Table 4 Toxicity during and after salvage chemoradiotherapy

Toxicity	Grade 0	Grade 1	Grade 2	Grade 3	Grade 4	Toxicity of any grade (%)	Toxicity of grade 3-4 (%)
Hematological toxicity							
Leukopenia	6	11	11	3	0	81	10
Neutropenia	12	13	5	1	0	61	3
Anemia	4	14	10	3	0	87	10
Thrombocytopenia	12	16	3	0	0	61	0
AST/ALT	20	9	2	0	0	35	0
Non-hematological toxicit	у						
Fatigue	7	17	5	2	0	77	6
Anorexia	4	18	3	5	1	87	19
Nausea	9	15	5	2	0	71	6
Vomiting	24	6	0	1	0	23	3
Diarrhea	21	8	2	0	0	32	0
Abdominal pain	20	9	2	0	0	35	0
Stomatitis	29	2	0	0	0	6	0
Skin rash	29	2	0	0	0	6	0
Infection	29	0	1	1	Q	6	3
Gastrointestinal ulcer	27	0	2	1	1	13	6

AST aspartate transaminase, ALT alanine transaminase.

non-hematological toxicity included anorexia (19%), nausea (6%), fatigue (6%), gastrointestinal ulcer (6%), vomiting (3%) and bile duct infection (3%). After CRT, three patients developed a gastrointestinal ulcer; of these, two (grade 2) recovered after conservative treatment, and one (grade 3) required endoscopic hemostasis. Another patient developed a duodenal fistula involving the primary tumor at 2 months after completion of CRT (grade 4). This fistula was possibly caused by the necrosis of the huge primary tumor that penetrated the duodenal wall. Although the hemorrhage was transient, this patient needed to undertake long-term fasting and intravenous hyperalimentation, but later died of severe bile duct hemorrhage because of primary tumor progression.

Four patients were diagnosed as having distant metastasis immediately after the completion of salvage CRT. Because of poor general health and/or the lack of an efficacious chemotherapeutic regimen, these patients did not undergo further evaluation. The response of the primary tumor was evaluated radiologically at 2 months after the completion of CRT in 26 patients. Tumor response to CRT included a PR in one patient (3%), stable disease (SD) in 22 patients (73%) and progressive disease (PD) in three patients (10%). Among the 24 patients whose initial CA19-9 level was >100 U/ml, the median CA19-9 level decreased from 769 U/ml to 479 U/ml at minimum after CRT. The CA19-9 level decreased more than 50% in 14 patients (58%) after CRT. Relief of pain was achieved in 16 out of 19 patients (84%) who had experienced carcinomatous pain before CRT. After the completion of salvage CRT, 20 patients (67%) started maintenance chemotherapy. Maintenance chemotherapy mainly consisted of the S-1 based regimen. The median duration of continued maintenance chemotherapy was 4 months.

Overall outcomes

The median overall survival time (MST) of the entire patient population from the start of salvage CRT was 8.8 (95% CI, 7.8-9.8) months. The 6 month, 1-year and 2-year survival rates from the start of salvage CRT were 76.7%, 33.3% and 26.3%, respectively (Figure 1). At the time of analysis, four patients were still alive, while 26 patients had died of disease progression. No patients underwent radical resection of their pancreatic cancer after CRT. The median progression-free survival (PFS) time from the start of salvage CRT was 4.9 (95% CI, 3.4-6.3) months. The 6 month, 1-year and 2-year PFS rates were 40.0%, 15.2% and 5.7%, respectively. Sites of disease progression after CRT were documented in all 28 patients with progression; they are summarized in Table 5. The sites of first failure after CRT included distant metastases in 17 patients (61%) and locoregional progression in 10 patients (36%); one patient (3%) had both sites of first failure after CRT. Although prophylactic nodal irradiation was not undertaken, isolated nodal recurrence as a first site of recurrence was observed in only one patient. The median local progression-free time from the start of CRT was 9.8 (95% CI, 7.2-12.3) months (Figure 2). The 6 month, 1-year and 2-year local

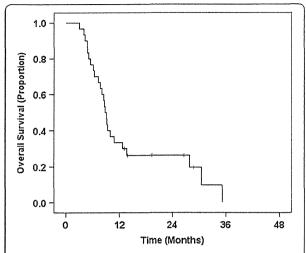


Figure 1 Kaplan-Meier survival curve for overall survival from the start of salvage chemoradiotherapy.

progression-free rates were 82.5%, 39.1% and 13.0%, respectively. The median distant metastasis-free time from the start of CRT was 6.2 (95% CI: 2.6-9.8) months.

In two patients, the primary tumors showed no response to primary chemotherapy and they had PD (Table 2). The primary tumors of these two patients remained stable at the completion of CRT. One patient was not evaluated further because lung metastases emerged at the completion of CRT. She received best supportive care owing to her poor general condition. The primary tumor in the other patient remained stable for 9.6 months, then progressed locally. Both patients died of primary disease at 4.0 and 13.7 months after the start of CRT.

Considered overall, the MST from the start of primary chemotherapy was 17.8 (95% CI, 12.3-23.3) months. The

Table 5 Sites of first disease progression after salvage chemoradiotherapy

cnemoraciotnerapy		
Disease site	No. of patients	% patients
None	2	7
Distant metastases	17	57
Liver	12	
Peritoneum	2	
Liver and peritoneum	1	
Lung	1	
Liver and lung	1	
Locoregional progression	10	33
Local progression	9	
Regional lymph node	1	
Local progression and distant metastases	1	3
Local and peritoneum	1	

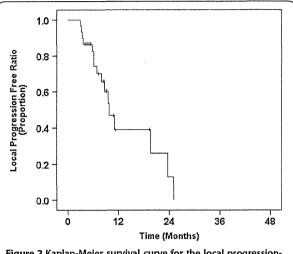


Figure 2 Kaplan-Meier survival curve for the local progression-free ratio from the start of salvage chemoradiotherapy.

1-, 2-, 3- and 4-year survival rates from the commencement of first-line chemotherapy were 83.3%, 38.8%, 21.7% and 7.2%, respectively (Figure 3).

Univariate and multivariate analysis of pre-CRT factors influencing survival after CRT

Univariate analysis was performed on 11 different variables to evaluate their potential value in terms of survival after salvage CRT (Table 6). Significant prognostic factors for improved survival included KPS (\geq 80; p=0.022); number of regimens of primary chemotherapy (single; p=0.006); pre-CRT tumor diameter \leq 4 cm (p=0.04); and pre-CRT serum CA19-9 level (\leq 1000 U/ml; p=0.002). The absence of local progression before

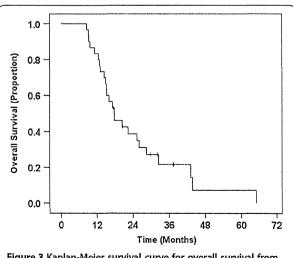


Figure 3 Kaplan-Meier survival curve for overall survival from the start of primary chemotherapy.

Table 6 Results of univariate analysis of survival after salvage chemoradiotherapy

Factors	No. of patients	Median survival time (months)	6-month survival (%)	1-year survival (%)	2-year survival (%)	p-value
All patients	30	8.8	77	33	26	
Age						
< 65	14	8.1	79	29	14	
≥ 65	16	9.2	75	38	38	0.2
Gender						
Male	16	8.1	75	31	25	
Female	14	9.2	79	36	29	0.6
Karnofsky perfor	mance status					
≥ 80	28	9.1	79	36	28	
< 80	2	4.8	50	0	0	0.03
Primary tumor le	ocation					
Head	15	9.4	93	40	33	
Body / tail	15	8.5	60	27	18	0.5
Number of regir	mens of primary ch	emotherapy				
1	25	9.4	80	40	32	
2	5	6.1	60	0	0	0.006
Best response to	primary chemoth	erapy				
PR	9	9.2	89	33	33	
SD or PD	21	8.5	71	33	24	0.6
Pre-chemoradio	therapy tumor diar	meter (cm)				
≤ 4	12	10.8	83	50	50	
> 4	18	8.5	72	22	0	0.04
Pre-chemoradio	therapy serum CA1	9-9 level (U/ml)				
≤ 1,000	29	10.8	90	47	42	
> 1,000	11	6.4	54	9	0	0.002
Local progression	n before starting c	hemoradiotherapy				
Absent	4	NA	80	60	60	
Present	26	8.8	76	28	19	0.15
Time from the s	tart of primary che	motherapy to chemoradiotherapy				
≤ 6 months	12	8.5	75	33	25	
> 6 months	18	8.8	78	33	28	0.9
Combined chen	noradiotherapy age	ents				
5-FU	14	7.2	64	21	14	
S-1	16	9.9	88	44	37	0.09

PR partial response, SD stable disease, PD progressive disease, NA not available.

salvage CRT (p=0.15) and concomitant use of S-1 during salvage CRT (p=0.09) were not significant prognostic factors. The time from the start of primary chemotherapy to salvage CRT was not associated with survival (p=0.73). Using multivariate analysis, a lower pre-CRT serum CA-19-9 level (≤ 1000 U/ml; p=0.009) and a single regimen of primary chemotherapy (p=0.004) were found to be independent prognostic factors for survival after salvage CRT (Table 7).

Discussion

In the present study, the MST of the entire patient population from the start of salvage CRT was 8.8 months. The median time to local progression from the commencement of salvage CRT was 8.9 months. Before starting CRT, all of the patients experienced failure of the primary chemotherapy. However, the MST of 8.8 months for this cohort is comparable to the historical MST achieved after primary CRT combined with 5-FU

Table 7 Results of multivariate analysis of survival after salvage chemoradiotherapy

Variables	Factors	Hazard rate (95% CI)	<i>p-</i> value	
Pre-chemoradiotherapy serum CA19-9 level (U/ml)	≤ 1000 versus > 1000	1 4.38 (1.45-13.22)	0.009	
Number of regimens of primary chemotherapy	1 versus 2	1 6.28 (1.78-22.18)	0.004	
Local progression before chemoradiotherapy	absent versus present	1 1.58 (0.34-7.18)	0.6	
Pre-chemoradiotherapy tumor diameter (cm)	≤ 4.0 versus > 4.0	1 1.11 (0.35-3.46)	0.9	

[2,14,19]; the median time to local progression was also similar [13]. In addition, the frequency of grade 3–4 non-hematological toxicity observed in the current study was also similar to that reported in previous studies. These findings show that CRT combined with S-1 or 5-FU had moderate anti-tumor activity and an acceptable toxicity profile in patients with LAPC, even after failure of GEM-based primary chemotherapy.

In the literature, the representative MST of patients with LAPC who were included in prospective clinical trials was reported to be 8.4-11.4 months for 5-FUbased CRT [2,3,14,19], 9.2-15.0 months for GEM monotherapy [15,20] and 10.3-11.1 months for GEM-based CRT [20,21]. Generally, only a few patients with LAPC survive for 3 years or more. The MST from salvage CRT in our cohort seems to be inferior to those reported in recent studies involving primary therapy for LAPC. However, if we consider primary chemotherapy and salvage CRT as a combined treatment strategy, the MST of 17.8 months from the start of primary chemotherapy is a promising result. Additionally, long-term survivors from the start of primary chemotherapy in our cohort seem to be distinct, with 22% achieving a 3-year overall survival. In our cohort, only patients who underwent primary chemotherapy and progressed locally without distant metastases were selected to receive salvage CRT. Because of the strong selection bias, we should not compare this outcome to that of prospective clinical trials in the literature. However, the existence of long-term survivors in our cohort suggests that salvage CRT should have some benefit in selected patients with LAPC, even after failure of the primary chemotherapy. The strategy of using chemotherapy alone as a primary treatment for LAPC, followed-by CRT for salvage intent, should be further investigated in prospective clinical trials.

