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ABSTRACT

Here we conducted an integrative multi-omics analy-
sis to understand how cancers harbor various types
of aberrations at the genomic, epigenomic and tran-
scriptional levels. In order to elucidate biological rel-
evance of the aberrations and their mutual relations,
we performed whole-genome sequencing, RNA-Seq,
bisulfite sequencing and ChiP-Seq of 26 lung adeno-
carcinoma cell lines. The collected multi-omics data
allowed us to associate an average of 536 coding
mutations and 13,573 mutations in promoter or en-
hancer regions with aberrant transcriptional regula-
tions. We detected the 385 splice site mutations and
552 chromosomal rearrangements, representative
cases of which were validated to cause aberrant tran-
scripts. Averages of 61, 217, 3687 and 3112 mutations
are located in the regulatory regions which showed
differential DNA methylation, H3K4me3, H3K4me1
and H3K27ac marks, respectively. We detected dis-
tinct patterns of aberrations in transcriptional regu-
lations depending on genes. We found that the irreg-
ular histone marks were characteristic to EGFR and
CDKN1A, while a large genomic deletion and hyper-
DNA methylation were most frequent for CDKN2A.
We also used the multi-omics data to classify the cell
lines regarding their hallmarks of carcinogenesis.
Our datasets should provide a valuable foundation
for biological interpretations of interlaced genomic
and epigenomic aberrations.

INTRODUCTION

Lung cancer is one of the most significant causes of death in
the world. In particular, lung adenocarcinoma is the most
commonly occurring lung cancer. Previous studies have
identified several genes whose aberrations are responsible
for carcinogenesis, such as TP53, CDKN2A, KRAS and
EGFR (1-3). EGFR-activating mutations are more preva-
lent in female, never-smokers and Asians (4,5). These mu-
tations have become a target for molecular targeting drugs,
gefitinib and erlotinib (6). Also, gene fusions between the
ALK, RET and ROSI1 oncogenes and other partner genes,
producing oncogenic fusion transcripts, have been identi-
fied as causative ‘driver’ aberrations. These fusions are in-
volved in carcinogenesis in a fraction (1-5%) of lung ade-
nocarcinoma (7-11). The fact that many of such fusion
genes have been discovered by transcriptome analysis has
re-enforced the importance in investigating the lung cancers
also from the viewpoint of transcriptome.

Recently, a global view of genome aberrations in lung
and other cancers are being obtained by next-generation se-
quencing analysis of cancer tissues by The Cancer Genome
Atlas (TCGA) (12-14) and The International Cancer
Genome Consortium (ICGC) (15). These intensive stud-
ies have demonstrated that the mutation patterns and dis-
rupted pathways are highly diverse between cancer types
and patients. For lung adenocarcinoma, large datasets col-
lected from several groups, including ours (2-3,16), have
revealed that the number and patterns of mutations were
some of the most complex signatures among all cancer
types.

In spite of the rapid accumulation of cancer genome
data, the current view of cancer biology is still far from
perfect. Recent studies have revealed that gene expression
profiles of cancer cells, which underlie phenotypic appear-
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ances of cancer cells, are consequences not only of genome
aberrations but also of aberrations in DNA methylation
and chromatin statuses. Indeed, recent analyses have indi-
cated that aberrations in the epigenome and transcriptome
regulators play pivotal roles in carcinogenesis. The muta-~
tions in the genes that have regulatory roles in gene expres-
sion have been reported in lung and other cancers, such
as chromatin remodeling factors (e.g. ARID1A/BAF250A
and SMARCA4/BRG1) and splicing factors (e.g. U2AF1
and RBM10) (2,14,17). However, despite the claimed im-
portance, it remains elusive as to which genomic and epige-
nomic aberrations have biological relevance among tran-
scriptomic aberrations and how they collectively contribute
to cancer phenotypes. This is mainly due to a general lack of
transcriptome and epigenomic information that is directly
associated with genomic aberrations. Technical difficulties
are frequently inevitable when clinical tumor samples are
used for transcriptomic and, particularly, epigenomic anal-
yses. Unlike normal tissues, which are being used for sev-
eral projects, such as the NIH Roadmap Epigenomics Map-
ping Consortium (18), the amount of available clinical can-
cer tissue is small, mixed with normal tissue, and more im-
portantly, not suitable for ChIP-Seq analyses. On the other
hand, the utility of cultured cancer cell lines has been es-
tablished in omics analyses. In fact, the Encyclopedia of
DNA Elements (ENCODE) consortium project (19,20) an-
alyzed several representative cultured cells and generated
a comprehensive view of human genome, epigenome and
transcriptome. The information has greatly improved our
system-level understandings of how various regulatory fac-
tors are orchestrated to determine downstream gene expres-
sion levels and demonstrated their variations between dif-
ferent cell types.

In the present study, 26 human lung cancer cell lines
were subjected to multi-omics analyses to generate a ref-
erence for omics information. We expected this informa-
tional resource should be useful to investigate clinical lung
cancers, also providing a tool for future biological as-
says. Indeed, we demonstrated that integrative analysis
of the multilayer-omics resource has revealed various ir-
regular patterns of regulatory factors. Unexpectedly, we
found that the aberrant expression was associated with
various causative events, which are characteristically gene-
dependent. Here, we describe the generation and utilization
of our unique multi-omics catalog of lung adenocarcinoma
cell lines.

MATERIALS AND METHODS
Data access

All raw sequence data were deposited in the DNA
Data Bank of Japan (DDBJ) with the accession number,
DRA001859 and DRA001858 (whole-genome sequencing),
DRA001846 (RNA-Seq), DRA001841 (bisulfite sequenc-
ing), DRA001860 (ChIP-Seq) and DRA002311 (ChIP-Seq
and RNA-Seq of small airway epithelial cells (SAEQC)). All
datasets in this paper are also provided in the web database
(URL: http://dbtss.hgc.ip/).

Cell lines

Twenty-six lung adenocarcinoma cell lines were described in
Supplementary Table S1. Cells were cultured in the RPMI
medium (RPMI 1640, Nissui), Dulbecco’s Modified Ea-
gle’s medium (Nissui) or Eagle’s minimal essential medium
(Nissui) supplemented with 10% FBS, MEM Non-essential
Amino acid solution (SIGMA) and antibiotics (Antibiotic-
Antimycotic, GIBCO) in an incubator maintained at 37°C
and 5% CO,. Four cancer cell lines (LC2/ad, PC-3, H1648
and H2347) were cultured using collagen-coated dishes (col-
lagen Type I-coated, IWAKI). Normal human SAEC (CC-
2547, Takara) were also cultured in the SAGM BulletKit
(CC-3118, Takara) using collagen-coated dishes.

Whole-genome sequencing and RNA-Seq

Cultured cells were harvested and washed with phosphate
buffered saline (PBS). DNA purification was performed us-
ing the DNeasy Kit (QIAGEN). Using the isolated DNA,
we prepared libraries and performed whole-genome se-
quencing using the HiSeq platform (Illumina) according
to the manufacturer’s protocol. RNA was extracted from
the harvested cells using the RNeasy Maxi Kit (QIAGEN).
We prepared RNA-Seq libraries and performed sequencing
using the HiSeq platform according to the manufacturer’s
protocol.

Target-captured bisulfite sequencing

Using 3 pg of isolated DNA, we prepared the bisulfite-
converted DNA libraries using the SureSelect Methyl-Seq
Target Enrichment System (Agilent Technologies) and EZ-
DNA Methylation-Gold Kit (Zymo Research) according to
each manufacturer’s protocol. The DNA was sequenced us-
ing the HiSeq platform.

