, with metformin,
triple cytokine-producing cells appeared in correlation with the in-
creased population of TEM (Fig. 44). The populations with various
cytokine producing patterns in the presence and absence of met-
formin are summarized in Fig. 4B. Metformin markedly changed
the multifunctionality of CD8" TILs. Taking these results together,
we concluded that metformin-induced TEM capable of producing
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Fig. 3. Influence of metformin on the TCM/TEM ratio of CD8* TiLs. TILs
were isolated on days 7, 10, and 13 from mice inoculated with RLmale1 (A
and B, n = 5) or MO5 (C and D, n = 3-5) with (+) or without (=) metformin,
and analyzed for CD8 and memory markers including CD44, CD62L, KLRG1.
The proportion (%) of CD62L™9" (H) and CD62L'°% (L) among CD44+ cells in
RLmale1 and MO5 models are shown in A and C, respectively. The pro-
portion (%) of CD62LM", KLRG1'*™ (central memory; CM) and CD62L'"%,
KLRG1 "% (effector memory; EM) and CD62L'%, KLRG1 M9" (effector; E) in
RLmale1 and MOS5 are shown in B and D, respectively. *P < 0.05, **P < 0.01.
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multiple (triple and double) cytokines are most important for
tumor rejection. We next classified CD8" TILs on the basis of
their expression of PD-1 and Tim-3, followed by intracellular
cytokine staining. We found that CD8* TILs with triple cytokine-
producing abilities belonged exclusively to the PD-1"Tim-3*
subset, which was the supposedly exhausted population in the
RLmalel tumor model (Fig. S6). We further confirmed this
notion using adoptive transfer experiments. MOS5-inoculated
mice were adoptively transferred with OT-I CD8* T cells. The
transferred T cells had been previously shown to undergo vigorous
division and were thus cross-primed in vivo via the adjuvant-free
administration of a fusion protein comprising OVA and Myco-
bacterium heat shock protein 70 (OVA-mHSP70) as a vaccine (36,
37). OVA-mHSP70 injection significantly enhanced the migration
of the transferred CD45.1*OT-1 CD8* T cells into the tumor
tissues; however, the cytokine-producing abilities of these cells
were poor (Fig. 54). In contrast, injection of the fusion protein
together with oral metformin administration apparently improved
the multifunctionality of the migrated T cells, which were classi-
fied as the Tim-3" population (Fig. 54).
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Fig. 4. Metformin-induced CD8*TILs with multifunctionality are TEM rather than
TCM. (A) TiLs were isolated on the indicated days from five mice per group in-
oculated with 2 x 10° RLmale1. Met treatment was started (+) or not (-) from day
7. TlLs were then pooled on indicated days and stimulated with PMA/ionomycin
for 6 h, stained for surface molecules including CD8, CD44, CD62L, followed by
intracellular staining for IL-2, TNFe, and IFNy. CD8'TILs producing TNFa were fur-
ther analyzed for expression of CD62L and CD44 to identify TCM and TEM. Also, to
investigate multifunctionality, cytokine-producing CD8*TILs were further exam-
ined for preduction of IFNy and IL-2. (B) Summary of the populations of cytokine
producing CD8*TILs on day 10 is shown. Gated populations for CD8*IFNy*, CD8*
TNFa™, or CD8*IL-2" were further analyzed for their production of TNFa and IL-2,
IFNy and IL-2, or IFNy and TNFa. The gating strategy gives rise to some ranges for %
populations of double and triple cytokine producing TiLs. The numbers within pa-
renthesis indicate numbers of corresponding CD8*TILs per tumor volume (mm?).
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Metformin-Treated Antigen-Specific Naive CD8 T Cells Migrate into
Tumors and Exert Antitumor Immunity Following Adoptive Transfer.
It is unknown whether plasma metformin concentrations as low
as 10 uM (1.6 pg/mL) would directly influence the fate of T cells.
To address this important question, we incubated CD8" T cells
isolated from naive OT-I mice with 10 pM metformin for 6 h in
the presence or absence of different doses of the AMPK in-
hibitor compound C (38) as indicated (Fig. 5B). After extensive
washing, the cells were transferred into MOS5-bearing mice. Two
days later, splenic T cells and TILs were recovered and in-
vestigated for the presence and multifunctionality of donor-
derived CD8" T cells. Metformin-treated CD8* TILs comprised
up to 9.9% of all CD8" T cells and were identified as triple cy-
tokine-producing cells (Fig. 5B). However, compound C treat-
ment abrogated the migration, although donor CD8* T cells
were present in the spleens of all groups (Fig. 5B). Accordingly,
tumor growth inhibition was apparent in the metformin-treated
group, although this effect was blocked by compound C (Fig.
5C). The weak but significant metformin-mediated increase in
the phosphorylation of AMPK and its downstream target acetyl-
CoA carboxylase (ACC) and the abrogation of this effect by
compound C were observed by Western blot analysis (Fig. 5D).
The results led us to conclude that the direct action of metformin
on CD8* T cells, at least partly, reduced their exhaustion within
the tumor microenvironment in a manner sensitive to the AMPK
inhibitor compound C.

AMPK Phosphorylation, Enhanced Bat3 Expression, and Caspase-3
Inhibition Mediated by Metformin. Finally, we examined the ex-
pression of CD8" TIL molecules that may possibly be influenced
by metformin administration. After CD8" TIL purification on
day 10, cell lysates were immediately prepared for candidate
molecule detection via Western blot analysis and for caspase-3
activity measurement using a fluorescent substrate. The levels of
phosphorylated AMPKa and p were increased; a twofold in-
crease in Bat3 expression was also observed, whereas Bcl2 and
Bax expression were unaltered (Fig. S74). As expected, caspase-
3 activity was prominent without metformin but was completely
abrogated in CD8" TILs from metformin-treated mice (Fig.
S7B), which offers a plausible explanation for apoptosis in-
hibition. To further examine the apoptotic cell populations, we
evaluated the expression of active caspase-3 in TCM, TEM, and
TE. Without metformin, TCM, TEM, and TE all expressed ac-
tive caspase-3 whereas with metformin, primarily TCM ex-
pressed this activated enzyme (Fig. S7C). These results may
explain the dominance of TCM over TEM in the absence of
metformin and the dominance of TEM and TE in the presence
of metformin. pS6, a downstream target of mTOR, was positive
in TCM, TEM, and TE without metformin but negative with
metformin (Fig. S7D), indicating that metformin inhibits mTOR,
possibly via AMPK activation.

Discussion

In this report, we showed that established solid tumors are
regressed by oral administration of metformin, and that CD8*T
cells mediate this effect. The number of FoxP3 expressing CD4™"
regulatory T cells (Treg) has been implicated as a critical com-
ponent in suppressing tumor immunity (39). However, their
numbers were not decreased, rather, transiently increased by
metformin administration in RLmale 1 tumor model (Fig. S8).
Upon tumor rejection, the treated mice became resistant to
rechallenge with the same tumor, providing proof of memory
T-cell generation. Because no protective effect was observed in
SCID mice, the direct killing of tumor cells by metformin is
negligible. It was also confirmed by immunohistochemistry
(IHC) of tumors. Tumors of mice treated with metformin
showed decreased expression of Ki67 as a proliferation marker,
accordingly, increased expression of active caspase 3 as an
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Fig. 5. Metformin use for combination with vaccine or cell therapy using CD8T cells. (A) Combined use of cancer vaccines and metformin improves CD8" TIL
multifunctionality. B6 mice (CD45.2) inoculated with 3 x 10° MOS5 cells were adoptively transferred or not with 2 x 10° CD45.1/0T-l CD8" T cells on day 7 (n =
5). Simultaneously, 10 pg of the OVA-mHSP70 fusion protein were i.v. injected along with or without the oral administration of 5 mg/mL metformin as
indicated. Three days later, the right inguinal lymph nodes (LNs) and tumor masses were removed, prepared as single-cell suspensions. The cells were
stimulated with PMA/ionomycin, followed by labeling with antibodies and were subjected to flow cytometric analysis. (B) Metformin-treated antigen-specific
naive CD8 T cells acquire multifunctionality within the tumor. B6 mice (CD45.2) inoculated with MO5 cells were adoptively transferred or not with 3 x 108
CD45.1/0T-1 CD8 T cells on day 7 (n = 5). The cells to be transferred were isolated from CD45.1 OT-1 mice and precultured with 10 pM metformin with or
without compound C (5, 50 uM) for 6 h before transfer. Two days later, the spleen and tumor tissues were removed and prepared as single-cell suspensions.
The cells were then investigated for migration and multifunctionality. (C) The mean tumor diameters were measured on days 7 and 9 after MO5 inoculation
and were plotted with SE. (D) The Western blot detection of AMPK, p-AMPK, and p-ACC in CD8* T cells treated with metformin in vitro. Anti-actin was used as
a loading control. OT-1 CD8 T cells treated in A were lysed, titrated 1-, 1/2-, and 1/4-fold, and subjected to the assay.

apoptosis marker; however, the effect was abrogated by CDS8
T-cell depletion (Fig. S9). Our used model systems comprised
highly immunogenic tumors, and it is unclear whether metformin
would have the same effect on less immunogenic tumors.
Demonstration of a similar effect in an autochthonous tumor
model would be required in the future. Nonetheless, metformin
countered apoptotic induction and reduced cytokine production
in CD8* TILs and thus blocked immune exhaustion within the
tumor tissues we tested. The adoptive transfer experiment shown
in Fig. 5 further demonstrated that the direct effect of metformin
on CD8" T cells, even at a physiologically relevant low concen-
tration, markedly altered the cells’ multifunctionality following
migration into the tumor. Experiments with a genetic approach
will be required to fully demonstrate whether this effect is me-
diated via AMPK activation in CD8" T cells, because compound
C is not highly specific for AMPK.