Combined with radiotherapy, S-1 has been demonstrated to exert a synergistic effect against 5-FU-

resistant cancer xenografts [22]. We previously conducted a phase I trial to determine the maximum tolerated dose of S-1 with concurrent radiotherapy for LAPC [4]. This dose was 80 mg/m²/day, which is the same as the full dose of S-1 when administered alone. The toxicity of CRT combined with S-1 for LAPC was generally mild and manageable with conservative treatment. Several phase II clinical trials of CRT combined with S-1 for LAPC achieved MSTs in the range 14.3-16.2 months [7,8]. These MSTs compare favorably with the historical MSTs reported for CRT combined with 5-FU of 8.4-11.4 months [2,14]. In the current study, either S-1 or 5-FU was combined with radiotherapy. Univariate analysis of survival after subsequent CRT showed a non-significant trend towards better results when CRT was combined with S-1 (Table 6). The occurrence of grade 3-4 nonhematological toxicity during and after CRT was less frequent among the patients who had received CRT combined with S-1, as compared with 5-FU (6% versus 43%). Because of the retrospective nature of this study, a difference in baseline characteristics may inhibit a fair comparison between the two agents. Although a direct comparison between S-1 and 5-FU has not yet been undertaken in a prospective clinical trial, CRT combined with S-1 is an attractive alternative to 5-FU-based CRT.

The value of S-1 in pancreatic cancer is not limited to its sensitizing effect during CRT. Single agent S-1 has excellent activity regarding chemo-naïve metastatic pancreatic cancer, with a response rate of 37.5% and a MST of 9.2 months [23]. S-1 is the first agent that has not proved inferior to GEM as a single agent for the treatment of advanced pancreatic cancer in a phase III randomized-controlled trial [16]. S-1 also retains its activity in relation to advanced pancreatic cancer even after the failure of GEM, with a response rate of 21% [24]. Accordingly, in the current study, the activity of salvage CRT with S-1 should be related to the excellent systematic effect of the agent on subclinical distant metastasis, as well as its local sensitizing effect.

Recently, induction chemotherapy has become a major component in the treatment strategy for LAPC. Two well-designed retrospective studies have shown that induction chemotherapy followed by CRT yielded a survival benefit over primary CRT or continued chemotherapy alone for LAPC [12,25]. More recently, several phase II prospective clinical trials have been conducted to evaluate the value of induction chemotherapy followed by CRT, which resulted in MSTs in the range 12.6-19.2 months [26-28]. The optimum duration of induction chemotherapy for LAPC continues to be a matter of debate. Recent prospective clinical trials that included induction chemotherapy for LAPC had chosen to evaluate the effects of 2–6 months of induction therapy [26-28]. In the current study, the median duration

of primary chemotherapy was 7 months, which is longer than those used in these prospective trials. Because patients with rapidly progressing occult-metastatic disease were excluded from the present study, the tumors in our cohort might have deviated to relatively chemoresponsive tumors. Therefore, the duration of primary chemotherapy was not associated with survival after CRT in the current study. We could not draw any conclusion with regard to the optimum duration of induction chemotherapy from this retrospective cohort study.

In agreement with the current study, previous studies have shown that a highly-elevated CA 19–9 level is a poor prognostic factor for patients who had received CRT for LAPC [29,30]. A highly elevated serum CA19-9 level in patients prior to CRT suggests chemo-resistance of the tumor, as well as the existence of progressive occult metastasis. These patients might gain little benefit from the addition of salvage CRT.

Multivariate analysis revealed that the use of two regimens of primary chemotherapy was an unfavorable factor for survival after CRT. The MST of the patients who received two regimens of primary chemotherapy was 6.1 months from the start of salvage CRT, and no patient survived for 12 months or longer thereafter (Table 6). In all of the patients (n = 5) who underwent two regimens of primary chemotherapy before CRT, S-1 was used as a second-line chemotherapy. Of these patients, three received salvage CRT combined with 5-FU, and two received salvage CRT combined with S-1. Because both 5-FU and S-1 are fluorinated pyrimidine agents, failure of the tumor to respond to treatment with S-1 should cause resistance to salvage CRT combined with either 5-FU or S-1. If there are any signs of failure to respond to the primary chemotherapy, without distant metastasis, salvage CRT could be a treatment of choice as a secondline therapy.

Because of the retrospective nature of the current study, there were a number of limitations that affected the interpretation of our findings. The number of patients was very limited and the patient population was not homogeneous because of different clinical backgrounds, and they received CRT with salvage intent. Also, the patients were collected for over a period of 7 years, non-consecutively. The clinical response to primary chemotherapy was generally better than previously reported, possibly because of the exclusion of patients with chemo-resistant occult distant metastasis. Only patients who underwent primary chemotherapy and progressed locally without distant metastases were selected and included in the current analysis.

Whether or not the addition of chemotherapy prior to CRT will contribute to prolonging the survival of patients with LAPC has not been elucidated with sufficient statistical power in a prospective clinical trial. We

are now investigating the value of induction chemotherapy with GEM versus no induction chemotherapy for LAPC in a multi-institutional randomized phase II study involving S-1 and concurrent radiotherapy (JCOG1106, UMIN000006811). A future phase III study will be conducted to compare GEM monotherapy and S-1 based CRT with or without induction GEM, depending on the results of the JCOG1106 study. Another phase III study, the GERCOR LAP 07 phase III trial (www.clinicaltrials. gov, identifier code NCT00634725) is also ongoing. This study was designed to elucidate the benefit of induction chemotherapy followed by CRT combined with capecitabine, with or without erlotinib during induction chemotherapy and a CRT phase. In future, results from these prospective clinical trials will become available to further define the role of chemotherapy followed by CRT for LAPC.

Conclusions

CRT combined with S-1 or 5-FU had moderate antitumor activity in patients with LAPC even after failure of GEM-based primary chemotherapy. If there are any signs of failure to primary chemotherapy without distant metastasis, salvage CRT could be a treatment of choice as a second-line therapy. Patients with a relatively low serum CA19-9 level after primary chemotherapy may obtain additional survival benefit from salvage CRT. The strategy of using chemotherapy alone as a primary treatment for LAPC, followed-by CRT with salvage intent should be further investigated in prospective clinical trials.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

HM, YI and JI participated in the design of the study, performed the statistical analysis, interpretation of data, and drafted the manuscript. HM, YI, NM, MM and MS carried out the chemoradiotherapy and analyzed tumor response. CM, HU, TO and SK carried out the chemotherapy and analyzed tumor response. All of the listed authors contributed to the writing of the manuscript. All authors read and approved the final manuscript.

Author details

¹Division of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan. ²Divisions of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.

Received: 12 July 2012 Accepted: 19 December 2012 Published: 20 December 2012

References

- Shinchi H, Takao S, Noma H, Matsuo Y, Mataki Y, Mori S, Aikou T: Length and quality of survival after external-beam radiotherapy with concurrent continuous 5-fluorouracil infusion for locally unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys 2002, 53:146–150.
- Moertel CG, Frytak S, Hahn RG, O'Connell MJ, Reitemeier RJ, Rubin J, Schutt
 AJ, Weiland LH, Childs DS, Holbrook MA, Lavin PT, Livstone E, Spiro H,
 Knowlton A, Kalser M, Barkin J, Lessner H, Mann-Kaplan R, Ramming K,
 Douglas HO Jr, Thomas P, Nave H, Bateman J, Lokich J, Brooks J, Chaffey J,

- Corson JM, Zamcheck N, Novak JW: Therapy of locally unresectable pancreatic carcinoma: a randomized comparison of high dose (6000 rads) radiation alone, moderate dose radiation (4000 rads + 5-fluorouracil), and high dose radiation + 5-fluorouracil: The Gastrointestinal Tumor Study Group. *Cancer* 1981, 48:1705–1710.
- Gastrointestinal Tumor Study Group: Treatment of locally unresectable carcinoma of the pancreas: comparison of combined-modality therapy (chemotherapy plus radiotherapy) to chemotherapy alone. J Natl Cancer Inst. 1988, 80:751–755.
- Ikeda M, Okusaka T, Ito Y, Ueno H, Morizane C, Furuse J, Ishii H, Kawashima M, Kagami Y, Ikeda H: A phase I trial of S-1 with concurrent radiotherapy for locally advanced pancreatic cancer. Br J Cancer 2007, 96:1650–1655.
- Shirasaka T, Shimamato Y, Ohshimo H, Yamaguchi M, Kato T, Yonekura K, Fukushima M: Development of a novel form of an oral 5-fluorouracil derivative (S-1) directed to the potentiation of the tumor selective cytotoxicity of 5-fluorouracil by two biochemical modulators. *Anticancer Druss* 1996, 7:548–557.
- Kim HM, Bang S, Park JY, Seong J, Song SY, Chung JB, Park SW: Phase II trial of S-1 and concurrent radiotherapy in patients with locally advanced pancreatic cancer. Cancer Chemother Pharmacol 2009, 63:535–541.
- Sudo K, Yamaguchi T, Ishihara T, Nakamura K, Hara T, Denda T, Tawada K, Imagumbai T, Araki H, Sakai M, Hatano K, Kawakami H, Uno T, Ito H, Yokosuka O: Phase II study of oral S-1 and concurrent radiotherapy in patients with unresectable locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 2011, 80:119–125.
- Ikeda M, Ioka T, Ito Y, Yonemoto N, Nagase M, Yamao K, Miyakawa H, Ishii H, Furuse J, Sato K, Sato T, Okusaka T: A multicenter phase II trial of S-1 with concurrent radiation therapy for locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 2013, 85:163–169.
- Manak E, Merkel S, Klein P, Papadopoulos T, Bautz WA, Baum U: Resectability of pancreatic adenocarcinoma: assessment using multidetector-row computed tomography with multiplanar reformations. Abdom Imag 2009, 34:75–80.
- Furuse J, Kinoshita T, Kawashima M, Ishii H, Nagase M, Konishi M, Nakagohri T, Inoue K, Ogino T, Ikeda H, Maru Y, Yoshino M: Intraoperative and conformal external-beam radiation therapy with protracted 5fluorouracil infusion in patients with locally advanced pancreatic carcinoma. Cancer 2003, 97:1346–1352.
- Morak MJ, Hermans JJ, Smeenk HG, Renders WM, Nuyttens JJ, Kazemier G, van Eijck CH: Staging for locally advanced pancreatic cancer. Eur J Surg Oncol 2009, 35:963–968.
- Krishnan S, Rana V, Janjan NA, Varadhachary GR, Abbruzzese JL, Das P, Delclos ME, Gould MS, Evans DB, Wolff RA, Crane CH: Induction chemotherapy selects patients with locally advanced, unresectable pancreatic cancer for optimal benefit from consolidative chemoradiation therapy. Cancer 2007. 110:47–55.
- Huguet F, Girard N, Guerche CS-E, Hennequin C, Mornex F, Azria D: Chemoradiotherapy in the management of locally advanced pancreatic carcinoma: a qualitative systematic review. J Clin Oncol 2009, 27:2269–2277.
- Ishii H, Okada S, Tokuuye K, Nose H, Okusaka T, Yoshimori M, Nagahama H, Sumi M, Kagami Y, Ikeda H: Protracted 5-fluorouracil infusion with concurrent radiotherapy as a treatment for locally advanced pancreatic carcinoma. Cancer 1997, 79:1516–1520.
- Ishii H, Furuse J, Boku N, Okusaka T, Ikeda M, Ohkawa S, Fukutomi A, Hamamoto Y, Nakamura K, Fukuda H, JCOG Gastrointestinal Oncology Study Group: Phase II study of gemcitabine chemotherapy alone for locally advanced pancreatic carcinoma: JCOG0506. Jpn J Clin Oncol 2010, 40:573–579.
- 16. loka T, Ikeda M, Ohkawa S, Yanagimoto H, Fukutomi A, Sugimori K, Baba H, Yamao K, Shimamura T, Chen J, Mizumoto K, Furuse J, Funakoshi A, Hatori T, Yamaguchi T, Egawa S, Sato A, Ohashi Y, Cheng A, Okusaka T: Randomized phase Ill study of gemcitabine plus S-1 (GS) versus S-1 versus gemcitabine (GEM) in unresectable advanced pancreatic cancer (PC) in Japan and Taiwan: GEST study. J Clin Oncol 2011, 29:2575.
- Nio K, Ueno H, Okusaka T, Morizane C, Hagihara A, Kondo S, Mayahara H, Ito Y: Chemoradiotherapy versus gemcitabline-based chemotherapy in patients with unresectable, locally advanced pancreatic cancer. J Clin Oncol 2010, 28(Suppl):e14504.
- Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009, 45:228–247.