ChIP-Seq

We performed ChIP-Seq (21,22) for RNA Polymerase
IT and seven histone modifications using the follow-
ing antibodies; anti-RNA Polymerase IT (ab817, Ab-
cam), anti-H3K4mel (ab8895, Abcam), anti-H3K4me3
(ab1012, Abcam), anti-H3K9me3 (ab8898, Abcam), anti-
H3K27me3 (07-449, Millipore; ab6002, Abcam), anti-
H3K36me3 (ab9050, Abcam), anti-H3K9/14ac (06-599,
Millipore) and anti-H3K27ac (ab4729, Abcam). Each anti-
body (10 jog or 20 wg of anti-H3K27me3) was added to the
magnetic beads (Dynabeads Protein G/A, Invitrogen) with
the blocking buffer (0.5% bovine serum albumin in PBS so-
lution) and rotated for more than 4 h at 4°C. Cultured can-
cercells (1 x 107-1 x 108 cells) were crosslinked in 1% (0.5%
for PC-7) formaldehyde solution and incubated for 10 min
at room temperature. To stop the fixation, 125 mM glycine
was added to the dishes. The cells were incubated for 5 min
at room temperature, washed using cold PBS and harvested
using a scraper. Lysis buffer 1 (50 mM HEPES-KOH pH
7.5, 140 mM NaCl, 1 mM EDTA pH 8.0, 10% glycerol,
0.5% Nonidet P-40 and 0.25% Triton X-100), lysis buffer
2 (200 mM Na(l, I mM EDTA pH 8.0, 0.5 mM EGTA
pH 8.0 and 10 mM Tris-HCl pH 8.0) and lysis buffer 3 (100
mM Na(l, | mM EDTA pH 8.0, 0.5mM EGTA pH 8.0, 10
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Figure 1. Whole-genome sequencing for genomic aberrations. (A) The number of SNVs and indels detected in the 26 cell lines. For each cell line, the
number of all somatic mutation candidates and those in the protein-coding regions are shown in the upper and lower panels, respectively. The x-axis is
sorted by the origins of the cell lines and the increasing total number of non-synonymous SNVs and indels. (B) Examples of copy number information.
The normalized copy number profiles of H1703 and 1.C2/ad are shown in the upper and lower panels, respectively. Examples of genes for which possible
CNAs are detected are indicated by arrows (ved for amplification and blue for deletion). (C) Examples of mutated genes in the 26 cell lines. Mutations
identified in the EGFR, TP33 and SMARCA4 genes are shown. Types of mutations are as indicated in the inset. One mutation in the TP53 gene was added
by manual inspection. (D) Genomic aberration of the selected 26 cancer-related genes. SN'Vs and indels on the protein-coding regions and splice sites and

CNAs are shown.

mM Tris-HCI pH 8.0, 0.1% sodium deoxycholate and 1%
N-lauroylsarcosine) were prepared with protease inhibitor
(Roche). The harvested cells were dissolved using cold ly-
sis buffer 1 and incubated for 10 min on ice. The cells were
centrifuged at 1500 rpm for 5 min and the pellet was re-
dissolved using cold lysis buffer 2. The cells were incubated
for 10 min on ice and centrifuged at 1500 rpm for 5 min.
The collected pellet was lysed using cold lysis buffer 3 and
cracked with 16 cycles (10 cycles for PC-7) of 30 s of son-
ication on ice. Triton X-100 (10%, 100 pl) was added to
the sonicated samples. The cells were centrifuged at 14,000
rpm for 10 min and 50 pl of the supernatant was moved
to a different 1.5 ml tube (whole-cell extract (WCE) sam-
ple). The magnetic beads with each antibody were washed
using blocking buffer and added to the supernatant (ChIP
sample). The sample was rotated at 4°C overnight for the
immunoprecipitation. The sample was washed eight times

using wash buffer (50 mM HEPES-KOH pH 7.5, 500 mM
LiCl, 1 mM EDTA pH 8.0, 1% Nonidet P-40, 0.7% sodium
deoxycholate) and once using TE buffer (50 mM Tris-HCl
pH 8.0 and 10 mM EDTA pH 8.0) with 50 mM of NaCl.
The sample was eluted in 200 pl of elution buffer (50 mM
Tris-HCl pH 8.0, 10 mM EDTA pH 8.0 and 1% sodium do-
decyl sulfate) and incubated for 15 min at 65°C. The super-
natant was moved to a new 1.5 ml tube. Elution buffer (150
wl) was added to the WCE sample and then both ChIP and
WCE samples were incubated for more than 6 h at 65°C
to de-crosslink. TE buffer (200 pl) and 8 wl of 10 mg/ml
RNase A (Novagen) were added to the samples and the
samples were incubated for 2 h at 37°C. Proteinase K (20
mg/ml, 4 ul) (Takara) and 5 mM CaCl; were added to the
samples and they were incubated for 30 min at 55°C. The
DNA samples were purified by phenol chloroform extrac-
tion and ethanol precipitation and finally eluted in 35 pl
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Figure 2. RNA-Seq for transcriptome analyses. (A) The number of mutations on expressed genes (> 1 RPKM) and non-expressed genes for each cell
line. Non-synonymous SNVs (red) and indels (blue) in the protein coding regions were counted depending on whether their harboring genes are expressed
(bright) or not (pale). The x-axis is sorted in the same order as Figure 1A. (B) Aberrant splicing events with splice site mutations. For the NF1 gene, IGV
visualizes splice site SNVs in whole~-genome sequences and the 19th exon skipping in RNA-Seq of PC-7 compared with RNA-Seq of PC-9, A549 and
322 (C) Examples of fusion transcripts detected in this study. CCDC6-RET fusion in LC2/ad, EFHD1-UBR3 fusion in PC-9 and ERGIC2-CHRNAS6
fusion in H1347 are validated by RT-PCR. (D) The numbers of differentially expressed genes are shown for the 26 cell lines (top panel for genes with higher
expression and bottom panel for genes with lower expression). (E) Gene expression patterns of the 26 cancer-related genes. The heat map represents the
fold value against the average expression level in the 26 cell lines. The color key is as shown in the inset.

of water. Using DNA samples from the ChIP and WCE
samples, we prepared ChIP-Seq libraries and performed se-
quencing using the HiSeq platform according to the manu-
facturer’s protocol.

Tdentification of single nucleotide variants and short indels

As shown in Supplementary Figure S1, whole-genome se-
quences were mapped to the human reference genome
(UCSC hgl9) by the Burrows-Wheeler Aligner (BWA) (23)
after removing sequences with quality control (QC) fail-
ure and adapters. Using SAMtools (24), PCR duplicates
were removed. The single nucleotide variants (SNVs) and
insertion/deletions (indels) were detected by the Genome
Analysis Toolkit (GATK) Unified Genotyper and Somatic
Indel Detector (25,26). Using our Perl scripts, the SNVs
were screened under the following condition: 4x or more
variant sequences at the position of the SNVs. The indels

were extracted under two parameters: (i) 4x or more vari-
ant sequences at the position of the indels and (ii) the vari-
ants detected from both the forward and reverse-strand se-
quences. The NCBI dbSNP build 137, the NHLBI Exome
Sequencing Project (Exome Variant Server, § October 2013
accessed, URL: http://evs.gs.washington.edw/EVS/; allele
frequency > 0.1%), the 1000 Genomes Project (allele fre-
quency > 0.1%) and the in-house Japanese data were used
to discriminate the known single nucleotide polymorphisms
(SNPs) and to extract somatic SNVs and indels (27,28).
Subsequently, SNVs and indels registered in COSMIC (re-
lease v59) were rescued as somatic mutation candidates
(29,30).

Copy number analyses

Genome-wide copy number information was obtained us-
ing Control-FREEC (31,32). We analyzed the genomes of
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Figure 3. Bisulfite sequencing for analyzing DNA methylation status. (A) Summary of DNA methylation in each cell line. Upper panel: average DNA
methylation rates are calculated at each CpG site in CpG islands or non-CpG islands to draw the heat map. Lower panel: Results of a similar analysis
for the CpG islands, CpG shores and promoters. The color key is shown in the inset. (B) The numbers of differentially hyper- (upper panel) or hypo-
(lower panel) methylated genes in each of the 26 cell lines. The populations of the genes having the indicated fold changes are separately colored as shown
in the insets (C) DNA methylation patterns, as indicated by the color key, are shown for the representative promoters of the selected 26 cancer-related
genes. Slashes indicate where the genomic deletion was observed. (D) DNA methylation of the CDKN2A gene. The degree of methylation at each CpG
site (vertical line) is colored as indicated in the inset. Each line represents the information for the indicated cell line. Cell lines for which genomic deletions
were observed are also indicated. SN'Vs and indels detected in p16™K42 were shown in red letters. A gene model is shown in the bottom.

the 26 cell lines as diploid and obtained the results for two
window sizes, lower-resolution data (50 kb) and higher-
resolution data (1.5 kb). The lower-resolution data were
used to draw the figures of genome-wide copy number infor-
mation and the higher-resolution data were used to detect
gene-level copy number aberrations (CNAs). The regions
with normalized copy numbers > 4 or < 1 were detected as
copy number gains and losses, respectively.

Detecting chromosome rearrangements

The obtained whole-genome sequences were mapped as
single-end sequences by BWA. Mates spanning in different
chromosomes or > 1 Mb of the same chromosome were
used to search for ‘reference tags’ of each junction point
supported by both directions. Next, ‘supporting tags’ were
detected from all sequences, which were mapped on the ‘ref-
erence tags’. We extracted gene pairs with > 2 ‘reference

tags’ and > 4 ‘supporting tags’ of the junction point, In ad-
dition, gene pairs uniquely occurring in each cell line were
selected as rearrangement candidates.