Dissection of TILs from the point of view of memory T cells in
the context of multifunctionality provides mechanistic insight into
metformin-induced antitumor immunity. Memory T cells have
been classified as TCM, migrating between lymphoid organs, and
TEM, circulating principally in the blood, spleen and peripheral
tissues (34, 35, 40). In acute virus infection models, as the virus is
cleared, the population of TCM progressively increase, whereas
the total numbers of TEM rapidly decrease (41). The naturally
occurring proportional shift from TEM to TCM, however, was not
associated with metformin-induced rejection in the tumor models.
For example, in the absence of metformin in the RLmalel model,
the TCM population gradually increased to exceed the TEM
population by day 13 (Fig. 3 A and B); however, this proportional
shift to TCM was associated with progressive tumor growth rather
than tumor regression. Metformin possibly affects the TCM/TEM
ratio by regulating TEM apoptosis (Fig. S7C). The consequent
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decreased TCM/TEM ratio was apparently associated with anti-
tumor activity in both the RLmalel and MOS5 models.

Analysis of the cytokine-producing capacities of CD8* TILs
also revealed the importance of TEM over TCM. A significant
proportion of the CD8" TIL population was maintained by met-
formin and produced IL-2, TNFa, and IFNy. These triple cytokine-
producing CD8* TILs were exclusively of the PD1™Tim3" pheno-
type (Fig. S6), which is committed to a TEM rather than a TCM
fate (Fig. 4). Moreover, although therapeutic vaccination with
OVA-mHSP70 stimulated the migration of adoptively transferred
OT-I CDS8* T cells into tumor tissues, these TILs lost multi-
functionality (Fig. 5A4). Possibly, the cells were exhausted from the
tumor microenvironment. Coadministration of metformin, how-
ever, led to the activation of the migrated Tim-3* OT-I CD8*
T cells and the production of multiple cytokines (Fig. 54). There-
fore, combined use of metformin and cancer vaccines may improve
the efficacy of the vaccine. These findings provide novel insights
into anticancer immunity. It is possible that tumor persistence
stimulates the development of CD8" TILs into TCM cells, which
will immediately become useless against tumor growth because of
immune exhaustion, and that metformin counters this situation,
leading to the conversion of TCM to activated-state TEM that are
fully active against tumors, despite exhibiting the surface phenotype
of an exhausted cell (e.g., Tim-3 expression).

A previous report found that metformin treatment following
vaccination with attenuated Listeria monocytogenes expressing OVA
(LmOVA) protected mice from challenge by tumor cells expressing
OVA (42). This effect was caused by metformin-induced expansion
of memory T cells after vaccination. As the tumor challenge oc-
curred after metformin withdrawal, it is a matter of a prophylactic
vaccination effect, which is different from the effects on immune
exhaustion states in the tumor microenvironment.

PNAS | February 10,2015 | vol. 112 | no.6 | 1813

-178 -




é
o
) |

mTOR inhibition is among the downstream consequences of
AMPK signaling, which is activated by metformin. Therefore,
rapamycin, an inhibitor of mTORCI1, may share mechanistic
effects with metformin. Rapamycin has been shown to promote
the generation of memory T cells (42-44) particularly in viral
infection models. A common feature in the results was the in-
creased population of TCM over TEM consequent to rapamycin
treatment (45). In our tumor models, however, metformin treat-
ment preferentially increased the TEM population. It remains
possible that additional pharmacological effects are involved
in response to metformin versus rapamycin treatment. Further
experiments will be required to elucidate cellular and molecular
mechanism underlying metformin-induced reversion of exhaus-
ted CD8*TILs.

Materials and Methods

Mice. BALB/c and C57BL/6 (B6) mice were purchased from CLEA Japan and SLC.
Breeding pairs of CB-17 SCID mice were provided by K. Kuribayashi, Mie
University School of Medicine, Mie, Japan.
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Abstract

Introduction

Adoptive T-cell immunotherapy (ACT) using autologous
tumor-infiltrating lymphocytes (TIL) can be highly effective
for treating melanoma (1). The recent development of genet-
ically engineered T cells stably expressing exogenous T-cell
receptors (TCR) or chimeric antigen receptors (CAR) specific
for tumor-associated antigens offers the possibility of testing
the efficacy of ACT against a wide range of cancer types in
addition to melanoma (2, 3). Many clinical trials have now
been conducted using genetically engineered T cells specific for
tumor antigens as well as TILs, and some objective responses
have been achieved (4, 5). It is clear from mouse models that
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adoptively transferred antigen-specific T cells are capable of
eradicating established cancer (6-8), and the ability of CTLs to
directly kill tumor and/or stromal cells is thought to be impor-
tant for tumor elimination (9-11). Nonetheless, cytokines such
as IFNy and TNFo produced by T cells are also likely to
contribute to the prevention of tumor growth by ACT via
mechanisms other than cell lysis (12-14).

IFNY is a critical cytokine for antitumor immunity under
natural and therapeutic conditions (15, 16). It enhances tumor
immunogenicity by upregulating components of the MHC anti-
gen processing and presentation pathway. It also induces the
expression of chemokines, including the angiostatic chemokines
CXCL9 {MIG), CXCL10 (IP-10), and CXCL11 (I-TAC), that block
neovascularization in the tumor and recruit effector immune
cells (17-19). Furthermore, IFNy has been reported to exert
antiproliferative effects on the developing tumor (20, 21), and
it triggers apoptosis of tumor cells by inducing proapoptotic
molecules (22, 23).

To understand the global antitumor effect mediated by ACT, we
used the B16 melanoma pmel-1 TCR-transgenic T-cell model to
perform a gene expression analysis of ACT-treated tumors. On the
basis of these results, we focused on genes controlling the cell cycle
and arresting growth of B16 tumor cells in this model. We
examined the effects on tumor cells of the IFNy produced by
the CTLs in situ using cell-cycle status indicators and investigated
the mechanism of cell-cycle arrest. Furthermore, we demonstrate
the importance of cell-cycle arrest induced by CTL-derived IFNY in
the regulation of tumor growth.

AACR
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Materials and Methods

Mice, tumor cells, and peptides

Six-week-old male C57BL/6 mice were purchased from Japan
SLC. Mice transgenic for the pmel-1-TCR, which recognizes the H-
2DP_restricted epitope EGSRNQDWL from gp100 (gp100,5_33),
were obtained from The Jackson Laboratory. All mice were housed
in a pathogen-free environment, and all animal procedures were
conducted in accordance with institutional guidelines. All animal
experiments were approved by the University of Tokyo Ethics
Committee for Animal Experiments (10-P-127). The H-2D°-
restricted peptide human gp100 (hgp100,5_33, KVPRNQDWL)
was purchased from GenScript Japan at a purity of >90%, with free
amino and carboxyl terminals. B16F10, FBL3, and 3LL cell lines
were maintained in culture medium consisting of DMEM with
10% FCS, 100 U/mL penicillin, and 100 pg/mL streptomycin.
EL4, P815, and CT26 were cultured in RPMI-1640 medium
supplemented with 10% FCS, 100 U/mL penicillin, and 100
ug/mkL streptomycin. All cell lines were tested for Mycoplasma
by the MycoAlert Mycoplasma Detection kit (Lonza). Cellular
morphology and growth curve in vitro were checked in all cell
lines. BIGF10 and B16-fucci cells were authenticated by trans-
plantation for assessing growth ability in vivo.