- Cohen SJ, Dobelbower R Jr, Lipsitz S, Catalano PJ, Sischy B, Smith TJ, Haller DG, Haller DG, Eastern Cooperative Oncology Group: A randomized phase Ill study of radiotherapy alone or with 5-fluorouracil and mitomycin-C in patients with locally advanced adenocarcinoma of the pancreas: eastern cooperative oncology group study E8282. Int J Radiat Oncol Biol Phys 2005. 62:1345–1350.
- Loehrer PJ, Feng Y, Cardenes H, Wagner L, Brell JM, Cella D, Flynn P, Ramanathan RK, Crane CH, Alberts SR, Benson AB 3rd: Gemcitabine alone versus gemcitabine plus radiotherapy in patients with locally advanced pancreatic cancer: an eastern cooperative oncology group trial. J Clin Oncol 2011. 29:4105–4111
- Cardenes HR, Moore AM, Johnson CS, Yu M, Helft P, Chiorean EG, Vinson J, Howard TJ, Stephens AW, Tai DF, Loehrer PJ Sr. A phase II study of gemcitabine in combination with radiation therapy in patients with localized, unresectable, pancreatic cancer: a Hoosier oncology group study. Am J Clin Oncol 2011, 34:460–465.
- Nakata E, Fukushima M, Takai Y, Nemoto K, Ogawa Y, Nomiya T, Nakamura Y, Milas L, Yamada S: S-1, an oral fluoropyrimidine, enhances radiation response of DLD-1/FU human colon cancer xenografts resistant to 5-FU. Oncol Rep 2006, 16:465–471.
- Okusaka T, Funakoshi A, Furuse J, Boku N, Yamao K, Ohkawa S, Saito H: A late phase II study of S-1 for metastatic pancreatic cancer. Cancer Chemother Pharmacol 2008. 61:615–621.
- Morizane C, Okusaka T, Furuse J, Ishii H, Ueno H, Ikeda M, Nakachi K, Najima M,
 Ogura T, Suzuki E: A phase II study of S-1 in gemcitabine-refractory
 metastatic pancreatic cancer. Cancer Chemother Pharmacol 2009, 63:313–319.
- Huguet F, André T, Hammel P, Artru P, Balosso J, Selle F, Deniaud-Alexandre E, Ruszniewski P, Touboul E, Labianca R, de Gramont A, Louvet C: Impact of chemoradiotherapy after disease control with chemotherapy in locally advanced pancreatic adenocarcinoma in GERCOR phase II and III studies. J Clin Oncol 2007, 25:326–331.
- Moureau-Zabotto L, Phélip JM, Afchain P, Mineur L, André T, Vendrely V, Lledo G, Dupuis O, Huguet F, Touboul E, Balosso J, Louvet C: Concomitant administration of weekly oxaliplatin, fluorouracil continuous infusion, and radiotherapy after 2 months of gemcitabine and oxaliplatin induction in patients with locally advanced pancreatic cancer: à groupe coordinateur multidisciplinaire en O. J Clin Oncol 2008, 26:1080–1085.
- Nakachi K, Furuse J, Kinoshita T, Kawashima M, Ishii H, Ikeda M, Mitsunaga S, Shimizu S: A phase II study of induction chemotherapy with gemcitabine plus S-1 followed by chemoradiotherapy for locally advanced pancreatic cancer. Cancer Chemother Pharmacol 2010, 66:527–534.
- Crane CH, Varadhachary GR, Yordy JS, Staerkel GA, Javle MM, Safran H, Haque W, Hobbs BD, Krishnan S, Fleming JB, Das P, Lee JE, Abbruzzese JL, Wolff RA: Phase II trial of cetuximab, gemcitabine, and oxaliplatin followed by chemoradiation with cetuximab for locally advanced (T4) pancreatic adenocarcinoma: correlation of Smad4 (Dpc4) immunostaining with pattern of disease progression. J Clin Oncol 2011, 29:3037–3043.
- Okusaka T, Okada S, Sato T, Wakasugi H, Saisho H, Furuse J, Ishikawa O, Matsuno S, Yokoyama S: Tumor markers in evaluating the response to radiotherapy in unresectable pancreatic cancer. Hepatogastroenterology 1998, 45:867–872.
- Koom WS, Seong J, Kim YB, Pyun HO, Song SY: CA 19–9 as a predictor for response and survival in advanced pancreatic cancer patients treated with chemoradiotherapy. Int J Radiat Oncol Biol Phys 2009, 73:1148–1154.

doi:10.1186/1471-2407-12-609

Cite this article as: Mayahara et al.: Salvage chemoradiotherapy after primary chemotherapy for locally advanced pancreatic cancer: a single-institution retrospective analysis. BMC Cancer 2012 12:609.

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

AO:A-B

GEST: Gemcitabine and S-1 Trial

> Author affiliations appear at the end of this article

Published online ahead of print at www.jco.org on Month XX, 2013.

Written on behalf of the GEST study

Supported by Taiho Pharmaceutical and TTY Biopharm.

Presented in part at the 47th Annual Meeting of the American Society of Clinical Oncology, June 3-7, 2011, Chicago, IL (abstract 4007).

Authors' disclosures of potential conflicts of interest and author contributions are found at the end of this article.

Clinical trial information: NCT00498225.

Corresponding author: Takuji Okusaka, MD, Hepatobiliary and Pancreatic Oncology Division, National Cance Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; e-mail: tokusaka@ncc.go.jp.

© 2013 by American Society of Clinical

0732-183X/13/3022-1/\$20.00 DOI: 10.1200/JCO.2012.43.3680

Randomized Phase III Study of Gemcitabine Plus S-1, S-1 Alone, or Gemcitabine Alone in Patients With Locally Advanced and Metastatic Pancreatic Cancer in Japan and Taiwan: GEST Study

Hideki Ueno, Tatsuya Ioka, Masafumi Ikeda, Shinichi Ohkawa, Hiroaki Yanagimoto, Narikazu Boku, Akira Fukutomi, Kazuya Sugimori, Hideo Baba, Kenji Yamao, Tomotaka Shimamura, Masayuki Sho, Masayuki Kitano, Ann-Lii Cheng, Kazuhiro Mizumoto, Jen-Shi Chen, Junji Furuse, Akihiro Funakoshi, Takashi Hatori, Taketo Yamaguchi, Shinichi Egawa, Atsushi Sato, Yasuo Ohashi, Takuji Okusaka, and Masao Tanaka

See accompanying editorial doi: 10.1200/JCO.2013.48.7660

Purnose

The present phase III study was designed to investigate the noninferiority of S-1 alone and superiority of gemcitabine plus S-1 compared with gemcitabine alone with respect to over-

Patients and Methods

The subjects were chemotherapy-naive patients with locally advanced or metastatic pancreatic cancer. Patients were randomly assigned to receive only gemcitabine (1,000 mg/m² on days 1, 8, and 15 of a 28-day cycle), only S-1 (80, 100, or 120 mg/d according to body-surface area on days 1 through 28 of a 42-day cycle), or gemcitabine plus S-1 (gemcitabine 1,000 mg/m² on days 1 and 8 plus S-1 60, 80, or 100 mg/d according to body-surface area on days 1 through 14 of a 21-day cycle).

Results

In the total of 834 enrolled patients, median overall survival was 8.8 months in the gemcitabine group, 9.7 months in the S-1 group, and 10:1 months in the gemcitabine plus S-1 group. The noninferiority of S-1 to gemcitabine was demonstrated (hazard ratio, 0.96; 97.5% CI, 0.78 to 1.18; P < .001 for noninferiority), whereas the superiority of gemcitabine plus S-1 was not (hazard ratio, 0.88; 97.5% Cl. 0.71 to 1.08; P = .15). All treatments were generally well tolerated, although hematologic and GI toxicities were more severe in the gemcitabine plus S-1 group than in the gemcitabine group.

Conclusion

Monotherapy with S-1 demonstrated noninferiority to gemcitabine in overall survival with good tolerability and presents a convenient oral alternative for locally advanced and metastatic pancreatic cancer.

J Clin Oncol 30. © 2013 by American Society of Clinical Oncology

intramination!

Pancreatic cancer (PC) is currently the eighth leading cause of cancer-related mortality worldwide, with an estimated 266,000 deaths in 2008. Gemcitabine became the standard treatment for advanced PC, improving overall survival (OS) compared with fluorouracil.2 Although various gemcitabine-based combination regimens have been evaluated, only erlotinib added to gemcitabine showed a survival benefit over gemcitabine, and that was marginal.3

Fluorouracil/leucovorin plus irinotecan plus oxaliplatin (FOLFIRINOX), a gemcitabine-free combination regimen, has recently demonstrated a clear survival benefit compared with gemcitabine for patients with metastatic PC who have a performance status of 0 to 1.4 However, because FOLFIRINOX is associated with significant toxicity, this regimen must be limited to patients with good performance status and requires close monitoring.5

In Japan, clinical trials of S-1 (TS-1; Taiho Pharmaceutical, Tokyo, Japan) have been conducted since the early 2000s for patients with PC. S-1

© 2013 by American Society of Clinical Oncology 1

is an oral fluoropyrimidine derivative shown to be effective for gastric and various other types of cancers. 6,7 Phase II studies of S-1 as first-line therapy for metastatic PC resulted in good response rates of 21.1% to 37.5%. 8,9 Consequently, S-1 was approved for the indication of PC in Japan in 2006. Development of gemcitabine plus S-1 (GS) studies have also been initiated, mainly in Japan, and two phase II studies reported high response rates of 44.4% to 48.5% and good median OS of 10.1 to 12.5 months. 10,11

Because S-1 and GS have shown promising activity in PC, the present randomized phase III study (GEST study) was designed to evaluate whether S-1 alone is noninferior to gemcitabine and whether GS is superior to gemcitabine alone for locally advanced and metastatic PC with respect to OS.

PATIENTS AND MERIODS

Study Design

This randomized phase III study, sponsored by Taiho Pharmaceutical in Japan and TTY Biopharm in Taiwan, was conducted as a postmarketing study in Japan and as a registration study in Taiwan and was in compliance with the Declaration of Helsinki. Data were collected by a contract research organization contracted by the sponsors and were analyzed by a bio-statistician (Y.O.). An independent data and safety monitoring committee reviewed efficacy and safety data. The study was approved by the ethics committee or institutional review board of each participating center.