Generating gene expression profiles

The obtained RNA-Seq data were mapped to the human
reference genome using ELAND (Illumina). For a total of
20,598 genes, parts per million mapped reads (PPM) and
reads per kilo base per million mapped reads (RPKM) were
calculated as an expression level of each gene using the Perl
script. Expression abundances for the selected 52 genes were
validated by qRT-PCR (Supplementary Figure S2). PCR
primers were designed by Primer3Plus (33) (Supplementary
Table S2A). Files for visualization of RNA-Seq on Inte-
grative Genomics Viewer (IGV) (34,35) were created using
TopHat2 (36).
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Detecting fusion transcripts

The obtained RNA-Seq data were mapped using TopHat2
with the following options; -r 50 -p 8 -no-coverage-search
-mate-std-dev 80 -max-intron-length 100000 -fusion-min-
dist 10000000 -fusion-anchor-length 13 -fusion-search -
keep-fasta-order -bowtiel. Using the mapped RNA-Seq
data, fusion transcript candidates were filtered by tophat-
fusion-~post (37) and extracted under the following condi-
tions: = 10 spanning reads and > 2 spanning mate pairs.
Several cases were validated by RT-PCR. PCR primers were
designed using Primer3Plus and are shown in Supplemen-
tary Table S2B.

Analyses of DINA methylation

The obtained sequences from bisulfite sequencing were
mostly obtained from the antisense chain of the genome. We
modified the sequences by the in-house Perl seript (readl: C
to T, read2: G 1o A). Using BWA, the modified sequences
were mapped to the modified (G to A) human reference
genome. According to the mapping results, pre-modified se-
quences were mapped on the genome and the following sites
were counted: CG, CA, CT and CC with methylated-C and
TG, TA, TT and TC with non-methylated-C. The Cto T
conversion rates were calculated using the C sites of non-
CpG sites. All datasets satisfied 99% of the conversion rate.
For the CpG sites, the ratios of CG to total depths in each
site (> 5x) were calculated as methylation rates. The infor-
mation on CpG islands used in this analysis was provided
by the UCSC. DNA methylation rates of several cases were
validated by direct Sanger sequencing (72 = 3) and Sanger se-
quencing of TA cloning (pMD20-T, Takara) for individual
clones (Supplementary Table S3 and Supplementary Figure
S3). PCR primers are shown in Supplementary Table S2C.

For the genome-wide DNA methylation status, we calcu-
lated DNA methylation rates for each 50 kb of the human
genome and performed hierarchical clustering for the 26 cell
lines. For a total of 19,323 genes, DNA methylation rates
of promoters, which were defined as up to 1.5 kb from the
most upstream transcriptional start sites (TSSs), were also
calculated. For the 26 cancer-related genes, we selected the
representative TSS of each gene by manual inspection and
also calculated the methylation rates of the promoters.

Detecting patterns of histone modifications and RNA poly-
merase I binding profiles

All ChIP samples were validated by qPCR (Supplemen-
tary Table S4). ChiP-Seq data for each histone modifica-
tion and RNA polymerase II binding were mapped to the
human reference genome using ELAND (Illumina). Using
MACS2 with default parameters (38,39), narrow peaks of
each ChIP-Seq dataset were detected as the histone modi-
fication and Pol IT binding patterns. Broad peaks were also
detected by MACS2 for the repressive markers, H3K27me3
and H3K9me3. For the enhancer marks of H3K4mel and
H3K27ac, all narrow peaks of MACS2 from the 26 cell lines
were gathered and classified depending on the positions and
the representative enhancer regions were identified.

For a total of 20,598 genes, ChIP-Seq tag densities (fold
of WCE) of the regions of =+ 1.5 kb from most upstream

TSSs and gene bodies were calculated as the intensities of
each chromatin mark. To investigate the correlation among
the chromatin statuses, we calculated the intensities of the
gene and their proximal regions for each chromatin mark
and Spearman’s rank correlation coefficients between each
two chromatin pairs.

Additionally to define differential chromatin marks
among the cell lines, we analyzed the intensities of the re-
gions of & 1.5 kb from most upstream TSSs for the ac-
tive and repressive marks (H3K4me3, H3K9/14ac, Pol I1,
H3K37me3 and H3K9me3) and gene body for the elon-
gation mark (H3K36me3). In this analysis, we used genes
with >1 PPM of ChIP-Seq tags in at least one cell line. For
enhancers, we calculated the intensities of each representa-
tive enhancer region assigned to the genes (within 100 kb
upstream of the TSS and gene body). For several cases of
differential chromatin marks, qPCR validations were per-
formed (Supplementary Figure S4). Primer sequences were
designed by Primer3Plus and provided in Supplementary
Table S2D. For other validation studies, ChIP experiments
for the selected two datasets were repeated to confirm the
reproducibility of the ChIP-Seq data (Supplementary Fig-
ure §5). Furthermore, our dataset (H3K4me3 in A549) was
compared with data from ENCODE project (Supplemen-
tary Figure S6).

Using ChromHMM, which is based on a multivari-
ate hidden Markov model (40), chromatin states were
detected and characterized from ChIP-Seq data of the
eight chromatin marks. We learned eight chromatin states
(41) using ChromHMM and manually annotated them
as below: state (i) active promoter; (ii) weak/poised pro-
moter; (iil) strong enhancer; (iv) weak enhancer; (v) tran-
scriptional elongation; (vi) inactive region; (vii) inactive
region/heterochromatin and (viii) low/no signal. We also
performed ChromHMM for SAEC using the model created
by the ChIP-Seq data from the 26 cancer cell lines. For the
26 cancer-related genes, we selected the representative tran~
script of each gene by manual inspection and also selected
the chromatin states that most frequently appeared in the
promoter, gene body and enhancers of each gene.

Analysis of ‘hallmarks of cancer’

To associate the genome, transcriptome and epigenome
data of the 26 cell lines with the ‘hallmarks of cancer’ (42),
we assigned a total of 2050 genes for the 10 cancer hall-
marks. To complement ambiguously annotated genes, we
also utilized Gene Ontology (GO) as described in the pre-
vious study (43) with manual inspections (Supplementary
Table S5A). We further selected the 1840 genes with > 1
RPKM in at least one cell line (Supplementary Table S5B).
Genes with mutations in coding sequences (CDS) and splice
sites, differential expression, differential DNA methylation
and differential chromatin marks (H3K4me3, H3K27me3
and H3K9%me3) were counted and assigned to each hall-
mark.

To characterize common features of cancer cells com-
pared to a normal cell, gene expression levels and intensities
of chromatin marks were compared with those of SAEC.
For features of gene expression levels, genes with higher
or lower expression levels than those of SAEC in at least



one cancer cell line were taken as transcriptional aberra-
tions characteristic to cancer under the condition as follows:
(i) genes with > 4- or < 1/16-fold RPKM of SAEC in at
least one cancer cell line if the genes were transcribed (> 1
RPKM) in SAEC and (ii) > 5 RPKM in at least one can-
cer cell line if the genes were not transcribed (< 1 RPKM)
in SAEC. For epigenomic aberrations, genes with higher or
lower chromatin marks in at least one cancer cell line were
taken under the condition as follows: (i) genes with > 4- or
< 1/16-fold ChIP intensities of SAEC in at least one cancer
cell line if the genes with > 1 PPM of signal intensities in
SAEC and (ii) > 5 PPM in at least one cancer cell lineif < 1
PPM in SAEC. A full list of the genes with the detected dif-
ferential features within the cancer cell lines and compared
to the normal cell is also presented in Supplementary Table
35B.

RESULTS
‘Whole-genome sequencing

We generated and analyzed a multilayer-omics catalog of 26
Iung adenocarcinoma cell lines (Supplementary Table S1).
To determine and characterize somatic mutations in the re-
spective cell lines, we performed whole-genome sequencing.
We generated approximately one billion mapped sequences
from each cell line, with an average of 33x in coverage and
91% of the genome covered by > 5x in depth. We detected
genomic mutations using the pipeline as shown in Supple-
mentary Figure S1. After removing germline mutations reg-
istered in public and in-house Japanese databases (96% of
the initially called SNVs/indels overlapped with the NCBI
dbSNP database) (27), a mean of 149,209 somatic mutation
candidates (48 SNVs + indels/Mb) remained for each cell
line (Figure 1A and Table 1A). To estimate the frequency
of the rates of remaining germline variations, we sequenced
and analyzed the normal counterparts derived from B Iym-
phoblasts for three cell lines (H1437, H2126 and H2347).
We found that approximately 28% of the somatic mutation
candidates were germiline and 72% were somatic mutations
specific to cancer cells (Supplementary Table S6). Base sub-
stitution patterns for SNVs are shown in Supplementary
Figure S7. We also detected CNAs and identified averages
of 143 copy number gains and 101 losses per cell line in the
gene regions (Supplementary Table S7). In addition, we de-
tected a total of 552 genomic rearrangements in the gene
regions (Supplementary Table S8).

