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Figure 6. ATO elicits DNA damage and apoptosis. Human osteosarcoma cells were cultured with or without 3 uM ATO. An
equivalent volume of vehicle was used as the control. Western blot analysis was performed 48 h and 72 h after ATO treatment. (A)
Western blot analysis revealed that ATO treatment increased the protein levels of yH2AX, cleaved PARP, and cleaved caspase-3.
ATO treatment decreased the protein levels of Bcl-2 and Bcl-xL. (B) Western blot analysis performed after cisplatin (CDDP) and
recombinant human Sonic Hedgehog (rSHH) treatment showed that CDDP treatment upregulated the expression of yH2AX.
Addition of Sonic Hedgehog decreased the expression level of yH2AX protein, which was upregulated by CDDP treatment. (C)
Western blot analysis was performed following CDDP and recombinant human Sonic Hedgehog (rSHH) or ATO treatment. Addition
of Sonic Hedgehog decreased the expression level of yH2AX protein, which was upregulated by CDDP treatment. Addition of ATO
restored the yH2AX expression attenuated by rSHH treatment. These experiments were performed in triplicate with similar results.
doi: 10.1371/journal.pone.0069466.g006

PLOS ONE | www.plosone.org 9 July 2013 | Volume 8 | Issue 7 | €69466



A

NaOH 2W NaOH 9W ATO 2W ATO 9W

~#~ NaOH control —e— ATO 10ug/g

& 12000
£ %k
£ 10000 l
N’
O  gooo
=
-560(0
>
L 4000
o
E 2000
=]
F
01 2 3 45 6 71 8
Weeks

(*:p<0.05, %k : p<0.01)

ATO prevents OS growth by inhibition of GLI

Kaplan—Meier analysis
NaOH control —— ATO 10 u g/g

—~ 100
§ 90
o 8
T 70
oY 60 | *k
© 50
= 40
c 3
= zor
& 10 |
0
0 2 4 6 8 10 12 14
Weeks (%% p <001)
= 60 |
[+
2 i,
43 |
40 |
2.5
S ‘
2 30
=3 |
o
£ 10
33
3 0 RN
[¢b]
o
control

ATO

NaOH

Figure 7. ATO prevents osteosarcoma growth in vivo. 143B cells (1 x 105 were subcutaneously inoculated into nude mice.
Tumor volume was calculated weekly using the formula LW? /2 (where L and W represent the length and width of tumors). Seven
days after inoculation, the tumor volume was set as 1 and was evaluated at different time points. (A) ATO treatment inhibited tumor
growth as compared with control (*P < 0.05 or **P < 0.01) (error bars represent mean [SD]). Kaplan-Meier analysis revealed that
ATO treatment provided a significant survival benefit (**P < 0.01). (B) Apoptotic cell death in the tumors was analyzed by TUNEL
staining, which showed that ATO treatment increased apoptotic cell death in vivo (*P < 0.05 or **P < 0.05) (error bar indicates SD).

doi: 10.1371/journal.pone.0069466.g007

findings indicate that JNK or NF-kB activation does not affect
the cytotoxicity of ATO in human osteosarcoma. '
For in vivo examinations, we administered ATO
intraperitoneally at 10 mg/kg body weight, as previously
reported [25]. Kim et al. examined the ATO levels in mouse
sera collected after ATO administration by injection at 10 mg/kg
body weight. The peak concentration following intraperitoneal
injection at 10 mg/kg was 2.6-fold higher than the peak plasma
levels in human patients following intravenous ATO injection at
a dose of 0.15 mg/kg body weight [48]. Area under the curve
calculations revealed that the total exposure to ATO in mice at
the 10 mg/kg dose was 2-fold higher than that in patients. To
decrease the ATO concentration, combinations of drugs that
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inhibit other Hedgehog signaling components, including SMO
inhibitors, were used to achieve greater pathway inhibition at
lower ATO concentrations [25]. In addition, Kim et al. reported
that combined use of ATO and itraconazole, a commonly used
antifungal that inhibits SMO by a mechanism distinct from that
of cyclopamine and other known SMO antagonists, decreases
the dose of ATO and itraconazol required to prevent
medulloblastoma and basal cell carcinoma growth associated
with acquired resistance to SMO antagonists [24].