Denderitic cell preparation and CTL stimulation

Dendritic cells (DC) were obtained by 8-day culture of
C57BL/6-derived bone marrow cells with granulocyte-macro-
phage colony-stimulating factor (GM-CSF), as described pre-
viously (24). Briefly, bone marrow cells obtained from tibias
and femurs of C57BL/6 mice were cultured in RPMI-1640
medium supplemented with 10% FCS, 10 mmol/L HEPES, 5 x
107° mol/L 2-mercaptoethanol, 1 x 107> mol/L sodium pyru-
vate, 1% nonessential amino acids, 100 U/mL penicillin, 100
pg/mL streptomycin, and 20 ng/mL GM-CSF (PeproTech) for 8
days. On days 3 and 6, half of the medium was replaced with
fresh medium containing GM-CSF. DCs were further incubated
with 1 pg/mL lipopolysaccharide for 16 hours and then pulsed
with 1 pg/mL hgp100 peptide for 3 hours to obtain mature
DCs. To prepare CTLs, 1 x 107 spleen cells from pmel-1 TCR-
transgenic mice were cocultured with 2 x 10° DCs in a medium
containing 50 U/mL IL2 (Chiron Corporation). After 3 days of
in vitro stimulation, approximately 90% of the harvested cells
were CD37CD8™" CTLs.

ACT and anti-IFNy mAb treatment

C57BL/6 mice were inoculated subcutaneously with 1 x 10°
B16 tumor cells followed by adoptive CTL transfer (1 x 107 or4 x
107) 9 days later. Tumor growth was monitored every 2 to 3 days
with calipers in an anonymous fashion. On the day of, and 2 days
after, CTL transfer, mice received intraperitoneal injections of 500
ug anti-IENy mAb (clone XMG1.2; BioXCell) or rat IgG, isotype
control (BioXCell). Tumor volume was calculated as described
previously (24).

Cell preparation and flow cytometry

Tumors were harvested from mice at scheduled time points, cut
into pieces, and resuspended in Hank's Balanced Salt Solution
(HBSS) supplemented with 0.1% collagenase D (Roche Diagnos-
tics) and DNase I (Roche Diagnostics) for 60 minutes at 37°C. The
entire mass of the material was pressed through a 70-um cell strainer
(BD Falcon; BD Biosciences) using a plunger to obtain single-cell
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suspensions of tumor-infiltrating cells. For flow cytometry, the cells
were first stained with the Fixable Viability Dye eFluor450
(eBioscience) to label dead cells, and pretreated with Fc Block
(anti-CD16/32 clone 2.4G2; BD Pharmingen). The cells were then
stained with antibodies and analyzed on a Gallios flow cytometer
(Beckman Coulter). The following mAbs were obtained from
BioLegend: PerCP/Cy5.5-conjugated anti-CD45, Alexa Fluor647-
conjugated anti-CD90.1, and APC-Cy7-conjugated anti-CD8. Data
were analyzed with the Kaluza software (Beckman Coulter).

Comprehensive gene expression analysis

Gene expression profiling data of B16 tumor tissues on differ-
ent days were obtained by Agilent whole-mouse genome micro-
array. Total RNA was extracted with TRizol (Invitrogen) from B16
tumor tissues and fluorescently labeled using a One-Color Agilent
Quick Amp Labeling Kit. The microarray slides were hybridized,
washed, and read on an Agilent Microarray scanner following the
manufacturer's instructions, and raw fluorescence signal intensi-
ties were generated by Agilent Feature Extraction Software v9.5.
The signals were normalized to align at 75th percentile, and then
turned into log, ratio against day 1 in untreated and CTL-treated
groups. We began with 45,018 probes, and removed probes if
their glsWellAboveBG flag values were 0 at all samples, and then
filtered out log, ratio values that were unvarying (between —1 and
1) at all time points. We obtained 10,855 probes and ran hier-
archical clustering (standard correlation, UPGMA) on them. All
data were analyzed with the Subio Platform and Basic Plug-in
v1.16 (Subio Inc.). The microarray data are available from the
Gene Expression Omnibus (GEO) database (series accession
number GSE57304; sample accession numbers GSM1379331-
GSM1379344).

For quantitative gene panel-based PCR, Cell Cycle RT? Profiler
PCR arrays (SABioscience; http://www.sabiosciences.com/
rt_pcr_product/ HTML/PAMM-020Z.html) were used to simulta-
neously examine the mRNA levels of 84 genes in 96-well PCR
array plates. Total RNA was prepared using TRizol according to the
manufacturer's instructions (Invitrogen), and reverse-transcribed
using RT2 First Strand kits (SABioscience). Real-time PCR was
performed as instructed by the supplier on an ABI PRISM 7900HT
Sequence Detection System (Life Technologies). Data were ana-
lyzed by a AA cycle threshold method to determine the fold
changes of the mRNA levels (http://www.SABiosciences.com/
pcrarraydataanalysis.php).

Expression vectors

CSII-EF-MCS/mAG-hGeminin and CSI-EF-MCS/mKO-cdt1
vectors were kindly provided by Dr. Atsushi Miyawaki (RIKEN,
Wako, Japan; ref. 25). cDNA encoding mouse IFNGR1 lacking the
intracellular component of the receptor (26) was generated by
PCR using the primer pair 5-ATCTCACTCGAGATGGGCCCG-
CAGGCGGCAGCT-3’ and 5'-ATCTCAGAATTCATTCITCITAG-
TATACCAATA-3" and subcloned into the Xho-1 and Eco-RI sites
of the RV-GFP vector (designated RV-IFNGRIAIC; ref. 27).

Production of B16-fucci and B16-fucciAIC tumor cells

mAG-hGeminin and mKO-cdt1 were expressed in B16 tumor
cells using lentiviral vectors (designated B16-fucci). IFNGR1
lacking the sequence encoding the intracellular component of
the receptor was expressed in B16-fucci tumor cells in the same
way (designated B16-fucciAIC).
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Figure 1.

Gene expression analysis of the tumor in ACT. A, C57BL/6 mice were injected with 1 x 10° B16 tumor cells, and 9 days later (designated as day 0), tumor-bearing mice
received 1 x 107 in vitro activated Bi6-specific (gp100-specific) CD90.1* CTLs (designated ACT mice). Tumor volumes were measured on days 1, 3, 5, and 7
after CTL transfer (n = 5). B, tumor tissues from untreated or ACT mice were harvested on days 1, 3, 5, and 7. Total RNA extracted from 3 to 4 tumor tissues
in each group was pooled and used for gene expression analysis. Heatmaps of hierarchical clustering analysis based on fold changes of gene expression on
days 3, 5, and 7 relative to day 1are shown (left). Some groups of genes that were upregulated (top) or downregulated (bottom) after CTL transfer were extracted
(right). C, cell-cycle PCR array performed using tumor tissues from untreated or ACT mice (n = 4) on day 3. Seven cell-cycle genes that were significantly
downregulated in the tumors from ACT mice are shown. The fold regulation is the negative inverse of the fold change.
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Quantitative RT-PCR

Total RNA was extracted using TRizol and converted into
cDNA using the SuperScript III First-Strand Synthesis System
according to the manufacturer's instructions (Invitrogen).
Quantitative RT-PCR (qRT-PCR) reactions were carried out
using EXPRESS SYBR GreenER qPCR SuperMix Universal (Invi-
trogen). Primer sequences are listed in Supplementary Table S1.
PCR reactions were run in a Thermal Cycler Dice Real-Time
System TP800 (TaKaRa) using the following program: one cycle
of 95°C for 2 minutes, 40 cycles at 95°C for 15 seconds, and
60°C for 30 seconds. Results are expressed as ratios. The
quantity of target mRNA was normalized to the level of GAPDH
in each sample. PCR was performed in duplicate for each
experiment, and PCR products were monitored by electropho-
resis in 1.8% agarose gels and visualized with ethidium
bromide.

Histologic analysis

Cryosections were fixed in 4% paraformaldehyde (PFA) at
4°C overnight and then transferred into 30% sucrose/PBS. After
incubation for more than 24 hours, they were embedded in an
optimal cutting temperature (OCT) compound (Sakura Finetek
Japan) in liquid nitrogen. Sections measuring 8-10 um were
incubated with primary antibodies, followed by secondary
antibodies and streptavidin. Polyclonal anti-Azami-Green
antibody (PMO11) was purchased from MBL. Polyclonal
anti-single-stranded DNA was purchased from IBL-America.
APC-conjugated anti-CD90.1 antibody was purchased from BD
Biosciences. Alexa 647-conjugated polyclonal secondary anti-
bodies and streptavidin were from Life Technologies. Anti—
APC-biotin was from BioLegend. The samples were analyzed
using a BZ-9000 fluorescence microscope with BZ-II image
processing software (Keyence). The number of cells in the
necrotic/apoptotic area was estimated by calculating the surface
area of the region using BZ-H1M software (Keyence).