Among a total of 3,040,654 somatic SNVs and indels,
33% were identified in the genic or their proximal regions
(Table 1A). We found 13,845 mutations within 500 base up-
stream of the gene regions, 24,915 mutations in the 5'/3" un-
translated regions (UTRs) and 383 mutations in the splice
sites (the first and last two bases in introns). Mutations were
also detected in potential enhancer regions (see below). For
the protein-coding regions in particular, we detected a to-
tal of 11,849 non-synonymous SNVs and 573 indels (Fig-
ure 1A). An average of 299 mutated genes per cell line was
detected with high PolyPhen-2 scores (not benign) (44,45).
These numbers are comparable with those obtained from
our recent clinical lung adenocarcinoma sequencing anal-
ysis, if we assume the estimated frequency of the germline
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variations are 28% (Supplementary Table S6 and Supple-
mentary Figure S8). These mutations that have been ob-
served in clinical sequencing include those in the EGFR,
TP53 and KRAS genes. Also note that, for several cell
lines, obvious driver mutations still remained unknown. For
our attempt to identify those unknown driver mutations,
see Supplementary Figure S9 and Supplementary Table 9.
Furthermore, CNAs, as often reported in clinical samples
(46,47), were detected in the regions of some cancer-related
genes; for example, copy number gains of FGFR1, EGFR
and PDGFRA in H1703, amplification of MYC and a ho-
mozygous loss of CDKN2A in 1.C2/ad (Figure 1B).

To further analyze the mutation patterns, we focused
on cancer-related genes based on previous lung cancer
studies. We selected 26 cancer-related genes with impor-
tant biological relevance, including nine known onco-
genes, eleven tumor-suppressor genes, three chromatin
remodeling-related genes and three oncogenic fusion-
related genes (1-2,48). We also summarized mutations in
125 genes which have been very recently published as sig-
nificantly mutated genes in 12 types of cancers by TCGA
(49) (Supplementary Figure S10). In the EGFR gene, for
example, we detected L858R (in II-18 and H1975) and
E746_A750del mutations (in PC-9 and H1650), which are
known to be sensitive to the anti-cancer drugs, gefitinib
and erlotinib. Furthermore, H1975 was found to harbor the
T790M mutation, which is resistant to these drugs (6,50)
(Figure 1C, upper panel). We also detected five SNVs in
the KRAS gene (including four G12 mutations) and three
Q61 mutations in the NRAS gene (51) (Supplementary
Figure S11). We observed that the TP53 gene was one of
the most frequently mutated genes; 19 cell lines had muta-
tions in its protein-coding region (Figure 1C, middle panel),
of which 15 mutations were located in the DNA-binding
domain. Notably, we detected splice site mutations in the
NF1, STK11, RB1 and TP53 genes, which may cause aber-
rant splicing in these tumor-suppressor genes (sec below).
We also detected six mutations (including one splice site
mutation) and five large deletions in the SMARCA4 gene
which is an epigenetic regulator (2,52-54) (Figure 1C, lower
panel). We found that 13 cell lines have large deletions in the
CDKN2A gene (48,55-57). A summary of genomic aberra-
tions for the selected 26 genes is shown in Figure 1D.

RNA-Seq

For the transcriptome analyses, we performed RNA-Seq.
Statistics of the RNA-Seq data are shown in Supplementary
Table S10. An average of 12,290 genes were expressed at >
1 RPKM (58) in each cell line (also see Supplementary Fig-
ure S2 for validation analysis of RNA-Seq). We examined
how many of the identified SNVs and indels were located
in the transcribed or non-transcribed genes. An average of
254 non-synonymous SNVs and 19 indels, which were ap-
proximately half of the total SNVs, were located in the ‘ex-
pressed” genes (Figure 2A). For the genomic mutations lo-
cated at the splicing sites (Table 1A), we examined whether
these SNVs actually affected splicing patterns of the tran-
scripts. As for the cancer-related genes, for example, PC-7
harbored a splice site mutation in the NF1 gene, which 1s
located in the splice donor site of the 19th intron (Figure
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Table 1. The number of SNVs and short indels in the 26 cell lines

SNVs Short indels

A)
Total
Germline
Somatic candidates

Total number of positions (Avg. of the 26 cell lines)
12,732,271 (3,302,407)
10,010,429 (3,177,173)
2,721,842 (125,234)

1,916,622 (453,821)
1,597,810 (429,846)
318,812 (23,975)

Genic*
Upstream (-500 from TSS)
UTRs
CDS
Synonymous
Non-synonymous
Splice sites?
Intronic and others
Intergenic

B)
Regulatory regions®
Promoterd
Promoter with differential H3K4me3
Enhancer (H3K4me1)®
Enhancer with differential H3K4mel
Enhancer (H3K27ac)®
Enhancer with differential H3K27ac

892,941 (39,695) 118,268 (8,516)

11,796 (551) 2,049 (159)

24,902 (1,086) 13 (0.8)

16,354 (687) 573 (37)

4,505 (188) o

11,849 (499) ok

346 (14) 39 (3)

839,543 (37,357) 115,594 (8,315)

1,828,901 (85,539) 200,544 (15,459)
Average number of positions in the 26 cell lines

11,413 2,160

2,187 497

181 36

7,543 1,305

3,163 524

3,549 1,006

2,647 465

2A total of 19,958 genes were used in this analysis.
5The first and last two bases in introns.

“Promoters (& 1.5 kb from most upstream TSS) and enhancers assigned to the genes.

dA total of 20,598 promoters were used in this analysis.

€A total of 683,606 H3K4mel and 337,545 H3K27ac clusters assigned to the genes were used in this analysis.

2B). The 19th exon of NF1 is skipped in PC-7, demonstrat-
ing that this splice site mutation affected the splicing pat-
tern of the NF1 transcript. Transcript consequences of the
other splice mutations are shown in Supplementary Figure
S12. We also used the RNA-Seq data to detect fusion gene
transcripts, which are formed by chromosome rearrange-
ments in cancerous cells. A total of 135 fusion transcript
candidates were detected from all the cell lines combined.
Several known driver fusion transcripts such as CCDC6-
RET (in LC2/ad) were included (10,59-60) (Figure 2C).
For the selected cases, RT-PCR validation was conducted
(shown in Figure 2C and Supplementary Figure S13). All
the previously reported fusion transcripts such as CCDC6-
RET and ALK-PTPN3 (in H2228) were computationally
re-identified in our study, except for EML4-ALK fusion in
H2228 (61) (Supplementary Figure S13), which may have
gone undetected by our relatively conservative computa-~
tional setting due to its low expression level. Most of those
aberrant transcripts may not be cancer-drivers but passen-
gers, which have been formed as a consequence of chromo-
somal aberrations. However, it is worth noting that fusion
transcripts can be identified both at the genome and RNA
level using this approach.

To dissect gene expression patterns between the cell lines,
we selected differentially expressed genes, which showed a
higher or lower expression compared to the other cell lines
(also see Supplementary Figure S14 for a hierarchical clus-
tering analysis, which represent global expression patterns
for each of the cell lines). We tentatively selected genes
with > 4- or < 1/16-fold of the average expression levels
as ‘differentially expressed’ genes. We detected an average

of 352 such higher and 1967 such lower differentially ex-
pressed genes in each cell line (Figure 2D). We also exam-
ined the expression patterns of the differentially expressed
genes in the pathway of ‘lung adenocarcinoma’ (1) (Supple-
mentary Figure S15) and found that each component gene
of this pathway showed diverse expression patterns com-
pared to the other pathways. We also investigated the ex-
pression patterns for the selected 26 cancer-related genes
as shown in Figure 2E. Three cell lines (VMRC-LCD, PC-
3 and PC-7) showed almost no expression for the EGFR
gene, while H1650 and PC-9, which harbor a driver mu-
tation (E746_A750del), showed higher expression. In con-
trast, the TP53 and ARIDIA genes were expressed at al-
most the same level (> 1/16 and < 4-fold of the average)
throughout the 26 cell lines. Taken together, these results
indicate that aberrations in expression patterns, which are
distinct from those of genomic aberrations, are also highly
diverse among genes and cell types, and such divergence
can be explained by complex combinations of contributing
regulatory factors ranging from aberrations in the genome
and/or in the epigenome.

Bisulfite sequencing for analyzing DNA methylation

Changes in DNA methylation patterns have been reported
in various cancers, which cause aberrant regulation of onco-
genes and tumor-suppressor genes (62-65). We performed a
target-captured bisulfite sequencing in potential gene regu-
latory regions including promoters, enhancers and differen-
tially methylated regions (66). For 84 Mb of the bait regions,
each dataset had an average depth of 109.7x and 91% were
covered by >10x in depth. We also confirmed that the bisul-



fite conversion rates, which were evaluated as the overall C
to T ratio, were 99.2% in all of the 26 cell lines (Supplemen-
tary Table S11; detailed statistics are also presented there).
We calculated the methylation rate at each CpG site that was
covered by > 5 tags and were not overlapping with the de-
tected SNVs and indels. An average of 3,777,270 CpG sites
per cell line was considered; 1,273,909 sites were in CpG is-
lands and 2,503,362 sites were in other regions (Supplemen-
tary Table S11; also see Supplementary Table S3 and Sup-
plementary Figure S3 for validation study of correct identi-
fication of the methylation statuses).

