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A series of new (—)-arctigenin derivatives with variably modified O-alkyl groups were synthesized and
their preferential cytotoxicity was evaluated against human pancreatic cancer cell line PANC-1 under
nutrient-deprived conditions. The results shawed that monaethoxy derivative 4i (PCsg, 0.49 nM),
diethoxy derivative 4h (PCsq, 0.66 pM), and triethoxy derivative 4m (PCsg, 0.78 uM) showed the pref-
erential cytotoxicities under nutrient-deprived conditions, which were identical to or more potent than

(—)-arctigenin (1) (PCsg, 0.80 tM). Among them, we selected the triethoxy derivative 4m and examined

Keywords:

(—)-Arctigenin derivatives
Antiausteric activity
Synthesis

Pancreatic cancer

its in vivo antitumor activity using a mouse xenograft madel. Triethoxy derivative 4m exhibited also
in vivo antitumor activity with the potency identical to or slightly more than (- )-arctigenin (1). These
results would suggest that a modification of (—)-arctigenin structure could lead to a new drug based on
the antiausterity strategy.

© 2012 Elsevier Masson SAS. All rights reserved.

1. Intreduction

Pancreatic cancer is the most aggressive cancer of all and has an
exceptionally high global mortality rate, with an estimated 267,000
deaths worldwide in 2008. It ranks 8th or 9th as the most frequent
cause of cancer death worldwide and is the 4th or 5th most frequent
cause of cancer death in most developed countries, including the
United States, Europe, and Japan [ 1]. Moreover, it has been estimated
that the number of deaths from pancreatic cancer will reach
484,000 by 2030 [ 1]. Pancreatic cancer rapidly metastases and lead
the patients to die in a short period of the diagnosis. Thus, the 5-year
survival rate of the patients with the pancreatic cancer is the lowest
among several cancers [2,3]. Though surgery is the only treatment
method that offers any prospect of potential cure, chemotherapy

* Corresponding author. Graduate School of Science and Technology for Research,
University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan. Tel.: +-81 76 445 6859.
** Corresponding author. Tel.: +81 76 434 7627, fax: +81 76 434 5058.
E-mail addresses: toyooka@eng.u-toyama.acjp (N. Toyooka), tezuka@inm.u-
toyama.ac.jp (Y. Tezuka).

0223-5234/$ — see front matter © 2012 Elsevier Masson SAS. All rights reserved.
http:/fdx.doi.org/10.1016/j.ejmech.2012.11.031

with 5-fluorouracil and gemcitabine is also used for palliative
therapy of advanced pancreatic cancer. However pancreatic cancer
is largely resistant to most known chemotherapeutic agents
including 5-fluorouracil and gemcitabine [4]. Therefore effective
chemotherapeutic agents that target pancreatic cancer are urgently
needed.

Tumor cells, in general, proliferate very fast, and the demand for
essential nutrients, oxygen, efc. is always high. The immediate envi-
ronment of cancers increasing in size, however, often becomes
heterogeneous and some regions of large cancers often possess
microenvironmental niches, which exhibit a significant gradient of
critical metabolites including oxygen, glucose, other nutrients, and
growth factors|5]. Thus, many cancer cells get the critical metabolites
by randomly recruiting new blood vessels, a phenomenon commonly
known as angiogenesis, to survive under such severe conditions.
However, human pancreatic cancer survives with an extremely poor
blood supply and becomes more malignant [6], The method by which
pancreatic cancer survives is by getting a remarkable tolerance to
extreme nutrient starvation 7], Therefore, it has been hypothesized
that eliminating the tolerance of cancer cells to nutrition starvation
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may allow a novel biochemical approach known as “anti-austerity”
for cancer therapy [8].