Patiente

All patients provided written informed consent. Enrollment criteria were locally advanced or metastatic PC, histologically or cytologically proven diagnosis of adenocarcinoma or adenosquamous carcinoma, no prior chemotherapy or radiotherapy for PC, age of more than 20 years (the protocol was amended to restrict the eligible age to < 80 years after four of the first eight patients who were \ge 80 years experienced serious adverse events), an Eastern Cooperative Oncology Group performance status score of 0 to 1, and adequate organ functions (see Appendix, online only).

Treatment

Random assignment was performed centrally with stratification by extent of disease (locally advanced disease ν metastatic disease) and institution.

using the minimization method. Patients allocated to gemcitabine alone received gemcitabine at a dose of 1,000 mg/m² intravenously over 30 minutes on days 1, 8, and 15 of a 28-day cycle. Patients allocated to S-1 alone received S-1 orally twice daily at a dose according to the body-surface area (BSA) (< 1.25 m^2 , 80 mg/d; ≥ 1.25 to < 1.5 m^2 , 100 mg/d; ≥ 1.5 m^2 , 120 mg/d) on days 1 through 28 of a 42-day cycle. Patients allocated to GS received gemcitabine at a dose of 1,000 mg/m² on days 1 and 8 plus S-1 orally twice daily at a dose according to the BSA ($< 1.25 \text{ m}^2$, 60 mg/d; $\ge 1.25 \text{ to} < 1.5 \text{ m}^2$, 80 mg/d; ≥ 1.5 m², 100 mg/d) on days 1 through 14 of a 21-day cycle. The dose levels of S-1 used in the GS group were based on the results of a previous phase II study of GS, in which 1,000 mg/m² of gemcitabine was combined with 120 mg/d, 100 mg/d, and 80 mg/d of S-1. In that study, the rate of treatment withdrawal due to adverse events was 41% (22 of 54 patients), the rate of grade 3 or worse neutropenia was 80%, and the dose was reduced in 56% of the patients (30 of 54 patients). 11 Consequently, 20 mg/d lower doses of S-1 than those used in the S-1 monotherapy group were used in the GS group in the present study.

In the event of predefined toxic events, protocol-specified treatment modifications were permitted (see Appendix).

Assessments

Physical examinations, CBCs, and biochemistry tests were usually checked at 2-week intervals in the S-1 group and at each time of administration of gemcitabine both in the gemcitabine group and in the GS group. All adverse events were assessed according to the Common Terminology Criteria for Adverse Events, version 3.0. Computed tomography or magnetic resonance imaging was performed every 6 weeks until disease progression, and response was assessed by the investigators according to the Response Evaluation Criteria in Solid Tumors (RECIST), version 1.0.¹² Quality of life was assessed using the EQ-5D questionnaire¹³ at baseline and 6, 12, 24, 48, and 72 weeks after the AQ: C study treatment had begun.

Statistical Analysis EQ-5D: EuroQol 5 Dimension

The primary end point was OS, defined as time from date of random assignment to date of death from any cause. Secondary end points were progression-free survival (PFS), objective response rate, safety, and quality of life. PFS was counted from the date of random assignment to the date of death without progression or of progression as confirmed by the investigator's assessment. The median OS was assumed to be 7.5 months in the gemcitabine group, 8.0 months in the S-1 group, and 10.5 months in the GS group. To maintain a one-sided significance level of .025 for the entire study while testing two hypotheses (ie, noninferiority and superiority), the one-sided significance

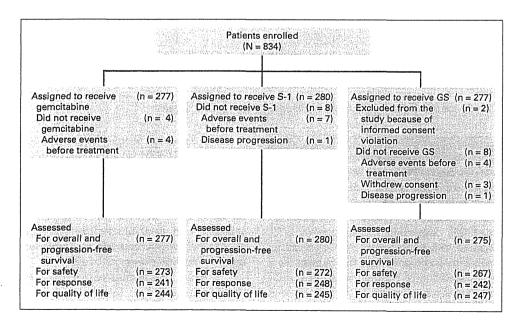


Fig 1. CONSORT diagram. GS, gemcitabine plus S-1.

level for each comparison was set at .0125. The statistical considerations are detailed in the Appendix.

The superiority of GS was evaluated by the stratified log-rank test. To assess the noninferiority of S-1, we used the Cox proportional hazards model to calculate two-sided, 97.5% CIs of the hazard ratio (HR). The noninferiority margin of S-1 was set at 1.33; that is, the null hypothesis was that the median OS with S-1 would be approximately 2 months shorter than with gemcitabine. We decided this setting was justified considering the convenience of S-1 and the because there are few effective drugs for the disease. Furthermore, to interpret the obtained data, the Bayesian analysis of the log HR on the basis of the noninformative prior distribution was preplanned. Posterior probability with log HR within a stricter threshold (log 1.15) was also calculated. 14

In each assigned group, the time-to-event distribution was estimated with the Kaplan-Meier method. The 95% CI of the median survival time was calculated by the method of Brookmeyer and Crowly.¹⁵ In addition, the Greenwood formula¹⁶ was used to calculate the 95% CI for survival rates. In subgroup analyses, interaction tests were performed to assess the homogeneity of the effect of treatment on OS.

The primary end point was analyzed for the full analysis set. All P value evaluations were two-tailed. Data analyses were done with SAS, version 9.1.3 (SAS Institute, Cary, NC).

HESUEIS

Patients

Between July 2007 and October 2009, a total of 834 patients were enrolled from 75 institutions in Japan and Taiwan (768 in Japan and 66 in Taiwan). Two patients in the GS group were excluded from the study because enrollment was conducted before obtaining written informed consent. The remaining 832 patients were included in the full analysis set and used to calculate OS and PFS (Fig 1). The three treatment groups were well balanced with respect to demographic and baseline characteristics (Table 1).

F1, AQ:D

Study Treatment

The median duration of treatment was 2.6 months in the gemcitabine group, 2.6 months in the S-1 group, and 4.3 months in the GS group. The main reasons for treatment discontinuation were either disease progression (202 patients [72.9%] in the gemcitabine group,

		eitabine 277)	S-1 (n	= 280)	GS (n = 275)		Total (N = 832)	
Characteristic	No.	%	No.	%	No.	%	No.	%
Sex								
Male	170	61.4	170	60.7	158	57.5	498	59.9
Female	107	38.6	110	39.3	117	42.5	334	40.1
Age, years								
< 65	134	48.4	145	51.8	137	49.8	416	50.0
≥ 65	143	51.6	135	48.2	138	50.2	416	50.0
ECOG PS								
0	181	65,3	178	63.6	172	62.5	531	63.8
1	96	34.7	102	36.4	103	37.5	301	36.2
Extent of disease		1. 4 2 2	1 5 Jan 6	in the production				
Locally advanced	66	23.8	68	24.3	68	24.7	202	24.3
Metastatic	211	76.2	212	75.7	207	75.3	630	75.7
Type of tumor		7,34.1			·			
Adenocarcinoma	272	98.2	276	98.6	272	98.9	820	98.6
Adenosquamous carcinoma	5	1.8	4	1.4	3	1.1	12	1.4
Pancreas excision								
No	254	91.7	264	94.3	248	90.2	766	92.1
Yes	23	8.3	16	5.7	27	9.8	66	7.9
Tumor location*								
Head	122	44.0	110	39.3	116	42.2	348	41.8
Body	88	31.8	124	44.3	102	37.1	314	37.7
Tail	68	24.5	55	19.6	66	24.0	189	22.7
Biliary drainage								
No	202	72.9	217	77.5	209	76.0	628	75.5
Yes	75	27.1	63	22.5	66	24.0	204	24.5
CEA, ng/mL								
Median	5	5.7	5	5.6	5	.9	5	5.7
IQR	3.0-	20.1	2.5-	18.4	2.5-20.7		2.6-19.5	
CA19-9, U/mL								
Median	1,1	044	726		441		712	
IQR	52-	5,002	64-	-5,000	45-5,090		55-5,002	
CRP, mg/dL								
Median	0.	.40	0.	.50	0.	40	0.	.43
IQR	0.11-	1.38	0.18-	1.57	0.15-1.60		0.15-1.57	

Abbreviations: CA19-9, carbohydrate antigen 19-9; CEA, carcinoembryonic antigen; CRP, C-reactive protein; ECOG PS, Eastern Cooperative Oncology Group performance status; GS, gemcitabine plus S-1; IQR, interquartile range.
*Including patients with tumors involving multiple sites.

Henn et al

215 [76.8%] in the S-1 group, and 162 [58.9%] in the GS group) or adverse events (40 patients [14.4%] in the gemcitabine group, 38 [13.6%] in the S-1 group, and 76 [27.6%] in the GS group). The median relative dose-intensity was 83.0% in the gemcitabine group, 96.1% in the S-1 group, and 83.3% for gemcitabine and 87.4% for S-1 in the GS group.

Survival

The median duration of follow-up for surviving patients was 18.4 months (range, 0.3 to 36.9 months) as of July 31, 2010. The analysis of OS was based on 710 deaths (85.3%) among the 832 patients. The median OS was 8.8 months (95% CI, 8.0 to 9.7) in the gemcitabine group, 9.7 months (95% CI, 7.6 to 10.8) in the S-1 group, and 10.1 months (95% CI, 9.0 to 11.2) in the GS group (Fig 2A). OS rates at 12 and 24 months were respectively 35.4% and 9.2% in the gemcitabine group, 38.7% and 12.7% in the S-1 group, and 40.7% and 14.5% in the GS group. The noninferiority of S-1 to gemcitabine with respect to OS was demonstrated (HR, 0.96; 97.5% CI, 0.78 to 1.18; P < .001 for

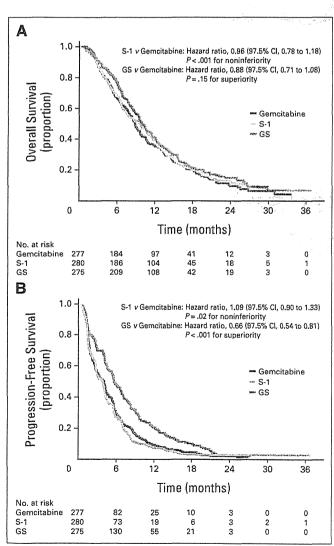


Fig 2. Kaplan-Meier estimates of (A) overall survival and (B) progression-free survival according to treatment group. GS, gemcitabine plus S-1.

noninferiority). The Bayesian posterior probability that the HR of S-1 relative to gemcitabine would be less than 1.15 was calculated to be 98% on the basis of the noninformative prior distribution. However, GS failed to improve OS at a statistically significant level as compared with gemcitabine (HR, 0.88; 97.5% CI, 0.71 to 1.08; P = .15).

The analysis of PFS was based on 793 events (95.3%) among the 832 patients. The median PFS was 4.1 months (95% CI, 3.0 to 4.4) in the gemcitabine group, 3.8 months (95% CI, 2.9 to 4.2) in the S-1 group, and 5.7 months (95% CI, 5.4 to 6.7) in the GS group (Fig 2B). PFS rates at 6 and 12 months were respectively 29.8% and 9.1% in the gemcitabine group, 26.9% and 7.2% in the S-1 group, and 47.9% and 20.3% in the GS group. S-1 was shown to be noninferior to gemcitabine with respect to PFS (HR, 1.09; 97.5% CI, 0.90 to 1.33; P = .02 for noninferiority), and GS significantly improved PFS compared with gemcitabine (HR, 0.66; 97.5% CI, 0.54 to 0.81; P < .001).