CpG sites in the CpG islands were generally less methy-
lated compared to the other CpG sites (Figure 3A). When
we analyzed DNA methylation in the CpG islands and their
proximal regions (within 2 kb distance from the CpG is-
lands, so-called ‘CpG shores’) (66), binominal patterns of
methylation were observed for the CpG islands; an aver-
age of 5914 (23%) were almost fully methylated and 11,901
(46%) were almost non-methylated. In contrast for the CpG
shores, moderate methylation was dominant; 64% of the
CpG shores showed methylation rates of 10-90%. We also
analyzed DNA methylation in the promoters (1.5 kb from
TSS). Again, we reconfirmed that the promoters containing
CpG islands generally showed lower methylation, consis-
tent with previous papers. However, even for these sites, the
degree of methylation was significantly different between
the cell lines. This diversity was further enhanced when we
considered the methylation rates of the CpG island-negative
promoters.

To further examine the patterns of DNA methylation,
we conducted a hierarchical clustering analysis (Supple-
mentary Figure S16). We found that H1819 showed the
highest DNA methylation, while PC-7 showed the lowest
methylation. We also investigated the diversity in the methy-
lation patterns between different cell lines, particularly in
the promoter regions. Similar to the RNA-Seq analysis, we
searched for differentially methylated genes for which the
methylation levels deviated by > 4- or < 1/16-fold from
the average of all the cell lines. We detected an average of
118 hyper-methylated and 278 hypo-methylated genes for
each cell line (Figure 3B; see Supplementary Figure S17 for
examples). In addition, we searched and detected 61 mu-
tations overlapping with the differentially methylated pro-
moters on average for each cell line,

We next examined whether the promoters of the 26
cancer-related genes were differentially methylated (Fig-
ure 3C). For the most of the genes, their promoters were
non-methylated, indicating that these promoters are active,
consistent with the results from the RNA-Seq; however,
hyper-methylations were occasionally observed. The pro-
moter of the NRAS gene in H322 was hyper-methylated
and the expression level of NRAS was the lowest in this
cell line among the 26 cell lines (Supplementary Figure
S17). For the CDKN2A (p16™%42) gene, its promoter was
hyper-methylated in six cell lines (Figure 3D). For this gene,
13 cell lines originally had no promoter region due to ge-
nomic deletions. Additionally, one cell line harbors a 62-
base deletion, and three cell lines have non-synonymous
SNVs in pl67%42 The CDKN2A gene, for which expres-
sion suppressions were reported as major causative events
in lung adenocarcinoma (62), DNA methylation should be
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the dominant cause of the transcriptomic aberrations, fol-
lowing genomic alterations.

ChiP-Seq for detecting patterns of histone modifications and
RNA polymerase I binding profiles

To examine chromatin statuses in the 26 cell lines, we per-
formed ChIP-Seq analysis for seven histone modifications
(H3K4mel, H3K4me3, H3K9me3, H3K9/14ac, H3K 27ac,
H3K27me3 and H3K36me3) and RNA polymerase II (Pol
II) (see Supplementary Table S12 for the statistics; see Sup-
plementary Figure S84 for validation analysis). ‘Peaks’ of
ChIP-Seq tags were called by MACS?2 (38,39) for H3K4me3
and were further associated with the genes, when they
were located within 1.5 kb regions of the TSS. On aver-
age, H3K4me3 peaks were associated with 12,239 (59%)
genes per cell line. In contrast for 2835 (14%) of the total
genes, enrichments of repressive markers of H3K27me3 or
H3K9me3 were observed in their promoters. For the en-
hancers, we first associated the MACS?2 peaks of H3K 4mel
or H3K27ac between the cell lines, considering their mutual
overlaps. We identified a total of 847,766 H3K4me!l regions
and 426,224 H3K 27ac regions in all 26 cell lines combined.
These peaks were associated with genes when they are lo-
cated within 100 kb upstream of the TSS and the gene body.
A total of 683,606 marks of H3K4mel and 337,545 marks
of H3K27ac were associated with 19,683 and 18,975 genes,
respectively. We further associated these enhancer clusters
with genomic mutations. A total of 77,363 SNVs and indels
resided in the regions having both H3K4mel and H3K27ac
peaks and 117,246 and 63,478 mutations were located in the
regions having only H3K4mel or H3K27ac peaks, respec-
tively.

To investigate mutual correlations between the chro-
matin marks, we calculated the intensities of ChIP-Seq
signals in the upstream (up to 1.5 kb from TSS) and in
the gene bodies. As shown in Figure 4A, H3K9/14ac and
H3K27ac showed the strongest positive correlation (v; =
0.878). For the enhancer marks, H3K27ac was also cor-
related with H3K4mel (r; = 0.729). For the repressive
marks, a weak but positive correlation was observed be-
tween H3K27me3 and H3K9me3 (15 = 0.647). In contrast,
active and negative marks had a negative correlation (ry =
—0.524 for H3K4me3 and H3K27me3). Interestingly, we
observed no significant negative correlation between Pol IT
and H3K9me3, and between H3K36me3 and H3K9me3.
Even where positive or negative correlations were observed,
the correlations were not always perfect, suggesting there
may be several intermediate distinct chromatin statuses
even among active or negative statuses (53,67).

We compared the signal intensities of ChIP-Seq tags
for each of the chromatin marks. We selected regions that
showed > 4- or < 1/16-fold intensities from the aver-
age of 26 cell lines (Figure 4B; see Supplementary Figure
S18 for an example). In the regions with differential chro-
matin marks assigned to the genes, we also found a to-
tal of 6257 mutations per cell line. In particular, an aver-
age of 217 mutations were detected in the promoters with
differential H3K4me3 mark and 3687 and 3112 mutations
were detected in the enhancers with differential H3K4mel
and H3K27ac marks, respectively (Table 1B). Interestingly,
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Figure 4. ChIP-Seq for the eight chromatin marks. (A) Correlation among the eight chromatin signatures. Spearman’s rank correlation cocfficients were
calculated between the indicated pair of chromatin marks and colored following the color key shown in the inset. Averages of 26 cell lines were used
to assign the colors. (B) The mumnbers of differentially utilized chromatin marks for the 26 cell lines. Transcriptional active marks, repressive marks and
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genes. ChromHMM maps were drawn for each cell line (see the Materials and Methods section and Supplementary Figure S20). Chromatin states that
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the genes having high H3K9me3 marks were enriched in
H1299. For H1299, the DNA methylation pattern was gen-

“erally high and the number of the hyper-methylated genes
was the second largest (Figure 3A, B and Supplementary
Figure S16). In contrast, in PC-7, the level of H3K27me3
mark was similarly high in addition to the H3K9me3 mark.
Unlike H1299, PC-7 showed lower DNA methylation (Fig-
ure 3A and Supplementary Figure S16). Contributions of
each of the repressive marks in all 26 cell lines are shown in
Supplementary Figure S19. Each cell line may employ dis-
tinct expression repression mechanisms, which would not
be represented solely by analyses of either DNA methyla-
tion or chromatin statuses.

To summarize the eight chromatin marks for the 26
cancer-related genes, we used ChromHMM (40,41) (Fig-
ure 4C). We found for the EGFR gene that the patterns of
the chromatin signatures were remarkably distinct between
cell lines, indicating that each cell line carries an aberration,
if any, at a distinct regulatory layer (see Supplementary Fig-

ure S20 for the graphic view). For instance, PC-3, PC-7 and
VMRC-LCD showed lower expression levels. In PC-7, an
active chromatin mark of H3K4me3 was not formed, fol-
lowed by neither binding signal for Pol 11 nor H3K 36me3.
In VMRC-LCD, an H3K4me3 mark was formed, but Pol
II was not recruited and H3K36me3 was not formed. In
PC-3, H3K4me3 was formed, Pol II was recruited, but an
H3K36me3 mark failed to form (Supplementary Figure
S21).

Integrated analysis: genomic, transcriptomic and epigenomic
statuses in lung adenocarcinoma cell lines

By integrating these multi-omics data, we describe which
steps of the regulations, namely, genomic alterations, DNA
methylation, each step of histone modification or Pol 1T re-
cruitment, should be impaired to explain eventual irregular
expression levels in the respective cell lines. For example, we
observed various patterns of gene expression for the STK 11
gene, a kinase that plays a pivotal role as a tumor suppres-
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sor of lung adenocarcinoma in many cases (1,68), that were
completely abolished in three cell lines. Genomic deletions
were detected for all of these three cell lines; RERF-LC-MS
and A427 lacked the majority of the genic region and II-18
lacked the promoter region (Supplementary Figure S22).
In addition, gene expression was repressed in three addi-
tional cell lines, H1437, H2126 and RERF-LC-KJ. These
three cells have an intact promoter, having the marks of
H3K4me3 and Pol II recruited. However, they commonly
have large genomic aberrations in the gene body, which may
cause the lack of a consequential transcriptional elongation
mark of H3K 36me3. In another case of the CDKNI1A gene,
its irregular expression levels were mostly accounted for
with epigenomic aberrations (Figure 5) unlike the STK11
gene for which genomic aberrations were the main cause.
For example, PC-7 and PC-14 showed higher levels of a re-

pressive mark in its promoter, which may explain its low ex-
pression levels in these cell lines. In the VMRC-LCD, the
DNA methylation level of its promoter was high. In con-
trast, for RERF-LC-Ad2, which had a normal expression
level of CDKNI1A, neither hyper-DNA methylation nor re-
pressive histone marks were observed in the promoter.