Cytology

Cultured B16-fucci tumor cells treated with IFNy were exam-
ined using bright-field or fluorescence microscopy (Olympus
1X71; Olympus; magnification, x200).

Senescence-associated B-galactosidase activity assay

Senescence-associated B-galactosidase (SA-B-gal) activity in
cancer cells was assessed using the Senescence Detection Kit
(BioVision). SA-B-gal-positive cells were identified using
bright-field microscopy (Olympus 1X71; Olympus; magnifica-
tion, x400).

Protein extraction and Western blotting

B16-fucci tumors were harvested from untreated or ACT mice
receiving either rat IgG (control for treatment) or anti-IFNy mAb
on day 3 after CTL transfer. Protein extracts were prepared from
each tissue using RIPA buffer (Thermo Scientific) with the pro-
tease inhibitor cocktail Complete Mini (Roche). Protein extracts
(50 pg) were used for immunoblotting. Protein extracts (30~50
pg) from B16-fucci, B16-fuccAIC cells, FBL3-, or EL4-treated
with IFNy (10 U/mL) for the indicated time were used for
immunoblotting. The following antibodies, all from Santa Cruz
Biotechnology, were used: rabbit anti-pSTAT1 (sc-7988-R), rabbit
anti-Skp2 (sc-7164), mouse anti-ATM (sc-23921), rabbit anti-
p53serl5 (s¢-101762), and rabbit anti-p21 (sc-397). Mouse anti-
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p27 (kipl) antibody was purchased from BD Biosciences. All
antibodies were used at a final concentration of 0.2 to 1.0 pg/mL.
After incubation with anti-rabbit IgG or anti-mouse IgG antibo-
dies conjugated with horseradish peroxidase, proteins were visu-
alized using the ECL Plus Western Blotting Detection System (GE
Healthcare Life Sciences).

Statistical analysis

Comparison of results was performed by an unpaired, two-
tailed Student ¢ test with GraphPad Prism 5 (GraphPad Software,
Inc.).

Results

Gene expression analysis in CTL transfer therapy

To understand the effector mechanism whereby ACT inhibits
tumor growth, we assessed tumor-cell gene expression in a B16
melanoma model of pmel-1 TCR-transgenic CTL transfer. Tumors
grew progressively in untreated B16-bearing mice, which was
prevented between days 3 and 7 after the animals had received
10 million CTLs (Fig. 1A and Supplementary Fig. S1A). Tumor
tissues were harvested from untreated mice and ACT mice on days
1, 3,5, and 7 after CTL transfer, and gene expression was analyzed.
Upregulation of genes related to CD8* T cells, the MHC class I
pathway, IFNYy signaling, cytotoxic effector molecules, and others
was observed in tumors from treated but not untreated mice (Fig.
1B). These data are consistent with our previous findings (24, 28)
that adoptively transferred CTLs infiltrated into the tumor and
that mRNA encoding IFNY, Perforin, Granzyme B, and FasL was
expressed on days 3 to 7, with kinetics reflecting the infiltration of
the CTLs (Supplementary Fig. S1B and S1C).

Interestingly, some genes positively regulating the cell cycle,
such as Skp2, E2f2, Cenf, Mki67, and Weel, were downregulated in
tumors from ACT mice on days 3 and 5 (Fig. 1B). This was not the
case in the untreated controls. We confirmed these data by a cell-
cycle PCR array (Fig. 1C). Thus, gene expression analysis revealed
profiles related to cell-cycle regulation, as well as cytotoxicity, in
tumors from mice with ACT treatment.

CTL therapy induces G; cell-cycle arrest

Using the fucci (fluorescent ubiquitination-based cell-cycle
indicator) system (25), we investigated the impact of ACT on the
cell cycle of B16 tumor cells. To this end, we generated B16 tumor
cells expressing fucc (designated B16-fucci), which emit red
fluorescence in the G,-phase, but otherwise fluoresce green. We
then treated B16-fucci tumor-bearing mice with ACT. Tumor
growth was not affected by the transduction of fucdi into B16
tumor cells, but ACT inhibited their growth (Fig. 2A). On day 3
after CTL transfer, tumors were harvested from untreated or ACT
mice for histologic analysis. As shown in Fig. 2B, CTLs had
infiltrated into the tumors and were visible as blue spots. Whereas
green cells were dominant in the growing tumor cells, the majority
of tumor cells from ACT mice were red, suggesting that CTL
therapy induced tumor cell-cycle arrest in the G;-phase. Expres-
sing the cell-cycle state as a green:red (G:R) ratio (Fig. 2C) showed
that this was lower in the ACT mice (0.26 £ 0.12; n=3) thanin the
untreated control mice on day 3 (1.1 £ 0.05; n = 3; P = 0.0032).
This difference remained up to day 5 after CTL transfer, but on day
7, the G:R ratio increased again, together with the disappearance
of CTLs, and green cells became dominant once more after day 10
(Supplementary Fig. S1B).
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IFNv is critical for tumor growth inhibition and cell-cycle arrest

[FNYy is important for antitumor immunity. We have shown
that it is critical for tumor growth inhibition in this model using
IFNY neutralizing antibody (anti-IFNy mAb; ref. 28). Because
IFNYy is involved in MHC class I upregulation, antigen processing,
and trafficking of T cells into the tumor site by promoting
chemokine production, the number of T cells infiltrating into
the tumorwas decreased by neutralizing IFNvy (data notshown). It
was necessary to inject 4-fold more T cells to achieve the same level
of CTL infiltration in anti-IFNy Ab-treated animals (Fig. 3B).
Nevertheless, anti-IFNy treatment still prevented tumor growth
blockade, despite the presence of equivalent levels of CTL in the
tumor (Fig. 3A). Strikingly, this was the case even though the
expression of mRNA encoding the effector molecules IFNy, Per-
forin, Granzyme B, and FasL in ACT mice treated with anti-IFNy
mADb was the same or even higher than that in control ACT mice
treated with rat IgG (Fig. 3Cand D). A major difference in the anti-
[ENY mAb-treated mice was that the expression of mRNA encod-
ing STAT1 and IFNy-inducible genes such as MIG, IP10, or I-TAC
was suppressed. This suggests that IFNy signaling was blocked by
the treatment with anti-IFNy mAb.

As shown in Fig. 4A, all tumor cells fluoresced either green or
red. In growing tumors, the majority of B16 tumor cells were in the
S-G,~M phase (Fig. 4A, left). After CTL transfer, most of the tumor
cells became red (Fig. 4A, middle), but in the anti-IFNy mAb-
treated ACT miice, the tumor cells remained green (Fig. 44, right).
Diffused infiltration of CILs into the tumor accompanied by
massively infiltrated mononuclear cells and destruction of tumor
cells, corresponding to spotty necrotic/apoptotic areas, was seen
in ACT mice whether or not they received anti-IFNy mAb treat-
ment. Furthermore, apoptotic cells positive for single-stranded
DNA (ssDNA), detected as white spots, were rare, but were present
equally in ACT mice with or without anti-IENy mAb treatment
(Fig. 4B and C). This, therefore, suggests that the transferred CTLs
actually mediated relatively little tumor cell killing, which was
unaffected by anti-IFNy mAb administration.

The numbers of CTLs, tumor cells in necrotic/apoptotic areas,
and tumor cells in the G; or S-G,-M phase were compared

30 Cancer Immunol Res; 3(1) January 2015

Figure 2.

CTL transfer therapy induced G; cell-
cycle arrest of the tumor. A, C57BL/6
mice were injected with 1 x 10° B16-
fucci tumor cells, and 9 days later,
tumor-bearing mice (n = 5) were
treated as described in Fig. 1. B,
representative hematoxylin and
eosin (top) and fluorescence
microscopy images (middie and
bottom) of cryosections of B16-fucci
on day 3 (n = 3 per group). Alexa
Fluor647-labeled anti-mouse CD90.1
antibody was used to detect
infiltrating CD90.1" T cells (blue cells;
middile). Scale bars, 200 pm.

C, analysis of cell-cycle stage was
performed by calculating the G:R ratio
in fluorescence images (n = 3 per
group). Samples were compared
using an unpaired, two-tailed Student
ttest (*, P < 0.01).