In this regard, we screened 500 medicinal plants used in Kampo
medicine to identify agents that preferentially reduce the survival of
nutrient-deprived human pancreatic cancer PANC-1 cells, The
screen led to the isolation of (—)-arctigenin (1) as the active principle
of Arctium lappa [9]. In addition to pancreatic cancer, arctigenin has
been reported to inhibit lung, skin, and stomach cancers [10]. Thus,
we started the synthetic work of arctigenin derivatives to obtain
more effective drugs against pancreatic cancer. In A. lappa,
(—)-arctigenin is mainly contained as its glucoside, arctiin, and after
consumption arctiin was reported to be deglucosidated to (—)-arc-
tigenin (1), followed by demethylation and dehydroxylation by
intestinal bacteria to metabolites I-V [11]. As reported previously,
(~)-arctigenin showed potent preferential cytotoxicity, whereas its
glucoside, arctiin, showed no cytotoxicity {9]. In our preliminary
examination, moreover, metabolites I and V (Fig. 1) showed weaker
activity. These facts should suggest that the 4'-hydroxyl group
should be important for the preferential cytotoxicity and that
(—)-arctigenin is deactivated through the demethylation/deme-
thoxylation. In addition, the enantiomer of (-)-arctigenin (1),
(+)-arctigenin (Fig. 1), showed very weak preferential cytotoxicity,
indicating the importance of the 2R,3R absolute stereochemistry of
(=)-form. Thus, with an intention to improve the metabolism
stability, we have synthésized 15 arctigenin derivatives 4a—o with
different alkoxy substituent and the 2R,3R-configuration, and the
in vitro preferential cytotoxicity of them was characterized under
nutrient-deprived conditions. Then, the triethoxy derivative 4m,
exhibiting the in vitro activity identical to 1 and having no methoxy

~ group which may be metabolized, was selected and further evalu-
ated the effect against tumor cell growthin vivo in a cancer xenograft
mouse model.

2. Results and discussion
2.1, Chemistry

First we planned the synthesis of derivatives on the 3’ position
of (—)-arctigenin. For this purpose, (—)-arctigenin (1) was con-
verted to the diol 2 [12], which was transformed into 6 derivatives
4a—f via selective protection of 2, alkylation of 3, followed by
deprotection of the benzyl group (Scheme 1)

Next we planned the efficient and flexible synthesis of a variety
of derivatives on the 3/, 3/, and 4" positions of (—)-arctigenin.

R R2 R3
| OH  Me OMe

1] H Me OMe

m H H OMe

vV H H OH
H H H

Fig. 1. Structures of (—)-arctigenin (1) and its analogs.

3,4-Dihydroxybenzaldehyde was converted to the alcohol 7 via
known benzyl ether 5 { 13] and aldehyde 6 | 14]. Mono-alkylation of
diethyl malonate with the mesylate of 7 afforded the ester 8.
Reduction of 8 and lipase-mediated transesterification of the
resulting diol provided the mone-acetate (+)-9, The enantiomeric
excess of (+)-9 was determined to be 98% ee by the HPLC analysis
using the chiral column (Chiralcel O]). The absolute stereochem-
istry of (+)-9 was determined by the comparison of the optical
rotation with known lactone 13a, prepared from (+)-9 via mesylate
10, benzyl ether 11, and lactone 12a as shown in Scheme 2, Other
lactones 13b—f were also prepared from (+)-9, and these lactones
13b—f were alkylated on the a-position with several alkyl halides to
afford the di-substituted lactones 14a—i. Finally deprotection of the
benzyl group furnished the desired derivatives 4g—o.,

From the comparison of the in vitro activity of the synthesized
derivatives 4a—o against the human pancreatic cancer cell line
PANC-1, the triethoxy derivative 4m was chosen as the potent
candidate for the in vivo experiment. As the more effective
synthesis of 4m, we investigated the modified synthesis of the
lactone 13d. 34-Dihydroxybenzaldehyde was converted to the
ester 17 via known aldehyde 15 [ 15] and alcohol 16 [16] as the same
procedure for the synthesis of 8, After reduction of 17, lipase-
mediated transesterification of the resulting diol afforded the
mono-acetate 18, whose enantiomeric excess was determined to be
98% ee again by the Mosher method. The mono-acetate 18 was then
transformed into the lactone 13d via mesylate 19 (Scheme 3),