We manually inspected for similar diversity in the cancer-
related genes. The results of the inferred aberrations are
summarized in Table 2 (also see Supplementary Table S13
for Cancer Gene Census (69) genes). In particular, we ob-
served that the genes harboring known driver mutations in
the genome, such as the EGFR gene (E746_A750del) in PC-
9 and the NRAS gene (Q61K) in H1299, showed retained
or even enhanced expression levels, corresponding to their
DNA methylation and chromatin patterns. On the other
hand, expression levels of TP53 in the 26 cell lines were less
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differential chromatin marks (H3K4me3, H3K27me3 and H3K9me3) are shown. (B) Percentages of genes with differential epigenomic marks in ‘Avoiding
Immune Destruction’ for PC-3 and PC-7. (C) Aberrant epigenomic and transcriptomic events in cancer cell lines compared to SAEC, Percentages of genes
with differential higher or lower expression and chromatin marks were shown for the 26 cell lines. Merged percentages when all of the 26 cell lines are
considered are shown. Small square columns in the surrounding margin represent the frequencies in individual cell lines. Color code for the frequency and
the order of the cell lines are shown in the right margin. (D) Comparison with the variations in the aberrant events (differential features) when compared
within cancerous cell lines and deviations from a normal cell, SAEC. Percentages of aberrant features (y-axis) in hallmarks of ‘Enabling Replicative
Immortality’ (top), ‘Genome Instability and Mutation’ (middle) and ‘Avoiding Immune Destruction’ (bottom) in the transcriptome layer are shown for
the indicated cell lines (x-axis). Solid and broken lines represent the frequencies compared to SAEC and averages of the 26 cancer cell lines, respectively.
Cell lines are ordered on the x-axis in order of the increasing frequencies of aberrations in comparison with SAEC (solid line).

diverse than those in the other cancer-related genes, despite group of genes, each of which represents phenotypic aber-

that 22 cell lines harbor SNVs or indels in the genome of
the TP53 gene. In the TP53 gene, the incidence of genomic
aberration was not always coupled with an aberration in the
expression level. The regulatory mechanisms that eventually
result in an aberration in gene expression in cancer must be
diverse among cell lines and may be characteristic to each
gene, suggesting the importance in describing the aberration
patterns in each regulatory layer of gene expression.

To further associate multi-layered features of the 26 can-
cer cell lines with their features in cancer biology, we em-
ployed the concept of ‘hallmarks of cancer’ (42). Many of
recent clinical cancer sequencing studies associated the ge-
nomic mutation patterns with the impaired functions of a

rations in cancers. As conducted in previous studies, for
each cell line, we associated genomic mutations, differen-
tial epigenomic marks and differential gene expression as
potential aberrant events with each of the hallmarks. We
detected distinct features for each hallmark in multi-omics
statuses in 26 cell lines (Supplementary Figure S23A). For
example, genes in the hallmarks of ‘Genome Instability and
Mutation’ and ‘Enabling Replicative Immortality’ showed
little diversity in the transcriptome layer among the cell
lines. On the other hand, genes in the ‘Avoiding Immune
Destruction’ were differentially represented at the layer of
transcriptome among the cancer cell lines, although they
harbored only a small number of genomic mutations at
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Table 2. Genome, transcriptome and epigenome in selected cancer-related genes

SNVs and indels on Gene expression DNA methylation
Gene CDS or splice sites SVs* (RNA-Seq) (BS-Seq) Chromatin signature (ChIP-Seq)
EGFR 5/26 0/26 3/26: no exp n.s. 3/26: poised /repressive promoter and
elongation
KRAS 5/26 0/26 n.s. n.s. n.s.
NRAS 3/26 0/26 n.s. 17264 1/26: active and enhancer mark}
MYC 0/26 3/26: amp 1/26: no exp n.s. 1/26: active and enhancer mark |, 1/26:
H3K27me31¢
ERBB2 0/26 1/26: amp 17264, 1/26% 1/26],2/26% 2/26: H3K4me3)
MET 0/26 1/26: amp 1/26% n.8. 2/26: H3K27me34
TP53 22/26 1/26: del .S n.s. n.s.
CDKN2A 4726 13/26: del 13/26: no exp, 5°/264 5b /264 n.s.
CDKNI1A 0/26 0/26 1/264 1/26% 2/26: poised promoter
STK11 5/26 5/26: del 3/26: no exp 1/26% 1/26: aberrant elongation mark, 2/26: poised
promoter
KEAP1 5/26 2/26: del 2/26: no exp n.s. 1/26: repressive mark4
NF1 3/26 1/16: del n.s. n.s. n.s.
SMARCA4 6/26 5/26: del 2/26: no exp 3/26) 1/26: H3K9me3t
ARIDIA 2/26 1/26: del n.s. 1/26] n.s.
RET 4/26 1/26: fusion  2/26%, 22/26: no exp ns. 1/26: Active promoter, 2/26: H3K 36me31

SVs: structualvariants.
b 16INK4a: expression levels examined by CuffLinks.

amp: amplification (normalized copy number > 8); del: deletion (> 1 kb); no exp: < ] RPKM: n.s.: not significantly differential;

4: > 4-fold of average; }: < 1/16-fold of average.

the genome layer. These characteristics of the hallmarks al-
lowed us to categorize 26 cell lines conversely (Figure 6A
for the cases of PC-3 and PC-7; see Supplementary Fig-
ure S23B for the other cell lines). For example, in VMRC-
LCD, no differential epigenomic marks were detected in the
‘Deregulating Cellular Energetics’ so that genes in this hall-
mark could be regulated by different mechanisms compar-
ing with other cell lines. We also found these features are
informative to infer how different cell lines achieve the re-
spective hallmarks. For example, for the ‘Avoiding Immune
Destruction’, PC-3 utilized DNA methylation to the similar
extent with histone modifications, while PC-7 preferentially
ulilized histone modifications rather than DNA methyla-
tion (Figure 6B). Although further in-depth analysis should
elucidate those observed characteristic patterns should ac-
tually represent distinct phenotypic features of the respec-
tive cell lines or biology of their originating cancers, we be-
lieve this analysis should be the first step toward that goal.
In order to further characterize which of the identified
features in cancer hallmarks are common to the cancer
cell lines but not to normal cells, we needed a reference
dataset of a normal cell. For this purpose, we newly gen-
erated a series of mutli-omics data from a normal SAEC.
Similarly to the cases of the other cancerous cell lines, we
performed RNA-Seq and ChIP-Seq using SAEC (statistics
of the dataset is presented at Supplementary Tables S10
and S12). We used the collected data as an external nor-
mal control for transcriptome and epigenome analyses. For
the transcriptome analysis, we selected genes which showed
higher or lower expression levels in any of the 26 cancer cell
lines compared to SAEC and examined which subsets of
genes were induced or silenced in given cancer cell line(s).
Similarly, for the epigenome analysis, we selected genes with
higher or lower ChIP-Seq signal intensities for each chro-
matin mark. We also performed ChromHMM analysis us-
ing the model constructed by the 26 cell lines (Figure 4C).

Based on the collected information, we examined if there
are any features common to the cancer cell lines which are
distinctive from SAEC regarding the ‘hallmarks of cancer’
(Figure 6C). We found that the induced gene expressions
were preferentially observed for the hallmarks of ‘Enabling
Replicative Immortality’ and ‘Genome Instability and Mu-
tation’ in cancer cell lines compared to SAEC (Figure 6D).
As we have discussed above, gene expression levels in these
hallmarks were little diverse among the cancer cell lines.
When we also considered SAEC, we found this feature is
characteristic to cancer cell lines, but not to a normal cell.
In addition, we found that the hallmark of ‘Avoiding Im-
mune Destruction’ is diverse between cancer cell lines but
also significantly distinct from a normal cell regarding their
epigenomic patterns. Taken together, these results demon-
strate the usability of multi-omics data to identify distinct
biological features that separate cancer cell lines from a nor-
mal cell (also see Supplementary Figure S24 for other exam-
ples).