In summary, our findings showed that ATO inhibits the
Hedgehog pathway and human osteosarcoma cell growth in
vitro and in vivo. The combined administration of conventional
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anticancer agents or other Hedgehog pathway inhibitors with
ATO may be valuable for treating osteosarcoma patients.

Supporting Information

Figure S1.

Western blot analysis showed that ATO

treatment decreased the expression of phosphorylated
JNK. Western blot analysis showed that ATO treatment did

not

affect the expression levels of NFkB and phosphorylated

NFkB proteins. WST assay showed that JNK inhibitor did not
affect the proliferation of osteosarcoma cells.
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Abstract

The Hedgehog pathway is activated in various types of malignancies. We previously reported that inhibition of SMO
or GLI prevents osteosarcoma growth in vitro and in vivo. Recently, it has been reported that arsenic trioxide (ATO)
inhibits cancer growth by blocking GLI transcription. In this study, we analyzed the function of ATO in the
pathogenesis of osteosarcoma. Real-time PCR showed that ATO decreased the expression of Hedgehog target
genes, including PTCH1, GLI1, and GL/2, in human osteosarcoma cell lines. WST-1 assay and colony formation
assay revealed that ATO prevented osteosarcoma growth. These findings show that ATO prevents GLI transcription
and osteosarcoma growth in vitro. Flow cytometric analysis showed that ATO promoted apoptotic cell death. Comet
assay showed that ATO treatment increased accumulation of DNA damage. Western blot analysis showed that ATO
treatment increased the expression of yH2AX, cleaved PARP, and cleaved caspase-3. In addition, ATO treatment
decreased the expression of Bcl-2 and Bel-xL. These findings suggest that ATO treatment promoted apoptotic cell
death caused by accumulation of DNA damage. In contrast, Sonic Hedgehog treatment decreased the expression of
yH2AX induced by cisplatin treatment. ATO re-induced the accumulation of DNA damage attenuated by Sonic
Hedgehog treatment. These findings suggest that ATO inhibits the activation of Hedgehog signaling and promotes
apoptotic cell death in osteosarcoma cells by accumulation of DNA damage. Finally, examination of mouse xenograft
models showed that ATO administration prevented the growth of osteosarcoma in nude mice. Because ATO is an
FDA-approved drug for treatment of leukemia, our findings suggest that ATO is a new therapeutic option for
treatment of patients with osteosarcoma.
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Introduction

Osteosarcoma is the most common malignant bone tumor in
children and adolescents [1,2]. Osteosarcoma is a highly
aggressive neoplasm that is resistant to current therapeutic
approaches, including radiation, chemotherapy, and surgical
treatment. The survival rate of patients treated with
neoadjuvant chemotherapy and local control therapy is 60—
80% [3]. The predicted outcome is poor in patients with lung
metastasis at first diagnosis, with long-term survival rates
ranging between 10% and 40% [4]. Therefore, more effective
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treatments and more personalized therapies (i.e., treatments
targeting a specific signaling pathway or gene) are essential for
patients with osteosarcoma.

The Hedgehog pathway is involved in various aspects of
development. The Hedgehog pathway is activated via the
PATCHED (PTCH1) and SMOOTHENED (SMO) Hedgehog
receptors. Activation of SMO promotes the activation of GLI
family transcription factors (GLI1, GLI2, and GLI3) to regulate
the transcription of target genes [5-7]. Aberrant activation of
the Hedgehog pathway is associated with malignant tumors
(reviewed in ref [8].). We have previously reported that aberrant
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activation of the Hedgehog pathway is involved in the
pathoetiology of osteosarcoma. Inhibition of the Hedgehog
pathway by knockdown of SMO or GLI2 prevents
osteosarcoma growth in vitro and in vivo [9,10]. Although
several SMO inhibitors have been developed, they have
several limitations, including constitutive activation of SMO,
spontaneous mutation of SMO that impairs its binding to the
drug, and constitutive activation downstream of SMO [11-21].
Arsenic trioxide (ATO) is an FDA-approved drug used for the
treatment of patients with acute promyelocytic leukemia (APL)
who show relapse after first-line chemotherapy (reviewed in 22.
ATO promotes complete remission without myelosuppression
and causes few adverse reactions. Recently, it has been
reported that ATO prevents human cancer cell growth by
inhibiting activation of the Hedgehog pathway [23-25]. In the
present study, we examined the effect of ATO treatment on GLI
transcription and osteosarcoma growth in vitro and in vivo. Our
findings show that ATO inhibits Hedgehog pathway signaling
and prevents human osteosarcoma cell growth via
accumulation of DNA damage.