2.2. In vitro preferential cytotoxicity of arctigenin derivatives

All of the (—)-arctigenin derivatives 4a—o were evaluated for
their in vitro preferential cytotoxic activity against human pancre-
atic cancer PANC-1 cells in nutrient-deprived medium (NDM). The
PANC-1 cell line is highly resistant to nutrient starvation, and can
survive in NDM even after 48 h of starvation [6,7.8]. However, this
tolerance to nutrient starvation was remarkably eliminated by the
tested compounds in a concentration-dependent manner. The
tested compounds exhibited different potency of toxicity (Fig. 2)
and their preferential cytotoxicities are obtained as the 50% cyto-
toxic concentration in NDM (PCsq value) (Table 1). Among the
(—=)-arctigenin derivatives 4a—o, monoethoxy derivative 4i showed
the most potent preferential cytotoxicity (PCso, 0.49 pM), followed
by diethoxy derivative 4h (PCsg, 0.66 pM) and triethoxy derivative
4m (PCso, 0.78 uM), which were identical to or more potent than
(—)-arctigenin (1) (PCsp, 0.80 pM),

On the relationship between the substituents and the prefer-
ential activity, the 3/ position seems to favor smaller substituent
since the PCsg values of 1 and 4a—d increase in the order: 1
{MeO) < 4a (EtO) = 4b (n-Pr0) < 4c (i-PrO) < 4d (n-BuO). This
would suggest the importance of the 4’-hydroxy group for the
preferential activity. On the other hand, there is not clear rela-
tionship on the substituents at the 3” and 4” positions, although
smaller substituents seems to be favor.

The order of in vitro preferential cytotoxicity (PCsp) was
4i > 4h > 4m, Whereas 4h and 4i have the methoxy groups which
was reported to be demethylated and then deoxygenated by
intestinal bacteria and/or hepatic enzyme [11]. Thus, we selected
the triethoxy derivative 4m to pursue a further examination, from
a viewpoint of metabolism stability.

2.3. In vivo ontitumor activity of triethoxy derivative 4m

The triethoxy derivative 4m showed the in vitro preferential
cytotoxicity also against human pancreatic cancer cell line CAPAN-1
under glucose deficient conditions with a intensity similar to
(—)-arctigenin (1) (Fig. 3). We used PANC-1 cell line for in vitro
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OMe
(~)-arctigenin (1) 2

c, d
R
3 4a:R=Et
4b: R = n-Pr
4c:R = iFPr
4d: R = n-Bu
4a: R = n-Hex

4f; R = HO(CHy),

Scheme 1. Reagents and conditions: a: AlCl;, pyridine, CHaCly, reflux (quant.); b: BnBr, K2C0s, KI, acetone, reflux (63%); c: RI or RBr, KzC03, acetone, reflux for 4a-e or 2-

benzyloxyethanol, PhsP, DEAD, CHyCly, rt for 4f; d: Hy, Pd(OH)2, MeOH, rt.

study because of its ready growth [17], while mouse xenograft
model can be prepared with CAPAN-1 cell line more easily than
with PANC-1 cell line [ 18}, Thus, we used mouse xenograft model
with CAPAN-1 cell line for comparing the in vivo effect of triethoxy
derivative 4m with (—)-arctigenin (1).

Mice were inoculated with 5 x 10° CAPAN-1 cells s.c. on the back
and then administered triethoxy derivative 4m, (—)-arctigenin (1),
or vehicle, as described in Experimental. The body weight of the
animals was monitored weekly (Fig. 4A) and no significant body
weight loss was recognized in the treated group versus the vehicle
control group at any time during the experimental period. This fact,
together with the behavior of the treated animals, indicated that