CTL

systematically in these mice. More green than red cells were
observed in untreated tumors (Fig. 4D). In CTL-treated tumors,
as described above, the G:R ratio was inverted, but the ratio was
restored by the abrogation of IFNy signaling. The surface area of
the part of the tumor with necrotic/apoptotic cells was similar in
the two CTlL-treated groups (with or without anti-IFNy mAb
treatment), and the estimated number of dead cells was always
smaller than that of the live cells (whether green or red; Fig. 4E).
These results indicate that G, cell-cycle arrest, and not cytolytic
killing, was primarily responsible for the CTL-induced suppres-
sion of tumor growth.

IFNvy directly suppress B16-fucci tumor cell growth through
cell-cycle arrest

We constructed B16-fucci tumor cells expressing an IFNYy recep-
tor lacking the intracellular component (B16-fucciAIC). ACT did
notsuppress the growth of these cells even when 4-fold more CTLs
(4 x 107) were transferred (Supplementary Fig. S2A). Although a
similar number of CTLs infiltrated into B16-fucciAIC tumor sites,
as in mice with B16-fucci tumors receiving 4-fold less CTLs, no
IFNy production was observed (Supplementary Fig. S2B and
$2C), and therefore the effect of IFNy could not be evaluated in
this system. This might be due to limited recognition of B16-
fucciAIC tumor cells by the CTL, because of their low level of MHC
class I expression (Supplementary Fig. S2D). As expected, B16-
fucciAIC did not upregulate MHC class I molecules after exposure
to IFNY.

Because we could not evaluate the effect of [FNy on tumor cells
in vivo in this manner, we tested its effects directly on B16 tumor
cells invitro. As shown in Fig. 5, proliferation of B16-fucci cells, but
not B16-fuccdiAIC cells, was inhibited completely when they were
treated with IFNYy (Fig. 5A). These cells were arrested in G; (Fig.
5B), showing that IFNy directly inhibits the growth of B16-fucci
tumor cells through G, cell-cycle arrest.

Recently, it was reported that a combination of IFNy and TNFo.
produced by CD4™* T cells can drive tumor cells into senescence by
inducing Go-G; cell-cycle arrest through the activation of
p16INK4a (14). Therefore, we tested the effect of [FNy and/or
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Figure 3.

IFNy is critical for tumor growth inhibition. A, C57BL/6 mice were injected with B16-fucci tumor cells. Tumor-bearing mice (n = 5) were treated as described in Fig. 1,
and anti-IFNy or control rat IgG antibodies were injected intraperitoneally on days O and 2 after CTL transfer. Tumor volumes were measured on days 3, 5,
and 7 after CTL transfer (n = 5). B, the frequency of CTLs (CD45" CD90.1" CD8") was assessed by flow cytometry. Tumors were harvested from each group
on day 3 after CTL transfer. C and D, total RNA was isolated from tumor tissues and reverse-transcribed into cDNA. Expression of IFNy-related genes

(IFNy, STATI, MIG, IP-10, and I-TAC; C) and cytotoxicity-related genes (Perforin, Granzyme B, and FasL; D) was determined by qRT-PCR. GAPDH was used as an
internal control. Samples were compared using an unpaired, two-tailed Student ¢ test (*, P < 0.05; **, P < 0.01; and ***, P < 0.001; N.S., not statistically significant).

TNFo on B16 tumor cells. Whereas IFNy alone inhibited cell
proliferation by G, arrest, TNFa alone had a limited inhibitory
effect on B16 proliferation even at a high concentration (10 ng/
mL; Supplementary Fig. $3). When B16 tumor cells were cultured
in the presence of both IFNy and TNFo. at a high concentration, a
synergistic effect on cell growth inhibition and cell senescence was
observed (Supplementary Fig. S3).

IFNvy production by transferred CTLs induces G, cell-cycle
arrest by a mechanism involving Skp2/p27-related cell-cycle
regulation

We next investigated the mechanism of G, cell-cycle arrest by
IFNy. B16-fucci tumor tissues were harvested from untreated
mice, ACT mice treated with rat IgG, or ACT mice treated with
anti-IFNy mAb on day 3 after CTL transfer. Proteins were extracted
from each tissue for Western blot analysis. As shown in Fig. 6A,
downstream of IFNy signaling, STAT1 was phosphorylated in
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tumors from ACT mice treated with rat IgG, but not in tumors
from anti-IFNy mAb-treated ACT mice. To confirm the gene
expression data that Skp2 was significantly downregulated in
tumors from ACT mice (Fig. 1B and C), we examined the
protein expression of Skp2. As shown in Fig. 6A, Skp2 expres-
sion was suppressed in tumors from control ACT mice, but not
in those from mice treated with anti-IFNy mAb. Conversely, the
cyclin-dependent kinase inhibitor (CKI) p27 accumulated in
the former but not in the latter. We also investigated the ataxia
telangiectasia mutated (ATM)-p53-p21 pathway involved in
G; cell-cycle arrest following DNA damage. We found that ATM
was not upregulated as a result of CTL therapy, p53 was not
activated, and no subsequent accumulation of p21 was
observed. This shows that the ATM-p53-p21 pathway is not
involved in this model (Fig. 6A). We also investigated the
expression of these molecules in vitro (Fig. 6B). B16-fucci and
B16-fucciAIC tumor cells were treated with 10 U/mL IFNy and
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CTLs block tumor growth by both lytic
activity and IFNy-dependent cell-
cycle arrest. A, B16-fucci tumor-
bearing mice (n = 3) were treated as
described in Fig. 3. Hematoxylin and
eosin (top) and fluorescence
microscopy images (bottom) of
frozen tumor sections on day 3 are
shown. Dotted yellow lines, necrotic
areas. Scale bars, 200 um. B,
apoptotic cells positive for sSSDNA are
shown in fluorescence microscopy
images on day 3. Cells were
counterstained with DAPI. Scale bars,
100 pm. C, quantification of ssSDNA-
positive cells within tumors. Numbers
of ssDNA-positive cells were counted
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harvested at the indicated times. STAT1 phosphorylation was
observed at early time points (15 and 30 minutes after IFNy
treatment) in B16-fucci, but not in B16-fucciAIC. Skp2 expres-
sion was downregulated gradually, and p27 accumulated by 48
hours after IFNYy treatment in B16-fucci but not in B16-fucciAIC
cells (Fig. 6B). We confirmed that the ATM-p53-p21 pathway
was also not involved in G, cell-cycle arrest in vitro. These
results suggest that G; cell-cycle arrest by CTL therapy is likely
due to Skp2/p27-related cell-cycle regulation by IFNy.

Inhibition of FBL3 cell proliferation by IFNy

We next investigated whether proliferation of other murine cell
lines is inhibited by IFNYy. FBL3, p815, CT26, 3LL, and EL4 tumor
cells were treated with IFNy (10 U or 100 U/mL) for 4 to 6 days
(Fig. 7A). The proliferation of FBL3 tumor cells was inhibited by
[FNy treatment in a manner similar to that of B16 tumor cells. The
proliferation of P815, CT26, and 3LL tumor cells was moderately
inhibited. No inhibition was observed in IFNy-treated EL4 tumor
cells. In Western blot analyses, using tumor lysates from FBL3 and
EL4 tumors at the indicated time point, Statl phosphorylation
was observed in FBL3 lysates, but the phosphorylation was very

weak in EL4 tumor lysates. Skp2 expression was downregulated
24 to 48 hours after [FNy treatment in FBL3 but not in EL4 tumors,
and p27 accumulated (Fig. 7B). Again, the ATM-p53-p21 path-
way was not involved. These results suggest that inhibition of
FBL3 tumor cell proliferation by IFNy might involve Skp2/p27-
related cell-cycle regulation, as in B16.