Subgroup analyses of survival according to pretreatment characteristics showed no significant interaction between S-1 and gemcitabine in any subgroup (Fig 3A). However, GS showed a favorable HR F3 compared with gemcitabine in the subsets of patients with locally advanced disease or patients with a performance status of 1 (Fig 3B).

Response to Therapy

The objective response rate was 13.3% (95% CI, 9.3 to 18.2) in the gemcitabine group, 21.0% (95% CI, 16.1 to 26.6) in the S-1 group, and 29.3% (95% CI, 23.7 to 35.5) in the GS group (Table 2). The T2 objective response rate was significantly higher in the S-1 group (P = .02) and in the GS group (P < .001) than in the gemcitabine group.

Second-Line Chemotherapy

Second-line chemotherapy was performed in 184 patients (66.4%) in the gemcitabine group, 185 (66.1%) in the S-1 group, and 172 (62.5%) in the GS group. In the gemcitabine group, 140 patients (50.5%) received S-1 alone or S-1-based regimens, and in the S-1 group 162 (57.9%) received gemcitabine alone or gemcitabine-based regimens as second-line chemotherapy. The most common secondline regimens in the GS group were gemcitabine alone (61 patients), GS (53 patients), S-1 alone (24 patients), irinotecan (six patients), and fluorouracil/leucovorin plus oxaliplatin (four patients). In Japan and Taiwan, the use of treatments such as erlotinib, oxaliplatin, and irinotecan for PC was not approved at the time of this study; hence gemcitabine, S-1, or both were used in most patients as secondline chemotherapy.

Adverse Events and Quality-Adjusted Life Years

The major grade 3 or worse adverse events are listed in Table 3. T3 Patients in the gemcitabine group had significantly higher incidences of grade 3 or worse leukopenia, neutropenia, thrombocytopenia, elevated AST levels, and elevated ALT levels as compared with patients in the S-1 group. However, the incidence of grade 3 or worse diarrhea was higher in the S-1 group than in the gemcitabine group. Patients in the GS group had significantly higher incidences of grade 3 or worse leukopenia, neutropenia, thrombocytopenia, rash, diarrhea, and stomatitis than patients in the gemcitabine group.

There were three deaths considered possibly related to the protocol treatment (interstitial lung disease, sepsis, and acute hepatitis B) in the gemcitabine group, one in the S-1 group (unknown cause), and

JOURNAL OF CLINICAL ONCOLOGY

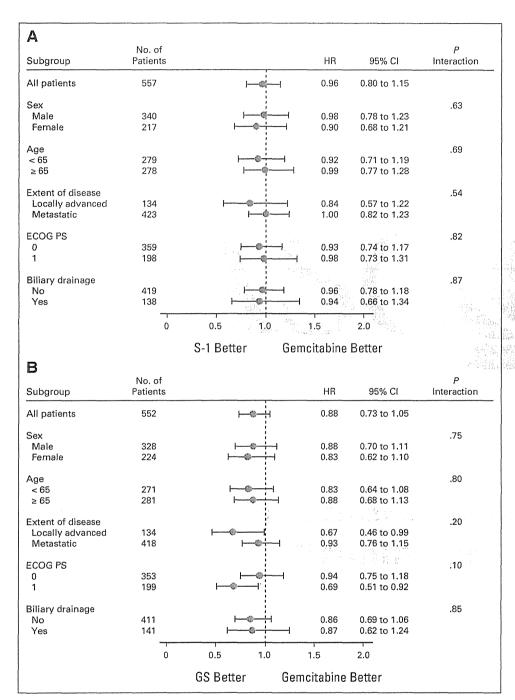


Fig 3. Forest plots of treatment effects on overall survival in subgroup analyses. Forest plots show effects on overall sur-Vival of patients in each subgroup. (A) S-1; (B) gemcitabine plus S-1 (GS). Each black circle shows the treatment response. ECOG PS, Eastern Cooperative Oncology Group performance status.

blue

four in the GS group (unknown cause associated with myelosuppression, cerebral infarction, cerebrovascular disorder, and interstitial lung disease). The results of quality-adjusted life years (QALYs) are in the Appendix and the details of quality-of-life assessments will be reported elsewhere.

DESCRIPTION

The overall and PFS curves in the S-1 group were nearly identical to those in the gemcitabine group, confirming the noninferiority of S-1

to gemcitabine in terms of OS and PFS (Fig 2A, 2B). Toxicity profiles of these two drugs differed slightly: gemcitabine tended to show hematologic toxicity, whereas S-1 tended to show GI toxicity. However, both S-1 and gemcitabine were generally well tolerated. Furthermore, the results of QALY evaluation demonstrated that S-1 and gemcitabine were equivalent. Hence our results suggest that S-1 can be used as first-line therapy as a convenient oral alternative for locally advanced and metastatic PC. To the best of our knowledge, this is the first phase III study to demonstrate the noninferiority of a single anticancer agent to gemcitabine alone for locally advanced and metastatic PC.

Ueno et al

	Gemcitabine $(n = 241)$		(S-1)(n = 248)		(GS)(n = 242)		P	
Variable	No.	%	No.	%	No.	%	Gemcitabine v S-1	Gemcitabine v GS
Response		***************************************						
Complete response	1	0.4	0	0	2	0.8		
Partial response	31	12.9	52	21.0	69	28.5		
Stable disease	119	49.4	105	42.3	102	42.1		
Progressive disease	75	31.1	69	27.8	37	15.3		
Objective response	32	13.3	52	21.0	71	29.3	.02	< .001
rate*							.02	₹ .001
95% CI	9.3 to	o 18.2	16.1 1	o 26.6	23.71	o 35.5		
Disease control rate1	151	62.7	157	63.3	173	71.5	.88	.04
95% CI	56.21	to 68.8	57.01	o 69.3				

Abbreviation: GS, gemcitabine plus S-1.

*The objective response rate was defined as the proportion of patients who had a complete response or partial response.

At the time of planning this study, the subjects of nearly all phase III trials included both patients with locally advanced as well as those with metastatic PC. However, because locally advanced and metastatic diseases are two clinical entities, it is recently recommended that patients with locally advanced disease should be studied separately from those with metastatic disease. 17 Although this study included locally advanced disease, subgroup analysis of extent of disease showed no significant interaction between S-1 and gemcitabine (Fig. 3A). Moreover, the OS curve in the S-1 group was still similar to those in the gemcitabine group in both locally advanced and metastatic disease (Fig 4A, 4B). Regarding pathologic diagnosis, our study included adenosquamous carcinoma, although its percentage was very low (1.4% of whole population). When the data were reanalyzed after

excluding patients with adenosquamous carcinoma, the results for OS for gemcitabine versus S-1 was unchanged (HR, 0.96; 95% CI, 0.81 to 1.15). The selection of one treatment over the other will depend primarily on patient preference, clinical factors, or drug costs, as biomarkers indicating effective use of S-1 or gemcitabine do not exist at this time.

Regarding GS, the OS did not differ significantly from gemcitabine, although the PFS was significantly longer in the GS group. Second-line chemotherapy mainly with S-1 in the gemcitabine group may be one reason for this discrepancy. The median OS in the gemcitabine group was 8.8 months, which is longer than those previously reported for gemcitabine in other phase III studies for locally advanced and metastatic PC. 2,3,18-24 Although the efficacy of second-line

Table 3. Grade 3 or Higher Adverse Events (Safety Population)								
	Gemcitabine (n = 273)		S-1 (n = 272)		GS (n = 267)		P (Fisher's exact test)	
Event	No.	%	No.	%	No.	%	Gemcitabine v S-1	Gemcitabine v GS
Hematologic								
Leukocytes	51	18.7	10	3.7	101	37.8	< .001	< .001
Neutrophils	112	41.0	24	8.8	166	62.2	< .001	< .001
Platelets	30	11.0	4	1.5	46	17.2	< .001	.05
Hemoglobin	39	14.3	26	9.6	46	17.2	.11	.41
Nonhematologic								
ALT	41	15.0	16	5.9	29	10.9	< .001	.16
AST	41	15.0	21	7.7	32	12.0	.01	.32
Bilirubin	26	9.5	39	14.3	23	8.6	.09	.77
Fatigue	10	3.7	18	6.6	13	4.9	.13	.53
Rash	2	0.7	2	0.7	11	4.1	1.00	.01
Anorexia	20	7.3	31	11.4	25	9.4	.11	.44
Diarrhea	3	1.1	15	5.5	12	4.5	.004	.02
Mucositis/stomatitis	0	0.0	2	0.7	6	2.2	.25	.01
Nausea	5	1.8	5	1.8	12	4.5	1.00	.09
Vomiting	2	0.7	4	1.5	12	4.5	.45	.006
Febrile neutropenia	1	0.4	1	0.4	5	1.9	1.00	.12
Infection with normal ANC	6	2.2	7	2.6	6	2.2	.79	1.00
Pneumonitis	5	1.8	0	0.0	2	0.7	.06	.45

Note. Grades of adverse events were defined according to the Common Terminology Criteria for Adverse Events (version 3.0), Abbreviations: ANC, absolute neutrophil count; GS, gemcitabine plus S-1.

[†]The disease control rate was defined as the proportion of patients who had a complete response, partial response, or stable disease.

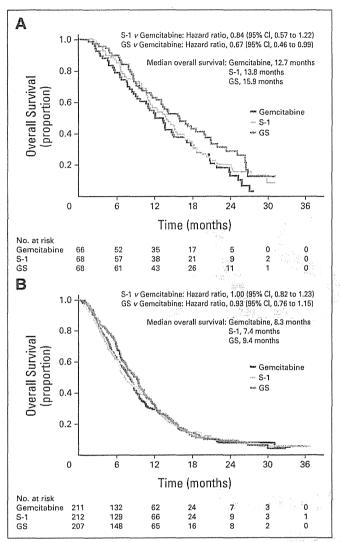


Fig 4. Kaplan-Meier estimates of overall survival in (A) locally advanced disease and (B) metastatic disease. GS, gemcitabine plus S-1.

therapy was not analyzed in this study, a phase II study of second-line S-1 in patients with gemcitabine-refractory PC showed a 15% response rate and 58% disease control rate.²⁵ Compared with the GS group, which had no promising second-line therapy, the use of S-1 as second-line therapy in the gemcitabine group might have contributed to prolonged survival.

The lack of a significant difference in OS between gemcitabine and GS suggests that gemcitabine and S-1 could be used sequentially rather than concurrently. However, the GS group showed a high response rate and favorable PFS, with a better HR of 0.66 compared with other gemcitabine-based combination regimens in other phase III studies (HR = 0.75 to 1.07). 3,18,20,22,24 Furthermore, the GS group showed a favorable HR for OS in patients with locally advanced disease or patients with a performance status of 1 in the subgroup analyses. Therefore, it is speculated that there may be room to select GS therapy, depending on the profile of the patients and further investigations.

Regarding oral fluoropyrimidines other than S-1, capecitabine has been studied in patients with PC, mainly in the West. In two phase III studies, a combination of gemcitabine plus capecitabine did not significantly prolong survival as compared with gemcitabine alone. 19,20 The results of a meta-analysis of these phase III studies, however, demonstrated that survival was significantly prolonged by combined treatment, with an HR of 0.86, 20 which is similar to the HR for GS in the present study (0.88).