the tested compounds might have no toxicity at the dose used. The
treatment was initiated from the 15th day by i.p. injection of the
drug at the dose of 50 pg/mouse/d on 6 days of the week (or vehicle
in the control group) until the 28th day. The tumor size was
measured weekly. As is evident from the tumor growth curve
shown in Fig. 4B, the tumor volume increased steadily in the
control group, whereas the increase was significantly less prom-
inent in the groups treated by triethoxy derivative 4m or (—)-arc-
tigenin (1). There was a significant difference in the tumor size at
the day 21 between the groups treated by triethoxy derivative 4m
or (—)-arctigenin (1) and the control group (P < 0.05), Similarly, the
mean wet weight and the size of the tumor were higher in the
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Scheme 2. Reagents and conditions: a: BnBr, KoCO3, KI, acetone, reflux (64%); b: MOMCI, DIPEA, CH Cly, rt (quant.); ¢ NaBHs MeOH, rt (95%); d: MsCl, EtsN, CHaCly, rt; e: diethyl
malonate NaH, DMF, rt (72% in 2 steps); f: LiAlHg, THF, reflux; g: lipase-PS (Amano), vinyl acetate, {-Pr,0—THF rt (80% in 2 steps, 98% ee); h: MsCl, EtgN, CHoClg, rt; it KCN, DMSO,
90 °C; j: LIOH, THF~H30, rt; k: 10% NaOH (aq), reflux, then 10% HCl (aq)—THE, rt (73% in 4 steps); I: Mel or Etl or n-PrBr, K;C0s, acetone, reflux (88% for 12a, 86% for 12b, 87% for 12¢);
m: Ha, PA(OH)s, MeOH; n: Mel or Etl, K;COs, acetone, reflux (55% in 2 steps for 13a, 55% in 2 steps for 13b, 55% in 2 steps for 13¢, 47% in 2 steps for 13d, 80% in 2 steps for 13e, 77% in
2 steps for 13f); o: LIHMDS, substituted BnBr, HMPA, THF, ~78 °C to rt (44% for 14a, 59% for 14b, 43% for 14, 53% for 14d, 40% for 14e; 48% for 14f; 56% for 14g, 49% for 14h; 33% for
141); p: Hz, Pd(OH),, MeOH (89% for 4g, 63% for 4h, 57% for 4i, 63% for 4j, 56% for 4k, 81% for 4l, 66% for 4m, 46% for 4n, 63% for 40).
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Scheme 3. Reagents and conditions: a: Etl, K;C05, acetone, reflux (92%); b: NaBH,, MeOH, rt (74%); ¢: MsCl, EtN, CHyCly, tt; d: diethy! malonate NaH, DMF, rt (87% in 2 steps); e:
LiAlHg, THF, reflux; f: lipase-PS (Amano), viny] acetate, {-Pr,0—THF 1t (53% in 2 steps, 98% ee); g: MsC), EtsN, CH,Cly, rt (78%); h: KCN, DMSO, 90 °C; i: LiOH, THF—H,0, rt; j: 10% NaOH

(aq), reflux, then 10% HCI (aq)-THE, rt (60% in 3 steps).

control group than the groups treated by triethoxy derivative 4m or
(=)-arctigenin (1) (Fig. 4C—F). These data indicate that triethoxy
derivative 4m also exerted antitumor activity in vivo with the
potency identical to or slightly more than (-)-arctigenin (1).

3. Conclusion

In summary, a series of new {—)-arctigenin derivatives modified
on O-alkyl groups were synthesized and their preferential cytotox-
icity was evaluated against human pancreatic cancer cell line PANC-
1 under nutrient-deprived conditions. The results showed that
monoethoxy derivative 4i (PCsp, 049 uM), diethoxy derivative 4h
{(PCsgp, 0.66 pM), and triethoxy derivative 4m(PCsp, 0.78 pM) showed
the preferential cytotoxicities under nutrient-deprived conditions,
which were identical to or more potent than (-)-arctigenin (1)
(PCsg, 0.80 uM). Among them, we selected the triethoxy derivative
4m and examined in vivo antitumor activity with mouse xenograft
model. Triethoxy derivative 4m exhibited also in vivo antitumor
activity with the potency identical to {-)-arctigenin (1). These
results would suggest that a modification of (—)-arctigenin structure
could lead to a new drug based on the antiausterity strategy.