DISCUSSION

In this study, we generated an integrative multi-omics data
of the genome, transcriptome and epigenome of 26 lung
adenocarcinoma cell lines. To our knowledge, this is the first
dataset, containing a multi-omics data which is collected
from the same material, thus can be directly associated.
This is the first study explicitly associating genomic mu-
tations and aberrations in the epigenome and transcrip-
tome with each other. We found that patterns of aberra-
tions were characteristic depending on the cell lines. On the
other hand, for the particular genes, we identified several
aberrations characteristic depending on the genes, such as
deletions in the STK11 gene, chromosome rearrangements
in the RET and ALK genes and various types of epige-
nomic dysregulation in the EGFR, CDKN2A (p16TK4a)
and CDKNI1A genes. These results collectively indicate that
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various types of aberrations in the regulation of expression
as well as mutations involving functional changes in their
protein products, such as driver mutations in oncogenes,
should play no less important roles in the biology of can-
cer. Indeed, the first priority should be to investigate further
details of transcriptional regulation, starting with the rep-
resentative cancer-related genes. We believe a cancer ‘reg-
ulome’, which is realized by the complex interplay of the
genome, epigenome and transcriptome, underlies cancers
for which causative molecular events remain unknown.

There are several obvious drawbacks in the present study.
First, we could not obtain the normal tissue counterparts
for all of the cell lines. Therefore, in this dataset, germline
variations have not been completely removed (with the esti-
mated 28% remaining germline variations; Supplementary
Figure S8 and Supplementary Table S6). Also, the tran-
scriptomic and epigenomic statuses of each normal tissue
counterpart still remain elusive in spite that we used SAEC
as a reference control in this study. In addition, there should
be significant differences between the cell lines and clinical
samples, so that the knowledge obtained from the cell lines
should not be directly applied to that obtained from clinical
samples.

Nevertheless, it is worth analyzing cancer cell lines for
a number of reasons. First, current multi-omics analyses,
such as ChIP-Seq and bisulfite sequencing, still require large
amounts of starting material, which may not be collected
from every clinical sample. Indeed, in most of the clinical
cancers, molecular mechanisms to serve as a driver still re-
main elusive, in spite of rapidly growing repertoires of ge-
nomic mutations. It is supposed that the ‘regulatory’ aberra-
tion in cancers may be no less important as genomic drivers,
though such drivers could not be directly identified solely
on the analysis of genomic mutations. Indeed, our analy-
sis on hallmarks of cancer, based on multi-omics data, shed
the first light on how disruptions in regulatory elements
will realize deviated gene expression programs in cancers.
Second, once any indication is obtained, it is inevitable to
use cell lines as an in vitro model system to conduct any
functional validation. For genetic disruptions or drug ad-
ministrations, a surrogate of the clinical tissues which has
the same mutation/expression aberration patterns should
be needed. Perhaps the most important advantage of the
generated multi-omics catalog for the clinical usage is that
appropriate cell lines can be selected for drug test both

- for an ab initio massive drug screening and for personal-

ized medicine. All of the multi-omics data obtained in the
present study has been made public and is freely available
from our database (http:/dbtss.hge.jp/). Visual inspection
for each gene is also enabled. We believe in the importance
of the multi-omics data generated in this study to expedite
clinical cancer genomic studies in the future.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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Abstract

Enzymes 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase-3 and -4 (PFKFB-3 and PFKFB-4) play
a significant role in the regulation of glycolysis in can-
cer cells as well as its proliferation and survival. The
expression of these mRNAs is increased in malignant
tumors and strongly induced in different cancer cell
lines by hypoxia inducible factor (HIF) through active
HIF binding sites in promoter region of PFKFB-4 and
PFKFB-3 genes. Moreover, the expression and hypoxia
responsibility of PFKFB-4 and PFKFB-3 was also shown
for pancreatic (Pancl, PSN-1, and MIA PaCa-2) as well
as gastric (MKN45 and NUGC3) cancer cells. At the
same time, their basal expression level and hypoxia
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responsiveness vary in the different cells studied:
the highest level of PFKFB-4 protein expression was
found in NUGC3 gastric cancer cell line and lowest in
Pancl cells, with a stronger response to hypoxia in the
pancreatic cancer cell line. Overexpression of differ-
ent PFKFB in pancreatic and gastric cancer cells under
hypoxic condition is correlated with enhanced expres-
sion of vascular endothelial growth factor (VEGF) and
Glutl mRNA as well as with increased level of HIF-
1¢, protein. Increased expression of different PFKFB
genes was also demonstrated in gastric, lung, breast,
and colon cancers as compared to corresponding non-
malignant tissue counterparts from the same patients,
being more robust in the breast and lung tumors.
Moreover, induction of PFKFB-4 mRNA expression in
the breast and lung cancers is stronger than PFKFB-3
mRNA. The levels of both PFKFB-4 and PFKFB-3 pro-
teins in non-malignant gastric and colon tissues were
more pronounced than in the non-malignant breast
and lung tissues. It is interesting to note that Pancl
and PSN-1 cells transfected with dominant/negative
PFKFB-3 (dnPFKFB-3) showed a lower level of endog-
enous PFKFB-3, PFKFB-4, and VEGF mRNA expres-
sions as well as a decreased proliferation rate of these
cells. Moreover, a similar effect had dnPFKFB-4. In
conclusion, there is strong evidence that PFKFB-4 and
PFKFB-3 isoenzymes are induced under hypoxia in pan-
creatic and other cancer cell lines, are overexpressed in
gastric, colon, lung, and breast malignant tumors and
undergo changes in their metabolism that contribute to
the proliferation and survival of cancer cells. Thus, tar-
geting these PFKFB may therefore present new thera-
peutic opportunities.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Lung cancer

Core tip: Enzymes 6-phosphofructo-2-kinase/fructose-
2,6-bisphosphatase-3 and -4 (PFKFB-3 and PFKFB-4)
play a significant role in the regulation of glycolysis and
cancer growth by inducing cell proliferation and surviv-
ing. The expression of these PFKFB is increased in ma-
lignant tumors and strongly induced in various cancer
cell lines under hypoxia, including pancreatic and gas-
tric cells. The high expression level of PFKFB-4 protein
was found in NUGC3 gastric adenocarcinoma cells and
much lower in pancreatic Pancl cells, with the highest
response to hypoxia in the pancreatic cancer cells. Both
PFKFB-4 and PFKFB-3 are overexpressed in gastric, co-
lon, lung, and breast cancers being more pronounced
for PFKFB-4. Blocking both PFKFB-4 and PFKFB-3 may
present new therapeutic opportunities.

Minchenko OH, Tsuchihara K, Minchenko DO, Bikfalvi A,
Esumi H. Mechanisms of regulation of PFKFB expression in
pancreatic and gastric cancer cells. World J Gastroenterol 2014;
20(38): 13705-13717 Available from: URL: http://www.wjgnet.
com/1007-9327/full/v20/i38/13705.htm DOT: http://dx.doi.
org/10.3748/wjg.v20.138.13705

INTRODUCTION

Pancreatic adenocarcinoma is an aggressive disease with
a high moztality rate. Despite intensive efforts, pancreatic
cancer remains a formidable challenge for oncologistsm.
Investigation of the molecular and genetic bases of
pancreatic as well as other cancers is very important for
understanding tumor formation and growth as well as for
development of anticancer strategies. Hypoxia has been
recognized as one of the fundamentally important fea-
tures of solid tumors and plays a critical role in vatious
cellular and physiologic events, including cell prolifera-
tion, survival, angiogenesis, metabolism, as well as tumor
growth, invasion and metastasis”®. Moreover, hypoxia
has the multifaceted role in the hallmarks of human can-
cers, incliading pancreatic cancer. Hypoxia-inducible fac-
tor 1 (HIF-1), represent key features in cell biochemistry,
physiology and molecular biology.