Discussion

In this study, we demonstrated that the mechanism of tumor
growth inhibition by adoptive CTL therapy was largely dependent
on IFNy-induced G, cell-cycle arrest rather than on tumor cell
lysis. In microarray analysis, the upregulation of genes related to
CD8™ T cells, the MHC class I pathway, IFNy signaling, cytotoxic
effector molecules, and others was observed in tumors from ACT
mice. At the same time, a decrease was found in the expression of
some genes positively regulating the cell cycle in these tumors.
Therefore, we focused on cell-cycle control in the B16 adoptive
immunotherapy model and used the fucci system, which allows
the visualization of cell-cycle stage of tumor cells in situ in mice
receiving CTL.
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Histologic analysis following ACT showed that the number of
CTLs in the tumor was far lower than that of tumor cells. On
average, only 140 CTLs per mm? tumor tissue on day 3 after
transfer were found. In contrast, this area contained 1,911 tumor
cells (both green and red cells}. Thus, it seems a priori unlikely that
this small number of CTLs infiltrating the tumor would be
sufficient to prevent tumor growth by direct cytotoxicity 3 to 7
days after CTL injection. Consistent with this observation, we also
found that the area of the tumor undergoing necrosis/apoptosis
was relatively small. Instead, a larger area consisting of tumor cells
had undergone cell-cycle arrest at G,. Therefore, transient tumor
suppression from days 3 to 7 seems to be largely due to cell-cycle
arrest rather than due to CTL killing. Using mAbs that neutralize
IFNy and completely block IFNY signaling, we demonstrated that
IFNY is required for tumor growth inhibition and G, cell-cycle
arrest but not for CTL killing. Thus, IFNy-dependent G cell-cycle
arrest makes a major contribution to tumor growth suppression in
this model. This would explain why tumor growth was suppressed
despite the low ratio of CTLs to tumor cells in this system, and how

A

Figure 6.
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mediated by IFNy-dependent Skp2/
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T cells can suppress the growth of bystander tumor cells that may
not express the target antigen. This could also explain some
examples to tumor suppression by CD4* T cells that can also
make IFNY even if they are not lytic and even if the tumor is MHC
class II negative, as long as antigen-presenting cells are infiltrating
and can present antigen, as the soluble IFNYy can target neighbor-
ing cells.

IFNy inhibits cell proliferation via cell type-specific pathways
thatinvolve CKis, such as p21Cip1 (29, 30) and p27Kip1 (31, 32).
It has been shown that STAT1 interacts directly with cyclin D1/
Cdk4 and mediates the cell-cycle arrest of human U3A cells (33).
Here, we investigated the involvement of CKls in G; cell-cycle
arrest, and found that p27Kip1, but not p21Cip1, accumulated in
B16 tumor cells following CTL therapy in vivo or IENy treatment in
vitro. Another CKI, p16, is involved in senescence-like G, cell-cycle
arrest (14), but this factor is not expressed in B16 tumor cells due
to ap16™* exonla. deletion (34). Thus, p27Kip1 appeared to be
the major CKI involved in G, arrest in this model. Skp2 is an
oncogene; Skp2 inactivation induces cell senescence independent
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of the p53 pathway (35). STAT1 has been shown to repress Skp2
gene transcription by binding to its promoter region and stabi-
lizing p27Kip1 in Ras-transformed cells (36). In this report, we
showed that Skp2 expression was downregulated after either CTL
therapy or IFNy treatment; thus, STAT1 may repress Skp2 expres-
sion and promote p27Kip1 stabilization.

G, cell-cycle arrest is also known to be induced by ATM-
dependent activation of p53 and induction of p21Cipl (37).
Because ATM is a key molecule in the cellular response to DNA
damage (38), we investigated its expression by Western blot
analysis. We found that the ATM protein was not highly expressed
in the tumor after CTL therapy. We also confirmed this finding in
vitro in B16 cells cultured with IENy. Furthermore, p53 was not
phosphorylated at Ser15, and the CKI p21Cip1, which is down-
stream of phospho-p53 (Ser15), was not upregulated. Therefore,
we conclude that ATM expression and the subsequent activation
of the phospho-p53-p21 pathway was not involved in this
model.

We tested the effect of IFNYy on other murine tumor cell lines,
and found that the proliferation of FBL-3 cells was strongly
inhibited by IFNy, similar to that of the B16 tumor cells. On the
other hand, EL-4 cells were insensitive to IFNy, whereas p815,
CT26, and 3LL cells were moderately sensitive. IFNy sensitivity
and the mechanisms involved in the inhibition of cell prolifer-

34 Cancer Immunol Res; 3(1) January 2015

ation may differ in different tumor cell lines. It is important to
know whether IFNy insensitivity is due to the downregulation of
IFNYy receptors on these tumors, or defects in their [FNy signal
transduction.

Braumuller and colleagues (14) reported that IFNy together
with TNFo reduced the proliferation of different cancer cell lines
in both mice and humans. Here, we showed that the combination
of IFNYy and TNFa: strongly inhibited B16 tumor cell proliferation
and induced cell senescence (Supplementary Fig. S3). Because
pmel-1 CTLs produce large amounts of IFNy, but not TNFa, when
they are cultured with B16 tumor cells in vitro (Supplementary Fig.
S4), and IFNY alone is enough to suppress tumor cell proliferation
(Supplementary Fig. S3), the transient suppression of tumor
growth from days 3 to 7 in vivo in this model may be entirely
due to IFNY, as there is only a small amount of TNFc at the tumor
site. Th1 CD4" T cells or Toll-like receptor (TLR)-stimulated
macrophages might be able to produce enough TNFa, but these
cells are not present in our system. Alternatively, a strategy to
induce polyfunctional CD8™ T cells producing IFNy, TNFo, and
L2 might be important to enhance further the antitumor effects in
this model (39, 40).

[FNy is a critical molecule in cancer immunosurveillance or
immunoediting in primary mouse tumor models (41-44). In
our study, as long as high concentrations of IFNy were present

Cancer Immunology Research

Downloaded from cancerimmunolres.aacrijournals.org on May 15, 2015. © 2015 American Association for Cancer Research.

- 188 -



Published OnlineFirst August 15, 2014; DOI: 10.1158/2326-6066.CIR-14-0098

in the tumor, its growth was controlled through G, arrest
(Supplementary Fig. S1). Thus, our study suggests that dereg-
ulation of the cell cycle due to insufficient availability of IFNy
or IFNY insensitivity developed by tumor cells may be one
mechanism by which tumor cells escape from CTL therapy
(Supplementary Figs. S1 and S2).

Our study indicates that a small number of infiltrated CTLs can
cause a large number of tumor cells to arrest in G rather than
dying. On the basis of this finding, we propose that the devel-
opment of an appropriate strategy to maintain tumor cells in a
quiescent, dormant state for extended periods (immunotherapy-
induced equilibrium/dormancy), or to induce apoptosis/senes-
cence, would be highly desirable.
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Abstract

Introduction

Immune checkpoint modulators such as those targeting cyto-
toxic T-lymphocyte-associated antigen-4 (CTLA-4) and pro-
grammed cell death-1 (PD-1) have attracted attention due to
their extraordinary antitumor effects in patients with advanced
melanoma, lung cancer, and renal cancer (1, 2). An mAb against
CTLA-4 (ipilimumab) that enhances both early T-cell activation
and CTL function was approved for treatment of patients with
advanced melanoma in the United States in 2011. An anti-PD-1
mAD (nivolumab) that protects activated T cells from exhaustion
in peripheral tissues was approved for treatment of patients with
melanoma in Japan and in the United States in 2014. In addition,
other mAbs against CTLA-4 (tremelimumab), PD-1 (pembroli-
zumab), and programmed death-ligand 1 (PD-L1, a ligand for
PD-1) are currently undergoing clinical trials to evaluate their

'Department of Molecular Preventive Medicine, Graduate School of
Medicine, The University of Tokyo, Tokyo, Japan. 2IDAC Theranostics,
Inc., Tokyo, Japan. *Department of Pharmacology and Therapeutics,
The University of Melbourne, Melbourne, Victoria, Australia. “Depart-
ment of Immunotherapeutics, The University of Tokyo Hospital, Tokyo,
Japan.

Note: Supplementary data for this article are available at Cancer immunology
Research Online (http://cancerimmunolres.aacrjournals.org/).

S. Ueha, S. Yokochi, and Y. Ishiwata contributed equally to this article.

Corresponding Author: Kouji Matsushima, The University of Tokyo, 7-3-1Hongo,
Bunkyo-ku, Tokyo 1130033, Japan. Phone: 81-3-5841-3431; Fax: 81-3-5684-2297,;
E-mail: koujim@m.u-tokyo.ac.jp

doi: 10.1158/2326-6066.CIR-14-0190

©2015 American Association for Cancer Research.

www.aacrjournals.org

antitumor efficacy. However, despite clear survival benefits in a
subset of tumor patients, other groups of patients are refractory to
these single-agent therapies.

Combination therapies comprising immune checkpoint mod-
ulators that have different points of action, targeting, for example,
theactivation and expansion of T cells in lymphoid tissues and the
exhaustion and deletion of T cells in the effector site, represent
promising strategies for tumor immunotherapy (1). Synergistic
antitumor effects in advanced melanoma have been reported with
a combination of anti-CTLA-4 and anti-PD-1 mAbs (3). The
antitumor efficacy of other combinations of regulators of lym-
phocyte activation and expansion (e.g., Lymphocyte activation
gene-3/LAG-3, 0X40/CD134) and of lymphocyte exhaustion and
deletion (e.g., T-cell immunoglobulin mucin-3/TIM-3, 4-1BB/
CD137, B- and T-lymphocyte attenuator/BTLA, glucocorticoid-
induced TNF-receptor/GITR) is currently under investigation.
Because immune checkpoint modulators play both positive and
negative roles in the immune inhibitory pathway with some
redundancy, identification of optimal therapeutic combinations
remains a considerable challenge.