4. Experimental
4.1. Chemistry

4.1.1. General conditions

Chemicals were purchased from Sigma—Aldrich, Merck, Nakalai
Tesque, Wako Pure Chemicals, and Kanto Chemicals, and used
without further purification. Column chromatography was done on
Cica silica gel 60N (spherical, neutral; particle size, 40-50 um,
Kanto Chemical Co., Inc,, Tokyo, Japan), while thin-layer chroma-
tography (TLC) was performed on Merck silica gel 60Fs4 plates
(Merck KGaA, Darmstadt, Germany). Melting points were taken on
a Yanaco micromelting point apparatus and are uncorrected. The
nuclear magnetic resonance (NMR) spectra were acquired in the
specified solvent, in a Varian Gemini 300 spectrometer (300 and
75 MHz for 'H and 13C, respectively) or Varian UNITY plus 500
spectrometer (500 and 125 MHz for 'H and 13C, respectively)
(Varian Inc., Palo Alto, CA, USA), with tetramethylsilane (TMS) as
internal standard. The chemical shifts (é) are reported in ppm
downfield from TMS and coupling constants (/) are expressed in
Hertz. Optical rotations were obtained in the specified solvent on
aJASCO DIP-1000 digital polarimeter (JASCO Corp., Tokyo, Japan). IR
spectra were measured with a JASCO FT/IR-460 Plus spectropho-
tometer (JASCO Corp.). The low-resolution mass spectra (MS) and
high-resolution mass spectra (HRMS) were obtained with a Shi-
madzu GCMS-QP 500 mass spectrometer {Shimadzu Corp., Kyoto,
Japan), JEOL D-200, or JEOL AX505 mass spectrometer (JEOL Ltd.,
Tokyo, Japan) in the electron impact mode at the ionization
potential of 70 eV,

412, Synthesis of (- )-arctigenin derivatives 4a—4f

4.1.2.1. (3R4R)-3-(4-Benzyloxy-3-hydroxybenzyl)-4-(3 4-dimethoxyb-
enzyl)dihydrofiran-2-one (3). To a stirred solution of (3R4R)-3-(3,4-
dihydroxybenzyl)-4-{ 3 4-dimethoxybenzyl)dihydrofuran-2-one (2)
[12] (654 mg, 0.18 mmol) in acetone (2 mL) were added K>CO3
(373 mg, 0.27 mmol), KI (5.97 mg, 0.036 mmol), and BnBr (214 uL,
0.18 mmol), and the resulting mixture was refluex for 5 h. After
cooling, the reaction mixture was filtered, and the filtrate was
evaporated. The residue was chromatographed on silica gel (10 g,
hexane:acetone = 4:1) to give 3 (51.2 mg, 63%) as a pale yellow oil:
*H NMR (300 MHz, CDCl3) §: 1.60 (1H, br), 2.47—2.63 (4H, m), 2.86—
2.98 (2H, m), 3.80 (3H, 5), 3.85 (3H, 5), 3.80-3.89 (1H, m), 4.09-4.14
(1H, m), 5.13 (2H, s), 6.47—6.80 (6H, m), 7.28—7.44 (5H, m); *C NMR
(75 MHz, CDCh) 4: 34.59, 38.19, 41.15, 46.53, 55.82, 55.98, 71.08,
71.21, 111.22, 111.72, 112.79, 113.95, 120.43, 121.20, 12712, 127.69,
128.39, 130.30, 130.73, 136.98, 146.91, 147.67, 148.84, 149,63, 17846,
IR (neat): 1514 (C=C), 1769 (C=0) em™'; MS (EI) m/z 449 (M');
HRMS (EI): caled for Cp7Ha50s: 448.1886 (M'), found: 4482743;
[2]25 —20.7 (c 0.85, CHCl3).