One limitation of our study is that it is uncertain whether our results can be simply extrapolated to Western patients because pharmacokinetics and pharmacodynamics of S-1 between Westerners and East Asians may be different. 26,27 Although S-1 is available for PC only in Japan at the moment, if S-1 is used in Western patients, its effectiveness should be monitored and the dose should be carefully adjusted accordingly. Another potential limitation is that the protocolspecified noninferiority margin of 1.33 may be large. However, the result of point estimate of the HR of S-1 was 0.96 and actual upper limit of the 97.5% CI was 1.18, which was sufficiently lower than the prespecified margin of 1.33. Furthermore, Bayesian posterior probability with log HR within a stricter threshold (log 1.15) was 98%.

Given that most gemcitabine-based combination regimens have not been shown to be significantly superior to gemcitabine alone and that FOLFIRINOX has demonstrated overwhelming superiority to gemcitabine in a phase III study, reporting an HR of 0.57,4 the development of gemcitabine-free combination regimens for first-line treatment seems to be warranted. However, because FOLFIRINOX requires the placement of a central venous access port for continuous intravenous infusion of fluorouracil, it can be expected that S-1, an oral fluoropyrimidine, will replace the continuous infusion of fluorouracil in the future.

In conclusion, this study has verified the noninferiority of S-1 to gemcitabine, thereby suggesting that S-1 can be used as first-line therapy for locally advanced and metastatic PC. Because S-1 was confirmed to be a key treatment for PC, S-1-based regimens are expected to be developed in the future to improve the management of this formidable disease.

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

AQ: E

Although all authors completed the disclosure declaration, the following author(s) and/or an author's immediate family member(s) indicated a financial or other interest that is relevant to the subject matter under consideration in this article. Certain relationships marked with a "U" are those for which no compensation was received; those relationships marked with a "C" were compensated. For a detailed description of the disclosure categories, or for more information about ASCO's conflict of interest policy, please refer to the Author Disclosure Declaration and the Disclosures of Potential Conflicts of Interest section in Information for Contributors. Employment or Leadership Position: None Consultant or Advisory Role: Hideki Ueno, Taiho Pharmaceutical (C); Tatsuya Ioka, Taiho Pharmaceutical (U); Shinichi Ohkawa, Taiho Pharmaceutical (C); Narikazu Boku, Taiho Pharmaceutical (U); Kenji Yamao, Taiho Pharmaceutical (C); Ann-Lii Cheng, Boehringer Ingelheim (C), sanofi-aventis (C), TTY Biopharm (C); Kazuhiro Mizumoto, Taiho Pharmaceutical (C); Jen-Shi Chen, TTY Biopharm (C); Junji Furuse, Bayer (C), GlaxoSmithKline (C), Kowa (C), Novartis (C), Taiho Pharmaceutical (C); Akihiro Funakoshi, Taiho Pharmaceutical (C); Takashi Hatori, Taiho Pharmaceutical (C); Taketo Yamaguchi, Taiho Pharmaceutical (C); Atsushi Sato, Taiho Pharmaceutical (C); Yasuo Ohashi, Taiho Pharmaceutical (C); Takuji Okusaka, Taiho Pharmaceutical (C); Masao Tanaka, Taiho Pharmaceutical (C) Stock

Ueno et al

Ownership: None Honoraria: Hideki Ueno, Taiho Pharmaceutical, Eli Lilly; Tatsuya Ioka, Taiho Pharmaceutical; Masafumi Ikeda, Taiho Pharmaceutical; Shinichi Ohkawa, Taiho Pharmaceutical, Eli Lilly, Chugai; Hiroaki Yanagimoto, Taiho Pharmaceutical; Narikazu Boku, Taiho Pharmaceutical; Akira Fukutomi, Taiho Pharmaceutical, Eli Lilly; Kazuya Sugimori, Taiho Pharmaceutical; Hideo Baba, Taiho Pharmaceutical; Kenji Yamao, Taiho Pharmaceutical, Eli Lilly; Masayuki Sho, Taiho Pharmaceutical; Jen-Shi Chen, TTY Biopharm; Junji Furuse, Taiho Pharmaceutical, Bayer, Eli Lilly; Akihiro Funakoshi, Taiho Pharmaceutical; Atsushi Sato, Taiho Pharmaceutical; Yasuo Ohashi Taiho Pharmaceutical; Takuji Okusaka, Taiho Pharmaceutical, Eli Lilly; Masao Tanaka, Taiho Pharmaceutical Research Funding: Hideki Ueno, Taiho Pharmaceutical; Tatsuya Ioka, Taiho Pharmaceutical; Masafumi Ikeda, Taiho Pharmaceutical; Shinichi Ohkawa, Taiho Pharmaceutical, Eli Lilly, Chugai, Oncotherapy Science, Yakult, Abbott, Amgen; Hiroaki Yanagimoto, Taiho Pharmaceutical; Narikazu Boku, Taiho Pharmaceutical Co. Ltd; Akira Fukutomi, Taiho Pharmaceutical, Eli Lilly; Kazuya Sugimori, Taiho Pharmaceutical; Hideo Baba, Taiho Pharmaceutical; Kenji Yamao, Taiho Pharmaceutical; Tomotaka Shimamura, Taiho Pharmaceutical; Masayuki Sho, Taiho Pharmaceutical; Ann-Lii Cheng, TTY Biopharm; Kazuhiro Mizumoto, Taiho Pharmaceutical; Jen-Shi Chen, TTY Biopharm; Junji Furuse, Taiho Pharmaceutical, Bayer, Pfizer, Yakult; Akihiro Funakoshi, Taiho Pharmaceutical; Takashi Hatori, Taiho Pharmaceutical; Taketo Yamaguchi, Taiho Pharmaceutical; Yasuo Ohashi, Taiho Pharmaceutical;

Takuji Okusaka, Taiho Pharmaceutical, Eli Lilly; Masao Tanaka, Taiho Pharmaceutical Expert Testimony: None Other Remuneration: None

Eli Lilly AUTHOR CONTRIBUTIONS

AO: F

Conception and design: Hideki Ueno, Tatsuya Ioka, Shinichi Ohkawa, Narikazu Boku, Kenji Yamao, Kazuhiro Mizumoto, Junji Furuse, Akihiro Funakoshi, Takashi Hatori, Taketo Yamaguchi, Shinichi Egawa, Atsushi Sato, Yasuo Ohashi, Takuji Okusaka, Masao Tanaka Provision of study materials or patients: Masayuki Kitano, Masao Tanaka

Collection and assembly of data: Hideki Ueno, Tatsuya Ioka, Masafumi Ikeda, Shinichi Ohkawa, Hiroaki Yanagimoto, Narikazu Boku, Akira Fukutomi, Kazuya Sugimori, Hideo Baba, Kenji Yamao, Tomotaka Shimamura, Masayuki Sho, Masayuki Kitano, Ann-Lii Cheng, Kazuhiro Mizumoto, Jen-Shi Chen, Junji Furuse, Akihiro Funakoshi, Takashi Hatori, Taketo Yamaguchi, Shinichi Egawa, Takuji Okusaka, Masao Tanaka

Data analysis and interpretation: Hideki Ueno, Tatsuya Ioka, Shinichi Ohkawa, Narikazu Boku, Kenji Yamao, Kazuhiro Mizumoto, Junji Furuse, Akihiro Funakoshi, Takashi Hatori, Taketo Yamaguchi, Shinichi Egawa, Atsushi Sato, Yasuo Ohashi, Takuji Okusaka, Masao Tanaka Manuscript writing: All authors

Final approval of manuscript: All authors

सम्बद्धान्य । स्ट

- 1. Jemal A. Bray F. Center MM, et al: Global cancer statistics. CA Cancer J Clin 61:69-90. 2011
- 2. Burris HA 3rd, Moore MJ, Andersen J, et al: Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: A randomized trial. J Clin Oncol 15:2403-2413, 1997
- 3. Moore MJ, Goldstein D, Hamm J, et al: Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: A phase III trial of the National Cancer Institute of Canada Clinical Trials Group, J Clin Oncol 25:1960-1966, 2007
- 4. Conroy T, Desseigne F, Ychou M, et al: FOL-FIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364:1817-1825, 2011
- 5. Saif MW, Chabot J: Chemotherapy: Metastatic pancreatic cancer-Is FOLFIRINOX the new standard? Nat Rev Clin Oncol 8:452-453, 2011
- 6. Saif MW, Syrigos KN, Katirtzoglou NA: S-1: A promising new oral fluoropyrimidine derivative. Expert Opin Investig Drugs 18:335-348, 2009
- 7. Shirasaka T: Development history and concept of an oral anticancer agent S-1 (TS-1): Its clinical usefulness and future vistas. Jpn J Clin Oncol 39:2-15, 2009
- 8. Ueno H, Okusaka T, Ikeda M, et al: An early phase II study of S-1 in patients with metastatic pancreatic cancer. Oncology 68:171-178, 2005
- 9. Okusaka T. Funakoshi A, Furuse J, et al: A late phase II study of S-1 for metastatic pancreatic cancer. Cancer Chemother Pharmacol 61:615-621, 2008
- 10. Nakamura K, Yamaguchi T, Ishihara T, et al: Phase II trial of oral S-1 combined with gemcitabine in metastatic pancreatic cancer. Br J Cancer 94: 1575-1579, 2006

- 11. Ueno H, Okusaka T, Furuse J, et al: Multicenter phase II study of gemcitabine and S-1 combination therapy (GS Therapy) in patients with metastatic pancreatic cancer, Jpn J Clin Oncol 41:953-958, 2011
- 12. Therasse P. Arbuck SG, Eisenhauer EA. et al: New guidelines to evaluate the response to treatment in solid tumors: European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205-216, 2000
- 13. EuroQol: A new facility for the measurement of health-related quality of life-The EuroQol Group. Health Policy 16:199-208, 1990
- 14. Spiegelhalter DJ, Freedman LS. Parmar MKB: Bayesian approaches to randomized trials. J R Stat Soc 157:357-387, 1994
- 15. Brookmeyer R, Crowley J: A confidence interval for the median survival time. Biometrics 38:29-41, 1982
- 16. Kalbfleisch JD. Prentice RL: The Statistical Analysis of Failure Time Data. New York, NY, Wiley, 1980, p. 14
- 17. Philip PA, Mooney M, Jaffe D, et al: Consensus report of the national cancer institute clinical trials planning meeting on pancreas cancer treatment. J Clin Oncol 27:5660-5669, 2009
- 18. Heinemann V, Quietzsch D, Gieseler F, et al: Randomized phase III trial of gemcitabine plus cisplatin compared with gemcitabine alone in advanced pancreatic cancer. J Clin Oncol 24:3946-3952, 2006
- 19. Herrmann R. Bodokv G. Ruhstaller T. et al: Gemcitabine plus capecitabine compared with gemcitabine alone in advanced pancreatic cancer: A randomized, multicenter, phase III trial of the Swiss Group for Clinical Cancer Res and the Central European Cooperative Oncology Group. J Clin Oncol 25:2212-2217, 2007
- 20. Cunningham D, Chau I, Stocken DD, et al: Phase III randomized comparison of gemcitabine versus gemcitabine plus capecitabine in patients