Another approach to immune checkpoint modulation involves
depleting immunosuppressive leukocyte populations such as
forkhead box P3 (Foxp3)*CD25™ regulatory T cells (Treg), Th2
cells, T regulatory (Tr) 1/3 cells (4), myeloid-derived suppressor
cells (MDSC) and indoleamine-2,3-dioxygenase (IDO) ™ plasma-
cytoid DCs (pDG; refs. 5-7). Several groups have suggested that
depletion of CD4" cells, including Tregs, Th2 cells, Tr1/3 cells,
and a subpopulation of MDSCs and pDCs, results in strong
antitumor effects in mouse models due to the enhancement of
CTL responses (8-12). These antitumor effects may be associated
with the modulation of multiple immune checkpoints caused by
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CDA4™ cell depletion. However, the relative advantage of CD4*
cell depletion over other immune checkpoint mAb-based treat-
ments remains unclear. Encouraged by the positive reports sur-
rounding the benefits of anti-CD4 mAb treatment in mice, and by
the recent clinical data supporting anti~CTLA-4 and anti-PD-1
mAb therapies, here, we examine whether treatments that com-
bine an anti-CD4 mAb and immune checkpoint modulators
produce synergistic antitumor activity.

Thus, in the present study, we used comprehensive immuno-
logic analyses to compare the antitumor effects of an anti~CD4-
depleting mAb with those of a variety of mAbs against immune
checkpoint molecules, including PD-1, PD-L1, PD-L2, CTLA-4,
0X40, LAG-3, TIM-3, BTLA, and GITR, in mouse subcutaneous
tumor models. We also investigated the antitumor effects of
treatments that combined an anti-CD4 mAb and antibodies
against these immune checkpoint molecules. We report that
treatment with an anti-CD4 mAb alone induces strong antitumor
effects and expansion of tumor-specific CD8" T cells, and that
combination of an anti-CD4 mAb with anti-PD-1 or anti-PD-L1
mAbs results in striking synergy in the suppression of tumor
growth.

Materials and Methods

Mouse

Seven-week-old female C57BL/6 and male BALB/c mice were
purchased from Japan SLC. Fluorescent ubiquitination-based cell-
cycle indicator (Fucci) double transgenic mice were generated by
crossbreeding FucciG;-#639 and FucciS/G,/M-#474 animals
(obtained from Dr. A. Miyawaki through the RIKEN BRC) as
described previously (13). Mice transgenic for the gp100 mela-
noma antigen-specific Pmel-1-TCR or the ovalbumin-specific OT-
1 TCR were purchased from The Jackson Laboratory. Each exper-
imental group contained 8 mice except where otherwise specified.
All animal experiments were conducted in accordance with insti-
tutional guidelines with the approval of the Animal Care and Use
Committee of the University of Tokyo.

Cell lines and tumor models

B16F10 and Lewis lung carcinoma (LLC) were obtained from
the ATCC. Colon 26 was obtained from the Cell Resource Center
for Biomedical Research, Institute of Development, Aging, and
Cancer, Tohoku University. BL6F10 cells expressing the truncated
form of human low-affinity nerve growth factor receptor
(AhRLNGFR/hCD271) were generated by retroviral transduction
and two subsequent rounds of in vivo passaging (Supplementary
Fig.S1). B16F10 cells (5 x 10°/mouse), LLC cells (5 x 10°/mouse),
and Colon 26 cells (2 x 10°/mouse) were inoculated s.c. into the
right flanks of C57BL/6 or BALB/c mice. Tumor diameter was
measured twice weekly and used to calculate tumor volume
(mm®) [(major axis; mm) x (minor axis; mm)* x 0.5236].

In vivo antibody treatment

Anti-CD4 (clone GK1.5), anti-CD8 (clone YIS169.4), anti-PD-
1 (clone J43), anti~PD-L1 (clone 10F.9G2), anti-PD-L2 (clone
TY25), anti-OX40 (clone OX-86), anti-CTLA-4 (clone 9D9),
anti-LAG-3 (clone C9B7W), anti-BTLA (clone 6A6), anti-TIM-
3 (clone RMT3-23), anti-GITR (clone DTA-1), and anti-CD25
(clone PC-61.5.3) mAbs were purchased from BioXcell. Antibo-
dies were injected i.p. at a dose of 200 ug per mouse. Anti-CD4
mAb (200 pg/mouse) was administered in a single dose or in
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successive doses on days 5 and 9 after tumor inoculation. Immune
checkpoint antibodies (200 pg/mouse) were administered on
days 4, 8, 14, and 18 after tumor inoculation. Combination
treatments with the anti-CD4 mAb and anti-immune checkpoint
antibodies were administered under the same conditions as
respective single-agent protocols.

Immunohistologic analysis

Immunofluorescent staining was performed as described pre-
viously (14-16) using primary antibodies and the appropriate
fluorophore-conjugated secondary Abs as listed in Supplemen-
tary Table S1, then photographed using an SP5 confocal micro-
scope (Leica Microsystems).

Flow cytometry

Intravascular leukocytes were stained by i.v. injection of fluor-
ophore-conjugated mAb (3 pg/mouse) against CD45 or CD45.2 3
minutes before collecting tissues. Single-cell suspensions were
prepared by enzymatic or mechanical dissociation of tissues with
or without subsequent density separation, as described previously
(17, 18). Flow-Count fluorospheres (Beckman Coulter) were used
to determine cell numbers and normalize cell concentrations
before antibody staining. Cells were pretreated with Fc Block
(anti-mouse CD16/CD32 mAb; clone 2.4G2, BioXcell), then
stained with mix of fluorophore-conjugated anti-mouse mAbs
as indicated in Supplementary Table S1. Data were acquired on a
Gallios flow cytometer (Beckman Coulter) and analyzed using
FlowJo software (version 9.7.5; Flow]Jo, LLC). Nonviable cells
were excluded from the analysis based on forward and side scatter
profiles and propidium iodide staining.

Quantitative reverse transcription real-time PCR

Total RNA was extracted using a RNeasy Mini kit (Qiagen) and
converted to cDNA using ReverTra Ace qPCR RT Master Mix with
gDNA Remover (Toyobo) according to the manufacturer's
instructions. Real-time quantitative PCR analysis was performed
using THUNDERBIRD Probe qPCR Mix or THUNDERBIRD SYBR
qPCR Mix (Toyobo), and an ABI 7500 sequence detector system
(Life Technologies). The primers used for the PCR reaction are
listed in Supplementary Table S2. The expression levels of each
gene were normalized to Rps3 expression level for each sample.

Statistical analysis

Unless otherwise stated, data are presented as mean + SE.
Statistical analyses were performed using GraphPad Prism soft-
ware (version 6.0e; GraphPad Software). For comparisons
between groups in the in vivo study, we used one-way ANOVA
with the Dunnett post hoc test. For comparisons between the
means of two variables, we used paired Student ¢ tests. Compar-
isons of survival data between groups were made using the log-
rank test after Kaplan-Meier analysis. A P value of <0.05 was
considered to be statistically significant.