4.1.2.2. (3RA4R)-4-(3,4-Dimethoxybenzyl)-3-(3-ethoxy-4-hydroxyb-
enzyl)dihydrofuran-2-one (4a). To a stirred solution of 3 (44.7 mg,
010 mmol) in acetone (5 ml) were added K,CO; (826 mg,
0.60 mmol), Etl (26.5 pL, 0.33 mmol), and the reaction mixture was
refluxed for 48 h. After cooling, the reaction mixture was filtered, and
the filtrate was evaporated. The residue was dissolved in MeOH
{6 mL). To the solution was added 20% Pd(OH); (10 mg), and the
resulting suspension was stirred under a hydrogen atmosphere at
1 atm for 16 h. The catalyst was removed by filtration and the filtrate
was evaporated. The residue was chromatographed on silica gel (7 g,
hexane : acetone = 3:1) to give 4a (134 mg, 35% in 2 steps) as
a colorless oil: TH NMR (300 MHz, CDCl) é: 141 (3H, t, J = 71 Hz),
242264 (4H, m), 290 (2H,d,J = 5.2 Hz), 3.80 (3H, 5), 3.84 (3H, s),
3.80—-3.88 (1H, m), 4.02 (2H, q, ] = 7.1 Hz), 408-4.13 (1H, m), 5.66
(1H, br), 646-6.75 (4H, m), 6.81 (1H, d, ] = 80 Hz); *C NMR
(75 MHz, CD(3) &: 14.85, 30.94, 3448, 38.15, 40,90, 46.58, 55.85,
6438, 7124, 11111, 111,61, 112,29, 11394, 12043, 121,83, 129.20,
130,30, 144.47, 145.80, 147,62, 148.81, 178.51; IR (neat): 1516 (C=C),
1766 (C=0), 3446 (OH) an™'; MS (EI) m/z 386 (M'); HRMS (EI):
caled for CpHoe0s: 386.1729 (M!), found: 386.1724; (¢} -205 (c
0.98, CHCl3).

4.1.2.3. (3RA4R)-4-(3,4-Dimethoxybenzyl)-3-(4-hydroxy-3-propoxyb-
enzyl)dihydrofuran-2-one (4h). By the procedure similar to synthesis
of 4a, (—)-arctigenin derivative 4b was prepared from 3 and n-PrBr
(18% in 2 steps) as a colorless oil: "TH NMR (300 MHz, CDCl3) 6: 1.04
(3H, t.] = 19 Hz), 1.77-1.87 (2H, m), 2.42—2.67 (4H, m), 2.81-3.01
(2H, m), 3.78-3.86 (7H, m), 3.90—-4.00 (2H, m), 4.09-4.14 (1H, m),
5.59-5.63 (1H, br), 6.47-6,85 (6H, m); 3C NMR (75 MHz, CDCk) &:
10,60, 22,60, 29,34, 31.81, 3455, 3822, 4149, 46,65, 53.80, 55.82,
7035, 7129, 111.71, 11384, 115.27, 120.47, 12185, 112.34, 129.28,
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Fig. 2. Effects of (—)-arctigenin derivatives on cell survival in the PANC-1 cell line under nutrient-deprived conditions. Cells were seeded at a density of 2 x 10° per well in 56-well
plates and incubated in fresh complete medium for 24 h. The cells were then washed with PBS and the medium was changed to nutrient-deprived medium (NDM, @) or normal
DMEM ( O) together containing graded concentrations of (—)-arctigenin derivatives. Points, mean from triplicate experiments. The cell number at the start of the starvation was
considered to be 100%. The cell count was measured by the WST-8 cell counting kit method, as described in experimental. The numbers 1 and 4a—o0 mean the data of (—)-arctigenin

(1) and (- )-arctigenin derivatives 4a-o, respectively.

130.59, 144.52, 147.69, 178.54; IR (neat): 1456 (C=C), 1769 (C=0)
em™Y; MS (EF) mfz 400 (M ); HRMS(EI): caled for Co3HpeOg: 4001886
(M"), found: 400.1893; ()& —15.7 (c 145, CHCl3),

4.1.2.4. (3R4R)-4-(3,4-Dimethoxybenzyl)-3-(4-hydroxy-3-i-propox-
yhenzyl)dihydrofuran-2-one (4c). By the procedure similar to
synthesis of 4a, (—)-arctigenin derivative 4¢ was prepared from 3
and i-Prl (18% in 2 steps) as a pale yellow oil: "H NMR (300 MHz,
CDCl3) é: 1.31-1.35 (6H, m), 1.59 (1H, br), 2.41-2.68 (4H, m), 2.80—
3.00(2H, m), 3.80—3.88 (7H, m), 4.07-4.12 (1H, m), 449-4.57 (1H,

m), 6.48—6.84 (6H, m); 1*C NMR (75 MHz, CDCl3) &: 22.02, 3439,
3.12, 4145, 46,65, 55.81, 71.19, 111.25, 11168, 113.41, 114.18, 115.49,
120,61, 122.09, 129.26,130.43, 144,70, 145.48, 146,59, 147.84, 149.02,
178.72; IR (neat): 1716 (C=0), 3629 (OH) cm™'; MS (EI) m/z 400
(M'); HRMS (EI): calcd for Cy3Has0s: 400.1886 (M!'), found:
400.1926; [¢)3! —37.7 (c 041, CHCl3).