- with advanced pancreatic cancer, J Clin Oncol 27: 5513-5518, 2009
- 21. Poplin E. Feng Y. Berlin J. et al: Phase III. randomized study of gemcitabine and oxaliplatin versus gemcitabine (fixed-dose rate infusion) compared with gemcitabine (30-minute infusion) in patients with pancreatic carcinoma E6201: A trial of the Eastern Cooperative Oncology Group. J Clin Oncol 27:3778-3785, 2009
- 22. Philip PA, Benedetti J, Corless CL, et al: Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest Oncology Group-directed intergroup trial S0205. J Clin Oncol 28:3605-3610, 2010
- 23. Kindler HL, Niedzwiecki D, Hollis D, et al: Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: Phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J Clin Oncol 28:3617-3622, 2010
- 24. Kindler HL, loka T, Richel DJ, et al: Axitinib plus gemcitabine versus placebo plus gemcitabine in patients with advanced pancreatic adenocarcinoma: A double-blind randomised phase 3 study. Lancet Oncol 12:256-262, 2011
- 25. Morizane C, Okusaka T, Furuse J, et al: A phase II study of S-1 in gemcitabine-refractory metastatic pancreatic cancer. Cancer Chemother Pharmacol 63:313-319, 2009
- 26. Haller DG, Cassidy J, Clarke SJ, et al: Potential regional differences for the tolerability profiles of fluoropyrimidines. J Clin Oncol 26:2118-2123, 2008
- 27. Chuah B, Goh BC, Lee SC, et al: Comparison of the pharmacokinetics and pharmacodynamics of S-1 between Caucasian and East Asian patients. Cancer Sci 102:478-483, 2011

Affiliations

Hideki Ueno and Takuji Okusaka, National Cancer Center Hospital; Junji Furuse, Kyorin University School of Medicine; Takashi Hatori, Tokyo Women's Medical University; Atsushi Sato, Showa University Hospital; Yasuo Ohashi, The University of Tokyo, Tokyo; Tatsuya Ioka, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka; Masafumi Ikeda, National Cancer Center Hospital East, Kashiwa: Shinichi rich4/zlj-jco/zlj9j9910/zlj3294-10z xppws S=1 2/7/13 10:48 4/Color Figure(s): F1-F4 Art: 33680 Input-RAK

GS or S-1 v Gemcitabine for Pancreatic Cancer

Ohkawa, Kanagawa Cancer Center, Yokohama; Hiroaki Yanagimoto, Kansai Medical University Hirakata: Hoepital, Hirakata; Narikazu Boku and Akira Fukutomi, Shizuoka Cancer Center, Sunto-gun; Kazuya Sugimori, Yokohama City University Medical Center, Yokohama; Hideo Baba, Kumamoto University, Kumamoto; Kenji Yamao, Aichi Cancer Center Hospital, Nagoya; Tomotaka Shimamura, Saitama Cancer Center, Saitama; Masayuki Sho, Nara Medical University, Kashihara; Masayuki Kitano, Kinki University School-of-Medicine, Osakasayama; Kazuhiro Mizumoto and Masao Tanaka, Kyushu University; Akihiro Funakoshi, Fukuoka Sanno Hospital, Fukuoka; Taketo Yamaguchi, Chiba Cancer Center, Chiba; Shinichi Egawa, Tohoku University Graduate-School-of-Medicine, Sendai, Japan; Ann-Lii Cheng, National Taiwan University Hospital, Taipei; and Jen-Shi Chen, Linkou Chang Gung Memorial Hospital and Chang Gung University, Tao-Yuan, Taiwan.

Ueno et al

AO: G Acknowledgment

We thank all the patients, their families, the investigators and medical staff and Yuji Sato and his clinical study team, Taiho Pharmaceutical, and TTY Biopharm for their participation in the study. We also thank J. Patrick Barron of the International Medical Communications Center of Tokyo Medical University, a remunerated consultant of Taiho Pharmaceutical, for his review of this article.

Appendix

Members of the Gemcitabine and S-1 Trial (GEST) Group

Steering committee. T. Okusaka, S. Egawa, J. Furuse, T. Yamaguchi, H. Ueno, T. Hatori, S. Ohkawa, N. Boku, K. Yamao, T. Ioka, A. Funakoshi, K. Mizumoto, M. Tanaka.

Independent data and safety monitoring committee. A. Nakao, I. Hyodo, S. Morita; Medical Advisor: A. Sato; Statistical Analyst: Y. Ohashi.

Principal investigators. National Cancer Center Hospital: T. Okusaka; Osaka Medical Center for Cancer and Cardiovascular Diseases: T. Ioka; National Cancer Center Hospital East: M. Ikeda, K. Nakachi; Kanagawa Cancer Center: S. Ohkawa; Kansai Medical University Hirakata Hospital: H. Yanagimoto; Yokohama City University Medical Center: K. Sugimori; Shizuoka Cancer Center: A. Fukutomi; Kumamoto University: H. Baba; Saitama Cancer Center: T. Shimamura, H. Hara; Aichi Cancer Center Hospital: K. Yamao; Nara Medical University: M. Sho; Kinki University School of Medicine, Department of Gastroenterology and Hepatology: M. Kitano; Sapporo-Kosei general Hospital: H. Miyagawa; Kyushu University, First Department of Surgery; K. Mizumoto; Jichi Medical University Hospital: H. Fujii; National Hospital Organization Osaka National Hospital: S. Nakamori; Kinki University School of Medicine, Department of Medical Oncology: T. Satoh, S. Ueda; Tochigi Cancer Center: Y. Hamamoto, E. Warita; Kyushu University, Department of Hepatology and Pancreatology: T. Ito; Teine-Keijinkai Hospital: H. Maguchi; Kyorin University School of Medicine: J. Furuse; Kyoto University Hospital: S. Matsumoto; Saitama Medical University International Medical Center: Y. Sasaki; Hokkaido University Hospital: Y. Komatsu; Tokyo Women's Medical University: M. Yamamoto; Saku Central Hospital: T. Hisa; Osaka City Juso Hospital: T. Yamazaki, O. Kurai; Kochi Health Sciences Center: A. Tsuji; National Kyushu Cancer Center: A. Funakoshi, M. Furukawa; Niigata Cancer Center Hospital: Y. Tsuchiya; Chiba Cancer Center: T. Yamaguchi; Osaka Red Cross Hospital: Y. Okabe; Tohoku University Graduate School of Medicine, Division of Gastroenterology: K. Sato; Tohoku University Graduate-School of Medicine, Division of Gastroenterological Surgery: F. Motoi; Matsusaka Chuo General Hospital: H. Naota; Kyoto Second Red Cross Hospital: K. Yasuda; Hyogo College of Medicine: J. Fujimoto; Toyama University Hospital: A. Hosokawa; Fukuoka University Chikushi Hospital: T. Ueki; Hokkaido Social Insurance Hospital: K. Furuya; Kameda Medical Center: Y. Oyama; Nagoya Medical Center: H. Iwase; Shinshu University Hospital: N. Arakura; Yodogawa Christian Hospital: A. Watanabe; Osaka Medical College Hospital: H. Takiuchi; Kitano Hospital: S. Yazumi; Sakai Municipal Hospital: H. Ohzato; Kawasaki Medical School Hospital: K. Yoshida; Onomichi General Hospital: K. Hanada; Kagawa University Hospital: F. Goda; Shikoku Cancer Center: H. Iguchi; Keio University Hospital: T. Hibi; Osaka City General Hospital: H. Nebiki; Chiba University Hospital: T. Ishihara; Nippon Medical School Hospital: E. Uchida; Tokai University Hospital: T. Imaizumi; Nagoya City University Hospital: H. Ohara; Aichi Cancer Center Aichi Hospital: H. Kojima; Osaka City University Hospital: N. Yamada; Wakayama Medical University Hospital: H. Yamaue; Tokyo Medical University Hospital: F. Moriyasu; Showa University Northern Yokohama Hospital: K. Shimada; Shizuoka General Hospital: K. Matsumura; Hyogo Cancer Center: H. Nishisaki; Kanazawa University Hospital: S. Yano; Hiroshima Prefectural Hospital: K. Shinozaki; University of Miyazaki Hospital: H. Inatsu; Linkou Chang Gung Memorial Hospital and Chang Gung University: Jen-Shi Chen; National Taiwan University Hospital: Chiun Hsu; Taipei Veterans General Hospital: Jin-Hwang Liu; Chang Gung Medical Foundation, Kaohsiung: Kun-Ming Rau; Chung-Ho Memorial Hospital, Kaohsiung Medical University: Sheng-Fung Lin; China Medical University Hospital: Chang-Fang Chiu; Mackay Memorial Hospital, Taipei: Ruey-Kuen Hsieh; Changhua Christian Hospital: Cheng-Shyong Chang; Chi Mei Medical Center, Yong Kang: Wei-Shou Huang; Chi Mei Medical Center, Liou Ying: Wen-Tsun Huang; National Cheng Kung University Hospital: Wu-Chou Su.

Details of Adequate Organ Functions in Enrollment Criteria and Main Exclusion Criteria

Adequate organ functions were defined as follows: leukocyte count $\geq 3,500/\mu$ L, neutrophil count $\geq 2,000/\mu$ L, platelet count $\geq 100,000/\mu$ L, hemoglobin level ≥ 9.0 g/dL, serum creatinine level ≤ 1.2 mg/dL, creatinine clearance ≥ 50 mL/min, serum AST and ALT levels ≤ 150 U/L, and serum total bilirubin level ≤ 2.0 mg/dL or ≤ 3.0 mg/dL if biliary drainage was performed.

Main exclusion criteria were as follows: pulmonary fibrosis or interstitial pneumonia; watery diarrhea; active infection; marked pleural effusion or ascites; and serious complications such as heart failure, peptic ulcer bleeding, or poorly controlled diabetes. Pancreatic cancers other than adenocarcinoma or adenosquamous carcinoma (eg, anaplastic carcinoma) were excluded from the study.

Dosage Adjustment Guideline for Toxicities

All treatment cycles were repeated until disease progression, unacceptable toxicity, or patient refusal. If patients had a leukocyte count of less than $2,000/\mu$ L, a neutrophil count of less than $1,000/\mu$ L, a platelet count of less than $70 \times 10^3/\mu$ L, or grade 3 or worse rash, the administration of anticancer agents was postponed. S-1 was temporarily halted both in S-1 and in GS groups if patients had a creatinine level of 1.5 mg/dL or higher or grade 2 or worse diarrhea or stomatitis. Treatment was discontinued if these events did not resolve within

© 2013 by American Society of Clinical Oncology

GS or S-1 v Gemcitabine for Pancreatic Cancer

4 weeks after treatment suspension. In patients who experienced febrile neutropenia, grade 4 leukopenia, neutropenia, or thrombocytopenia or grade 3 or worse rash, the dose of gemcitabine was reduced by 200 mg/m². In patients with febrile neutropenia; grade 4 leukopenia, neutropenia, or thrombocytopenia; a creatinine level of 1.5 mg/dL or higher; or grade 3 or worse diarrhea, stomatitis, or rash, the dose of S-1 was reduced by 20 mg/d.

Sample Size Determination: Statistical Methods

In the initial plan, the total target number of patients was set at 600, given a statistical power of 80%, an enrollment period of 3 years, and a follow-up period of 2 years. However, because patient enrollment was faster than expected, the target number of patients was revised to 750 to provide the study with a statistical power of 90%. Consequently, the final analysis was performed after the occurrence of 680 events had been confirmed. An interim analysis was not performed. Although the actual median OS in the gemcitabine group was better than initially expected, because an adequate number of patients had been enrolled, a power of \geq 90% was maintained on recalculation of the power on the basis of the actual results.

Quality of Life

To assess the quality of life, the health status of patients on the EQ-5D questionnaire was converted into a single simple utility index ranging from 0 for death to 1 for complete health. Quality-adjusted life years (QALYs) for individual patients were estimated as the product of the utility index during follow-up and survival time and were compared between the groups, using the generalized Wilcoxon test.