Results

An optimized anti-CD4 mAb treatment protocol exerts robust
antitumor effects

We began by optimizing the protocol for anti-CD4 mAb
administration in B16F10, LLC and Colon 26 tumor models.
Mice bearing subcutaneous tumors received a single i.p. injection
of 200 ug anti-CD4 mAb 2 days before (day —2) or 0, 3, 5, or
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9 days after tumor inoculation. In all three models, administra-
tion of anti-CD4 mAb on days 3 and 5 significantly suppressed
tumor growth (Supplementary Fig. S2A-S2C). B16F10 tumor
growth, but not LLC and Colon 26 tumor growth, was also
inhibited by mAb administration on days —2 and 0 (Supplemen-
tary Fig. S2A). However, the growth of LLC and Colon 26 tumors
was not significantly affected by mAb administration at days —2
and 0 (Supplementary Fig. S2B and S2C). Successive administra-
tion of the anti-CD4 mAb on days 5 and 9 resulted in the greatest
inhibition of tumor growth in all three models (data not shown).
Doses of anti-CD4 mAb (3.1 or 12.5 pg/mouse) that were insuf-
ficient to cause CD4 lymphocyte depletion had no inhibitory
effect on tumor growth in the melanoma model (Supplementary
Fig. 2D and S2E). On the basis of these results, for subsequent
studies, we adopted a protocol of administering the anti-CD4
mAb ata dose of 200 pg/mouse successively on days 5 and 9 after
tumor inoculation,

We next compared the antitumor effects of the anti-CD4 mAb
against those of a variety of immune checkpoint mAbs (PD-1, PD-
L1, PD-L2, CTLA-4, OX40, LAG-3, TIM-3, BTLA, and GITR) in the
B16F10 model, because melanoma is a major target of anti-
immune checkpoint antibody therapy. We found that twice-weekly
injections of immune checkpoint antibodies were sufficient to
produce the same level of antitumor effect as achieved with daily
injections (data notshown). Among the mAbs tested, the anti-CD4
mAb was the most effective single-agent treatment in terms of
tumor growth inhibition and survival (Fig. 1A~C). Collectively,
these results confirm the potent antitumor effects of anti-CD4 mAb
treatment in mice and reveal a surprising advantage of anti-CD4
mADb treatment over immune checkpoint mAb treatment.
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Anti-CD4 and Immune Checkpoint Antibody Synergy

Anti-CD4 mAb treatment depletes CD4" T cells and pDCs

To determine which cells are depleted by anti-CD4 mADb
therapy, we next examined changes in cell populations with
immunosuppressive potential following anti-CD4 mAb admin-
istration at day 5 in mice bearing B16F10 tumors. Flow cytometric
analysis revealed that numbers of CD4™" T cells, including Foxp3™
CD25" Tregs, decreased 50- to 100-fold over days 2 to 9 following
anti-CD4 mAb administration (7 to 14 days after tumor inocu-
lation), as compared with cell numbers in phase-matched untreat-
ed tumor-bearing mice (Supplementary Fig. S3A-S3C). When
LLC tumor-bearing mice were administered anti-CD4 mAb on
days 5 and 9, CD4" T cells disappeared from the blood until at
least day 15 after the first mAb administration (Supplementary
Fig. $3D). pDCs, a subset of which are positive for CD4 and have
been implicated in the suppression of antitumor immune
responses (7), also decreased 3- to 10-fold over days 2 to 9
following mAb treatment (Supplementary Fig. S3A-S3C). MDSC
subpopulations, including neutrophils and Ly-6C™ or Ly-6C'®
monocytes, were not significantly affected by mAb treatment
(data not shown). These results indicate that CD4" T cells
(including Tregs) and pDCs are the targets of anti-CD4 mAb
therapy.

Anti-CD4 mAD treatment increases the number of tumor-
infiltrating CD8" T cells

We next investigated the effects of anti-CD4 mAb therapy
on tumor-infiltrating CD8" T-cell populations. Intravascular
staining (IVS) is a technique that allows circulating leukocytes
present in tissue blood vessels (which represent a proportion
of total leukocytes recovered) to be distinguished from cells
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Antitumor effects of anti-CD4 mAb treatment. Mice bearing BI6F10 melanoma tumors were injected i.p. with anti-CD4 mAb (200 pg/mouse) on days 5 and 9 or
anti-immune checkpoint mAbs on days 4, 8, 14, and 18 after tumor inoculation. A, tumor growth curves. B, tumor volume on day 16 (top) or day 15 (bottom). C, survival
following tumor inoculation (8 mice/group). A and B, data, mean + SE of 8 mice per group; *, P < 0.05; **, P < 0.01; ***, P < 0.001 (compared with control).
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actually infiltrating the parenchyma of tissues, including
tumors (19). In untreated B16F10 tumors, about 15% of
CD8" T cells were positive for IVS, and the frequency of
PD-1¥CD137" tumor-reactive cells (20) was about 10-fold
lower in this population than in the IVS-negative parenchymal
cell population (Supplementary Fig. S4A and $4B). Anti-CD4
mAb treatment significantly increased the frequency and num-
ber of IVS-CD457CD8™" T cells in the tumor (Fig. 2A and B).
The increased number of CD8" T cells in the tumors of anti-
CD4 mAb-treated mice was also evident in histologic sections
(Fig. 2C). Furthermore, the IVS™CD8™ T cells induced by anti-
CD4 mAb treatment contained a higher proportion of PD-
1*CD137" tumor-reactive cells (Fig. 2D and E), had greater
potential to produce IFNy in response to ex vivo PMA/iono-
mycin stimulation (Fig. 2F and G), and showed higher specific
killing activity against B16F10 tumor cells (Supplementary
Fig. S5A-S5C), compared with T cells from the untreated
group. In the LLC and Colon 26 tumor models, anti-CD4
mAb-treated mice displayed decreased tumor growth, system-
ically increased CD8"CD44"PD-17 T cells, and upregulation
of LAG-3, TIM-3, and CTLA-4 in tumor-infiltrating CD8* T
cells (Supplementary Fig. S6A-S6DY). Collectively, these results
suggest that anti-CD4 mAb treatment enhances antitumor
CD8™" T-cell responses and induces a shift toward type I
immunity within the tumor.
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Anti-CD4 mAb treatment promotes expansion of tumor-
specific CD8™ T cells in the draining lymph node

To further investigate the effects of anti-CD4 mAb treatment on
tumor-specific CD8* T-cell responses, we adoptively transferred
melanoma antigen-specific Pmel-1 TCR transgenic CD8" T cells
(21) into mice 1 day before inoculation with B16F10 tumors (day
—1; Supplementary Fig. S7A and S7B). On day 14 after tumor
inoculation, numbers of Pmel-1 CD8" T cells in the blood,
draining lymph node (dLN), non-dLN (ndLN), spleen and tumor
were 10- to 100-fold higher in anti-CD4 mAb-treated mice com-
pared with that in untreated mice (Supplementary Fig. S7C
and S$7D). As tumors grew, Pmel-1 CD8" T-cell numbers were
unchanged or decreased in untreated group mice, whereas Pmel-1
CD8" T-cell numbers increased in anti-CD4 mAb-treated mice
(Supplementary Fig, S7E). To determine the site of Pmel-1 CD8*
T-cell expansion, we administered bromodeoxyuridine (BrdUrd)
1 hour before collecting tissues. The number of BrdU™"-prolifer-
ating Pmel-1 CD8™ T cells in the dLN far outnumbered those in
the tumor, irrespective of anti-CD4 mAb treatment (Supplemen-
tary Fig. S7F and S$7G). Importantly, proliferating cell numbers
decreased between days 9 and 14 in untreated mice, but increased
in anti-CD4 mAb-treated mice (Supplementary Fig. S7H). Similar
CD4 depletion-induced proliferation was also observed in
endogenous polyclonal CD8" T cells (data not shown). These
data suggest that anti-CD4 mAD treatment protects tumor-reactive
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Anti-CD4 mAb treatment increases the number of tumor-infiltrating CD8™ T cells. Mice bearing BI6F10 (A, B, D-G) or BI6F10-AhLNGFR (C) tumors were injected i.p.
with anti-CD4 mAb on days 5 and 9, and tumor-infiltrating CD8* T cells were analyzed on day 14 after tumor inoculation. Control mice received an injection
of vehicle only. For flow cytometric analyses, mice were given an i.v. injection of anti-CD45.2 Ab 3 minutes before the collection of tissues to enable identification
of cells in the blood compartment (IVS). A, flow-cytometry plots of parenchymal leukocyte compartments (CD45%1VS-CD45.27). B, the number of
parenchymal CD8* T cells in tumor. C, distribution of CD8™ T cells in the tumor. Green, CD8; red, AhLNGFR; blue, propidium iodide (P1). Enlargements in white boxes
show nonnecrotic areas, yellow box shows necrotic area; scale bar, 200 um. D, flow-cytometry plots and frequencies (E) of PD-1"CDI137* tumor-reactive

cells among the parenchymal CD8* T-cell population. F, flow-cytometry plots and frequencies (G) of IFNy- and TNFo-producing cells among the parenchymal
CD8™ T-cell population following ex vivo restimulation with PMA and ionomycin. Data represent mean + SE of 4 mice per group and are representative of at least four
independent experiments. Numbers in flow-cytometry plots indicate mean frequencies within live cells (A) or parental populations (D and F); ***, P < 0.001

(compared with control).

OF4 Cancer Immunol Res; 3(6) June 2015 Cancer Immunology Research

Downloaded from cancerimmunolres.aacrjournals.org on May 15, 2015. © 2015 American Association for Cancer Research.

-195 -