4,1.2.5. (3R 4R)-4-(3,4-Dimethoxybenzyl)-3-(4-hydroxy-3-butylox-
ybenzyl)dihydrofuran-2-one (4d). By the procedure similar to
synthesis of 4a, (~—)-arctigenin derivative 4d was prepared from 3
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Table 1
Preferential cytotoxicity of (—)-arctigenin (1) and series of new (—)-arctigenin derivatives 4a—4o against human pancreatic cancer PANC-1 cells in nutrient-deprived medium
(NDM).
(o]
H
R3O H
o]
HO
OR?
OR?
Compound : R? R3 PCso (UM) Compound R! R? & PCsp (uM)
1 (arctigenin) Me Me Me 0.80 4h Me Et Et 0.66
4a Me Me Et 3.74 4i Et Me Me 045
4b Me Me n-Pr 374 4j Et Me Et 477
4ac Me Me i-Pr 4,16 ak Me Et n-Pr 354
ad Me Me n-Bu 7.14 41 Et Et Me 4.85
4e Me Me n-Hex 389 4m Et Et Et 0.78
af Me Me HO(CH2)2 7.70 4an Me n-Pr n-Pr 136
4g Me Et Me 471 4o Et n-Pr n-Pr 286

and n-BuBr (25% in 2 steps) as a colorless oil: 'H NMR (300 MHz,
CDCl3) &: 0.98 (3H, t.J = 7.1 Hz), 1.48 (2H, dd, ] = 15.1, 7.1 Hz), 1.74—
1.83 (2H, m), 2.41-2.66 (4H, m), 2.80-3.02 (2H, m), 3.82 (3H, s),
3.83 (3H, s), 3.85 (1H, m), 3.94—-4.03 (2H, m), 4.08—4.14 (1H, m),
5.59 (1H, m), 6.50—6.84 (6H, m); 13C NMR (75 MHz, CDCl3) : 13.97,
19.32, 31.31, 55.82, 55.92, 68,60, 68.65, 71.21, 71.27, 111.19, 111.67,
112,32, 113.92, 120,46, 129.29, 130.34, 130.46, 144.52, 144.71, 145.59,
145,96, 147.69, 148.92, 178.53; IR (neat): 1515 (C=C), 1769 (C=0),
3446 (OH) cm™!; MS (EI) mfz 414 (M'); HRMS (EI): calcd for
Ca4H300g: 414.2042 (M), found: 414.2000; [2)2¥ -202 (c 115,
CHCl3).

4.1.2.6. (3R4R)-4~(3,4-Dimethoxybenzyl}-3-(3-hexyloxy-4-hydrox-
ybenzylydihydrofuran-2-one (4e). By the procedure similar to
synthesis of 4a, (—)-arctigenin derivative 4e was prepared from 3
and 1-bromohexane (35% in 2 steps) as a pale yellow oil: "H NMR
(300 MHz, CDCl3) 8: 0.90(3H, t, ] = 6.4 Hz), 1.25-1.27 (2H, m), 1.33—
1.35 (4H, m), 145 (2H, m), 1.75—-2.66 (4H, m), 2.81-3.01 (2H, m),
3.82 (3H, s), 3.85 (3H, s5), 3.84-3.89 (1H, m), 3.94-4.02 (2H, m),
4,09-4.14 (1H, m), 5.56—5.61 (1H, m), 6.47—6.84 (6H, m); *C NMR
(75 MHz, CDCl3) é: 14.11, 22,67, 25.78, 29.25, 31.62, 34.56, 38.22,
40.02,46.65, 55.82,68.92, 71.21,111.19,111.67,112,32,113.92, 115.25,
120.56,121.83,129,29,130.43, 130.34, 144.52, 147.67,148.92, 178.53;
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Fig. 3. Effect of triethoxy derivative 4m and {-)-arctigenin (1) on cell survival in the
CAPAN-1 cell line under glucose-deprived conditions. @, (—)-arctigenin (1) in normal
DMEM; A, triethoxy derivative 4m in normal DMEM; O, (—)-arctigenin (1) in glucose-
deprived medium; A, triethoxy derivative 4m in glucose-deprived medium.