As a result, median QALYs were 0.401 in the gemcitabine group, 0.420 in the S-1 group, and 0.525 in the GS group. The QALY value in the S-1 group was similar to that in the gemcitabine group, and there was no statistically significant difference between the two groups (P = .56). The QALY value in the GS group was significantly better than that in the gemcitabine group (P < .001). The details of quality-of-life assessments will be reported elsewhere.

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

- A-AUTHOR: Please define GEST in title, footnotes, abstract, and text.
- B—AUTHOR: You are responsible for detecting any errors in this proof. Confirm that all dosing information and treatment regimens are complete and accurate in text, tables, and figures, if applicable to article content.
- C-AUTHOR: Please define EQ-5D.
- D—AUTHOR: Figures in your article have been edited and redrawn to conform to JCO style. As author, it is your responsibility to review all figure content carefully and completely for accuracy, including dosing information, axis labels, and legends, if applicable. At this advanced stage of production, changes to figures should only be made to correct data/factual errors or errors that severely compromise clarity or meaning.
- E—AUTHOR: Please verify conflicts of interest information is complete and accurate as of acceptance date.
- F—AUTHOR: Please verify that all contribution information is correct for each author.
- G—AUTHOR: This acknowledgment will appear online only. Please review copy in proofs and make any necessary corrections.
- H—AUTHOR: This Appendix will appear only online. Please review copy in proofs and make any necessary corrections.

A: GEST: Gemcitabine and S-1 Trial
B: OK
C: EQ-5D: EuroQol 5 Dimension
D: OK
E: OK
F: OK
G: OK
H: OK

1

www.redjournal.org

Clinical Investigation: Pancreatic Cancer

A Multicenter Phase II Trial of S-1 With Concurrent Radiation Therapy for Locally Advanced Pancreatic Cancer

Masafumi Ikeda, MD,* Tatsuya Ioka, MD,† Yoshinori Ito, MD,‡ Naohiro Yonemoto, MPH,§ Michitaka Nagase, MD, Kenji Yamao, MD,¶ Hiroyuki Miyakawa, MD,** Hiroshi Ishii, MD,†† Junji Furuse, MD,‡‡ Keiko Sato, PhD, §§ Tosiya Sato, PhD, IIII and Takuji Okusaka, MD¶¶

*Division of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Chiba, Japan: †Department of Hepatobiliary and Pancreatic Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan; † Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan; § Department of Epidemiology and Biostatistics, Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo, Japan: "Department of Clinical Oncology, Jichi Medical University, Tochiqi, Japan; *Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan; **Department of Gastroenterology, Sapporo Kosei General Hospital, Sapporo, Japan; ††Hepatobiliary and Pancreatic Division, Cancer Institute Hospital, Tokyo, Japan; ‡‡Department of Internal Medicine, Medical Oncology School of Medicine, Kyorin University, Tokyo, Japan; §§Kyoto Unit Center, Japan Environment and Children's Study, Kyoto University Graduate School of Medicine, Kyoto, Japan; IIII Department of Biostatistics, Kyoto University School of Public Health, Kyoto, Japan; and ¶¶Hepatobiliary and Pancreatic Oncology Division, National Cancer Center Hospital, Tokyo, Japan

Received Feb 8, 2012, and in revised form Mar 24, 2012. Accepted for publication Mar 27, 2012

Summary

S-1 is the first single anticancer agent to be judged non-inferior to gemcitabine in a large-scale, randomized, phase III trial for advanced pancreatic cancer, and it can also act as a radiosensitizer. S-1 with concurrent radiation therapy showed very favorable activity, with mild toxicity in patients with

Purpose: The aim of this trial was to evaluate the efficacy and toxicity of S-1 and concurrent radiation therapy for locally advanced pancreatic cancer (PC).

Methods and Materials: Locally advanced PC patients with histologically or cytologically confirmed adenocarcinoma or adenosquamous carcinoma, who had no previous therapy were enrolled. Radiation therapy was delivered through 3 or more fields at a total dose of 50.4 Gy in 28 fractions over 5.5 weeks. S-1 was administered orally at a dose of 80 mg/m² twice daily on the day of irradiation during radiation therapy. After a 2- to 8-week break, patients received a maintenance dose of S-1 (80 mg/m²/day for 28 consecutive days, followed by a 14-day rest period) was then administered until the appearance of disease progression or unacceptable toxicity. The primary efficacy endpoint was survival, and the secondary efficacy endpoints were progression-free survival, response rate, and serum carbohydrate antigen 19-9 (CA19-9) response; the safety endpoint was toxicity.

Results: Of the 60 evaluable patients, 16 patients achieved a partial response (27%; 95% confidence interval [CI], 16%-40%). The median progression-free survival period, overall survival period, and 1-year survival rate of the evaluable patients were 9.7 months (95% CI, 6.9-11.6 months),

Reprint requests to: Masafumi Ikeda, MD, Division of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital E, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan. Tel: 81-4-7133-1111; Fax: 81-4-7133-0335; E-mail: masikeda@east.ncc.go.jp

This work was presented in abstract form on June 4-6, 2010. at the 46th

Annual Meeting of the American Society of Clinical Oncology, Chicago, IL.

This study was supported in part by grants-in-aid for cancer research from the Ministry of Health, Labor, and Welfare of Japan.

Conflict of interest: none.

Supplementary material for this article can be found at www.rediournal.org.

Int J Radiation Oncol Biol Phys, Vol. 85, No. 1, pp. 163-169, 2013 0360-3016/\$ - see front matter © 2013 Elsevier Inc. All rights reserved. doi:10.1016/j.ijrobp.2012.03.059

locally advanced pancreatic cancer.

16.2 months (95% CI, 13.5-21.3 months), and 72% (95%CI, 59%-82%), respectively. Of the 42 patients with a pretreatment serum CA19-9 level of ≥100 U/ml, 34 (81%) patients showed a decrease of greater than 50%. Leukopenia (6 patients, 10%) and anorexia (4 patients, 7%) were the major grade 3-4 toxicities with chemoradiation therapy.

Conclusions: The effect of S-1 with concurrent radiation therapy in patients with locally advanced PC was found to be very favorable, with only mild toxicity. © 2013 Elsevier Inc.

Introduction

Pancreatic cancer (PC), one of the most lethal human cancers, has become the fifth most common cause of death due to cancer in Japan; it has been estimated that PC was responsible for 26,791 deaths in 2009, representing approximately 3% of all deaths. PC patients have a dismal prognosis, as their 5-year survival after diagnosis is less than 5%. Of all treatment modalities available for PC, only resection offers an opportunity for a cure. However, approximately half of patients already have metastases at the time of diagnosis, and approximately one-third of patients are diagnosed as having locally advanced disease, whereas only a small proportion of patients are eligible for surgery, as a result of the lack of effective screening. Concurrent chemoradiation therapy with external beam radiation therapy and chemotherapy using 5-fluorouracil (5-FU) is often used in patients who have unresectable PC due to vascular involvement that includes the celiac artery or supra-mesenteric artery, with no distant metastases on radiological examination, because it is generally accepted as a standard therapy for locally advanced PC (1-4). A variety of anticancer agents, including gemcitabine (5) and capecitabine (6), and various radiation schedules (7-8) have been examined in clinical trials, but survival has not been significantly improved.

S-1 is a new oral fluoropyrimidine derivative in which tegafur is combined with 2 5-chloro-2,4-dihydroxypyridine modulators and oteracil potassium, a potentiator of 5-FU's antitumor activity that also decreases gastrointestinal toxicity. A multi-institutional, late-phase II trial of S-1 involving metastatic PC patients reported a good tumor response rate (38%) and improved survival (median, 9.2 months) (9). A phase III trial compared therapy with S-1, with gemcitabine alone, and with gemcitabine plus S-1 in patients with unresectable PC in Japan and Taiwan, and S-1 therapy was found to provide efficacy and toxicity similar to gemcitabine when it was used as a first-line treatment for advanced PC (median survival: S-1, 9.7 months; gemcitabine, 8.8 months [hazard ratio, 0.96; non-inferiority P value <.001]); thus, S-1 was judged to be noninferior to gemcitabine (10). S-1 also acts as a radiosensitizer, and preclinical and clinical studies have demonstrated the radiosensitizing potency of S-1 (11). Not only is S-1 a potent radiosensitizer that has been shown to have promising antitumor activity against advanced PC, but also, since it is active orally, it is also much more convenient for patients than intravenous 5-FU infusion. Thus, concurrent raditation therapy and oral S-1 instead of 5-FU infusion may be a more efficient treatment that also improves patients' quality of life. In a phase I trial conducted in one of our hospitals, the recommended S-1 dose with concurrent radiation therapy was found to be 80 mg/m²/day on the day of irradiation; at this dose, S-1 was found to have excellent antitumor activity with mild toxicity (12). Consequently, a multi-institutional phase II study was conducted to clarify the efficacy and safety of concomitant radiation therapy with S-1 in patients with locally advanced PC.

Methods and Materials

Patients and eligibility

Patients eligible for study entry had locally advanced nonresectable clinical stage III (T4N0-1 and M0) PC, according to International Union Against Cancer criteria. Eligibility criteria were adenocarcinoma or adenosquamous carcinoma confirmed on cytology or histology; no previous chemotherapy for PC; a square (10 cm × 10 cm) radiation field could encompass all pancreatic lesions and lymph node metastases; age ≥20 years; Eastern Cooperative Oncology Group (ECOG) performance status of 0-2; adequate oral intake; satisfactory hematological functions (hemoglobin concentration, ≥ 9.0 g/dl; leukocyte count, ≥ 3500 /mm³; platelet count, ≥100,000/mm³); adequate hepatic function (serum total bilirubin < 2.0 times the upper normal limit [UNL] or ≤ 3.0 mg/dl with biliary drainage); aspartate aminotransferase [AST] and alanine aminotransferase [ALT] ≤2.5 times UNL or ≤5 times UNL with biliary drainage; serum albumin ≥3.0 g/dl; and normal renal function (serum creatinine \lequiv UNL). Written informed consent was obtained from all patients.

Exclusion criteria were active infection; active gastroduodenal ulcer; watery diarrhea; phenytoin, warfarin potassium, or flucytosine treatment; pleural effusion or ascites; severe complications such as cardiac or renal disease; psychiatric disorder; history of drug hypersensitivity; and active concomitant malignancy. In addition, pregnant and lactating women and women of childbearing age who were not using effective contraception were also excluded.

Pretreatment evaluation required a complete history and physical examination and baseline assessments of organ function. In addition, contrast medium-enhanced computed tomography (CT) or magnetic resonance imaging of the abdomen and X-ray or CT of the chest was performed for pretreatment staging to assess the local extension of the tumor and to exclude the presence of distant metastases. The criteria for local extension surrounding the pancreas included tumor invasion to the celiac trunk or superior mesenteric artery, or both, which corresponded to clinical stage III according to the International Union Against Cancer (6th edition). All patients with obstructive jaundice underwent percutaneous transhepatic or endoscopic retrograde biliary drainage before treatment. Laparoscopy and laparotomy to rule out occult peritoneal dissemination prior to study entry were not necessary.

Treatment schedule

The regimen consisted of S-1 with concurrent radiation therapy and maintenance S-1 chemotherapy.

S-1 with concurrent radiation therapy

Radiation therapy was delivered with >6-MV photons, using a multiple (three or more) field technique. A total dose of 50.4 Gy