Tumors are usually exposed to a hypoxic microenvi-
ronment due to their irregular growth and insufficient
blood supply while pancreatic tumots have enhanced
vascular supply™*®. Moreover, there is heterogeneity and
genomic complexity between pancreatic tumors as well
as hierarchy of cancer cells with different properties, in-
cluding a subpopulation of cancer stem cells that are in-
herently resistant to traditional therapies®. Activation of
genes that ameliorate or compensate for the oxygen defi-
cit, especially of mRNAs involved in glycolysis and facili-
tate proliferation is important in adaptations to hypox-
12", A high rate of glycolytic flux, even in the presence
of oxygen, is a central metabolic hallmark of neoplastic
tumors. The high glucose metabolism of cancer cells is
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caused by a combination of hypoxia inducible transcrip-
tion factors, activation of oncogenic proteins and the loss
of tumor suppressor function. Over-expression of HIF-
1o, or HIF-2¢0 and MYC, activation of RAS and loss of
TP53 and/or other tumor suppressor functions each
have been found to stimulate glycolysis in part by activat-
ing a family of regulatory bifunctional 6-phosphofructo-
2-kinase/fructose-2,6-bisphosphatases (PFKFB) and
hexokinases'" "',

PFKFB AS AN IMPORTANT FACTOR OF
TUMOR GROWTH

Enzyme PFKFB controls of glycolysis through main-
taining the cellular levels of fructose-2,6-bisphosphate,
which is considered to be the major allosteric activator of
G-phosphofructo-1-kinase, a rate-limiting enzyme of gly-
colysis">*®. Thus, the PEKFB enzymes control glycolysis
through fructose-2,6-bisphosphate level™™. Thete are 4
different genes encode variable isoforms of this enzyme.
Importantly, most cells and tissues express more than
one isoform™?, PFKFB enzyme also plays an important
role in the Watburg effect and cancer growth™*"**%¥,
Overexpression of PFICEB-3 as well as other variants
of PFKFB is observed in various human cancers 7,
Morzeovet, enhanced expression of PFKFB as well as
hexokinase 2 is an obligatory factor of activated tumor
cell glycolysis and increased its proliferation”®*****,

The expression of different PFKFBs (PFKFB-1,
PFKFB-2, PEKFB-3 and PFKFB-4) 1s induced by hy-
poxia iz vivo in organ-specific manner”™. At the same
time, ## vitro experiments cleatly demonstrated that
hypoxia affects the expression only two variants of
PFKFB (3 and 4) mRNA in different cell lines™***,
In promoter tegion of PFKFB4 and PFKFB-3 genes was
identified HIF responsive element which bind transcrip-
tion factor HIF and mediate hypoxic regulation, because
deletion or poiat mutation of this HIF responsive ele-
ment eliminates the hypoxic regulation both PFKFB4
and PFKFB-3 genes[25’31’36’37]. Moreover, the phosphory-
lation - dephosphotylation of PFKFB isoenzymes is
important for enhancing of glycolysis by hypoxia as well
as by fructose-2,6-bisphosphate in monocytes upon acti-
vation"”*. There is also data supporting an important
role for PFKFB-3 protein phosphorylation in the in-
creased glycolysis, angiogenesis and tumor progression'*’.
Thus, highly phosphotylated variant of PFKFB-3 was
found in cancer cells as well as in other cells, including
vascular endothelial cells™.

Recently, a novel mechanism by which MK2, MAPK
(mitogen-activated protein kinase)-activated protein
kinase 2, a key component of the MAPK pathway, up-
regulates glycolysis in response to stress in cancer cells
was described™. By phosphorylating specific PRKFB3
residues, MK2 promotes both increased its gene tran-
scption and allosteric activation.

It was also shown a significant increase of PFKFB-3
in the nuclei, which associates with enhanced cell prolif-
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eration through cyclin-dependent protein kinase™®. More-
over, PFKFB-3 isoenzyme is degraded by the E3 ubiqui-
tin ligase APC/C-CDHI, which also degrades cell-cycle
proteins'™. Thus, this ubiquitin ligase is linking glycolysis
to cell proliferation mainly through PFKFB-3 enzyme,
which promote glycolysis. It was shown that both aerobic
glycolysis and proliferation are prevented by overexpres-
sion of this ubiquitin ligase and enhanced by its silencing.
Furthermore, activation of glycolysis, as essential factor
of cell proliferation, in the presence of active ubiquitin
ligase APC/C-CDHI1 does not change the rate of cell
proliferation’™?. Recently was also shown that PTEN
(phosphatase and tensin homolog) enhances interaction
between PFKFB3 and E3 ligase APC/C-CDHI1, and
overexpression of CDH1 down-regulates the PFKFB3
protein level in wild-type, but not in PTEN-deficient
cells™, Moreover, PTEN knockout cells were found to
have high protein levels of PFKFB3 that has important
consequences for cell proliferation.

Thete is data that ubiquitin ligase SKP1-CUL1-
F(SCF)-beta-TtCP also participate in glycolysis regulation
during the cell cycle through PFKFB because this enzyme
ot activation the glycolytic enzyme 6-phosphofructo-1-
kinase is needed for glycolysis up-regulation™, Besides
that, the induction of e novo lipid synthesis from glucose
in prostate adenocarcinoma cells by androgen requires
transcriptional up-regulation of PFKFB-2 and phosphor-
ylation of PFKFB-2 generated by the PI3K/AKT signal
pathway to supply the source for lipogenesis[45]. The in-
creased glycolytic flux through the enhanced expression
of PFKFB3 gene was also observed after interaction of
adenosine with macrophage TLR4 receptor agonists'*”.
Thus, the enzymes of PFKFB family participate in the
regulation of glucose metabolism through glycolysis as
well as in the control of the cell cycle, apoptosis, tumor
growth, and invasiveness.

It is interesting to note that the transcriptional co-re-
pressor myeloid translocation gene 16 (MTG16) 1s found
in multiple transcription factor-containing complexes as
a regulator of gene expression implicated in develop-
ment and rumorigenesis. MTG16 can serve as a brake on
glycolysis, a stimulator of mitochondrial respiration and
an inhibitor of cell proliferation through suppression of
PFKFB-3, PFKFB-4 and pyruvate dehydrogenase kinase
isoenzyme 1 PDK1)*". Furthermore, hypoxia-stimulated
production of PFKFB3, PFKFB4 and PDK1 was inhib-
ited by MTG16 expression.

Several alternative splice vadants for PFKFB-3 were
identified in normal and cancer cells which possibly are
important for malignant tumor growth®***. All these
splice variants have similar N-terminus and catalytic both
6-phosphofructo-2-kinase and fructose-2,6-bisphospha-
tase domains, but differ in C-terminal regulatory region. It
is possible that a variable C-terminus provide not only for
differ regulatory properties and for a variable surviving
of PFKFB-3 splice vatiants. Moreover, the expression of
PFKFB-3 altemnative splice variants # #po differs in var-
ous organs and spectrum of these splice variants changes
in rat model of diabetes in organ-specific manner"".
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Recent data®*? showed that PFKFB-4, which ex-
pression at mRNA and protein levels is strongly induced
in the lung and breast cancers, has also pleiotropic func-
tions. This variant of PFKFB together with other mem-
bers of PFKFB family patticipates in the regulation of
glycolysis and also promotes tumor growth and survival
of cancer cells®*>**9, It was shown that PEKFB4 is
required to balance glycolytic activity and antioxidant
production to maintain cellular redox balance in prostate
cancer cells®?, Moreover, depletion of PFKFB4 inhibited
tumor growth in a xenograft model, indicating that it is
required under physiologic nutrient levels® . PFKFB4
mRINA expression was also found to be greater in meta-
static prostate cancer compared with primary tumors®?.,
Moreover, induction of apoptosis by sulforaphane in
human hepatic cancer cells mediated by hypoxia induc-
ible factor-1-dependent pathway through inhibition of
PFKFB4"Y. Thus, PFKFB4, a glycolytic enzyme that
shunts glucose into the pentose phosphate pathway for
NADPH production, as a critical node for the survival of
cancer cells™***9,

Aerobic glycolysis links the high rate of glucose fer-
mentation to cancer”". It was found that the regulatory
glycolytic enzyme PFKEB4 is essential for prostate can-
cer cell survival by maintaining the balance between the
use of glucose for energy generation and the synthesis
of antioxidants. Cancer cells undergo several changes in
their metabolism that contributes to the proliferation and
survival of cancer cells. Blocking PFKFB4 induces reac-
tive oxygen species and cancer cell death. Thus, targeting
PFKEFB4 may therefore present new therapeutic oppot-
tunities.

It is interesting to note that non-malignant gastrc and
colon tissues in contrast to lung and breast tissues have
higher level of PFKFB-4 protein; at the same time, no
significant differences in mRNA levels®>>* . Tt is pos-
sible that there is some specific mechanism of PFKFB-4
protein stabilization as well as some additional functions
of this enzyme in non-malignant gastric and colon tis-
sues. These aspects of PFKFB biochemistry warrants
further investigation.

Several alternative splice variants were identified for
human, mouse and rat PFKFB—4[5W, Alternative splice
variant with modified N-terminus was identified for
PFKFB-4 in melanoma DB-1 cells™. Tts expression was
very high in these cells and is possibly related to melano-
ma growth. Other alternative splice vatiants of PFKFB-4
mRNA with modified C-terminus were founded in rat
tissues™. One of them with a modified C-terminal part
was observed only in the liver of rats treated by methyl
tertial butyl ether, ecologically dangerous chemical
compound®™. Tt was not present in normal rat liver and
lungs. Second alternative splice variant with deletion in
fructose-2,6-bisphosphatase region is expressed in not-
mal liver and lung tissues and its expression is affected
by methyl tertial butyl ether™. Results of this investiga-
tion demonstrate the sensitivity of PFKFB-4 alternative
splicing to the action of toxic chemical compounds, in
patticular methyl tretbutyl ether. Several unique alterna-
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