IR (neat): 1457 (C==C), 1764 (C==D), 3689 (OH) cm™'; MS (ED) mjz
442 (M'); HRMS (EI): caled for CzgH3406: 442.2355 (M), found:
442.2336; ()2 -10.1 (c 0.65, CHC3).

4.1.2.7. (3R 4R)-4-(3,4-Dimethoxybenzyl)-3-[4-hydroxy-3-(2-
hydroxyethoxy )benzyl]dihydrofiuran-2-one (4f). By the procedure
similar to synthesis of 4a, (—)-arctigenin derivative 4f was prepared
from 3 and 2-benzyloxyethanol (20% in 2 steps) as a colorless oil:
TH NMR (300 MHz, CDCl3) &: 2.42—2.59 (4H, m), 2.78—-2.94 (2H, m),
3,76 (3H, s), 3.83 (3H, s), 3.73—3.80 (1H, m), 3.86—4.07 (6H, m),
413-4.16 (1H, m), 6.40-6.75 (4H, m), 6.81 (1H, d, ] = 8.0 Hz); 3C
NMR (75 MHz, CDCl3) é: 28.24, 38.22, 40.69, 46.53, 55,72, 55.97,
61.08, 69.82, 7145, 111.30, 111.56, 113.00, 115.02, 120.67, 122.55,
129.00, 130.44,145.02, 146,10, 147.38, 148,72, 178.83; IR (neat): 1517
(C=C), 1765 (C==0), 3420 {OH) cm™*; MS (EI) m/z 402 (M'); HRMS
(EI): caled for CaHagOg: 4021679 (M'), found; 402.1671:
[2]2% —19.7 (¢ 110, CHCl3).

4.1.3. Synthesis of (—)-arctigenin derivatives 4g—4o

4.1.3.1. (4-Benzyloxy-3-methaxymethoxyphenyl)methanol (7). To a stir-
red solution of 4-benzyloxy-3-methoxymethoxybenzaldehyde (6)
[14](7.03 g, 25.8 mmol) in MeOH (50 mL) was added NaBH,4 (3.88 g,
103 mmol) at 0 °C, and the resulting mixture was stirred at room
temperature for 2 h, The reaction was quenched with H,0 (50 mL),
and the aqueous mixture was extracted with CHxClp (50 mL x 3),
The organic extracts were combined, dried over MgS0y4. The solvent
was removed under reduced pressure, and the residue was chro-
matographed on silica gel (40 g, hexane:acetone = 3:1) to give 7
(6.66 g, 95%) as a pale yellow oil: 'H NMR (300 MHz, CDCh) &: 1.26
(1H, br), 3.53(3H, 5), 5.01 (2H, 5), 516 (2H, 5), 5.24 (2H, s5), 6.88—6.96
(2H, m), 716 (1H, d, ] = 19 Hz), 730-745 (5H, m); *C NMR
(75 MHz, CDCl3) 4: 56.13, 64.64, 70.88, 95.40, 114.25, 116.22, 121,06,
126.98, 127,61, 128.27, 134.16, 136.82, 146,60, 148.19; IR (neat): 1511
(C=C), 3419 (OH) em™"; MS (EI) mjz 274 (M'); HRMS (EI): calcd for
CieHie04: 2741205 (M), found: 274,1188.

4.13.2. 2-(4-Benzyloxy-3-methoxymethoxybenzyl)malonic acid die-
thy! ester (8). To a stirred solution of 7 (711 mg, 2.59 mmol) in
CH,yCl; (26 mL) were added NEt3 (043 mL, 3.11 mmol) and MsCl
{0.22 mL, 2.85 mmol) at 0 °C, and the reaction mixture was stirred
at room temperature for 0.5 h. The reaction was quenched with sat.
NaHCO3 (aq) (20 mL), and the organic layer was separated. The
aqueous layer was extracted with CH,Cl; (30 mL x 3), and the
organic layer and extracts were combined, dried over MgSO4. The