Materials and Methods

Cell culture

The osteosarcoma cell line 143B, Saos-2, and U20S were
purchased from the American Type Culture Collection (ATCC,
Manassas, VA, USA). The HsOs1 cell line was purchased from
the Riken cell bank (Tsukuba, Japan). Osteosarcoma cell lines
were cultured in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal bovine serum, penicillin (100 U/
mL), and streptomycin (100 upg/mL). For analyzing DNA
damage, recombinant Sonic Hedgehog protein (R&D Systems,
Minneapolis, MN, USA), ATO (Nihon Shinyaku, Kyoto, Japan),
and cisplatin (CDDP) (LKT Laboratories, Minneapolis, USA)
were used. Cell lines were cultured in a humidified incubator
with 5% CO, at 37°C.

Real-time polymerase chain reaction

Human osteosarcoma cells were cultured with or without 1
UM ATO. A vehicle (aqueous sodium hydroxide and
hydrochloric acid to adjust to pH 7.5) was used as the control.
Primer sets amplified amplicons of 150 to 200 bp in size.
Polymerase chain reactions (PCRs) were performed using
SYBR Green (BIO-RAD) on a MiniOpticon™ machine (BIO-
RAD). The comparative Ct (AACt) method was used to
evaluate the fold change in mRNA expression using B-actin as
the reference gene. All PCR reactions were performed in
triplicate, with 3 different concentrations of cDNA. All primers
were designed using Primer3 software (http://frodo.wi.mit.edu/
cgi-bin/primer3/primer3.cgi). The following primers were used:

PTCHT. 5'-TAACGCTGCAACAACTCAGG-3, 5'-
GAAGGCTGTGACATTGCTGA-3', GL/1: 5'-
GTGCAAGTCAAGCCAGAACA-3, 5'-
ATAGGGGCCTGACTGGAGAT-3', GLI2: 5
CGACACCAGGAAGGAAGGTA-3, 5'-
AGAACGGAGGTAGTGCTCCA-3', B-actin. 5"
AGAAAATCTGGCACCACACC-3, 5-

AGAGGCGTACAGGGATAGCA-3".
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Each experiment was performed in triplicate, and all
experiments were performed 3 times.

WST-1 assay

Human osteosarcoma cells were cultured with or without 1
pM or 3 pM ATO. An equivalent volume of vehicle (aqueous
sodium hydroxide and hydrochioric acid to adjust to pH 7.5)
was used as the control. The cells were treated with WST-1
substrate (Roche, Basel, Switzerland) for 4 h, washed with
phosphate-buffered saline, and lysed to release formazan.
Then, the cells were analyzed on a microplate reader (BIO-
RAD, Hercules, CA, USA). Each experiment was performed in
triplicate, and all experiments were performed 3 times.

Colony formation assay

Cells were cultured in DMEM containing 0.33% soft agar and
5% fetal bovine serum, and plated on 0.5% soft agar layer.
Cells were cultured in 6-well plates at a density of 5 x 10° cells
per well. Human osteosarcoma cells were cultured with or
without 3 uM ATO. An equivalent volume of vehicle was used
as the control. Fourteen days later, the number of colonies was
evaluated. Each experiment was performed in triplicate, and all
experiments were performed 3 times.

Cell cycle analysis

Human osteosarcoma cells were cultured with or without 1
UM ATO. An equivalent volume of vehicle was used as the
control. Cell cycle analysis was performed as previously
reported [9]. Cells were collected, fixed with 70% ethanol for 2
h at 4°C, washed with phosphate-buffered saline, and treated
with 500 uL staining buffer containing RNase A and 50 pg/mL
propidium iodide (Wako Chemicals, Kanagawa, Japan). The
DNA content was examined by flow cytometry using CyAn™
ADP (Beckman Coulter, CA, USA) and Summit software
(Beckman Coulter). Each experiment was performed in
triplicate, and all experiments were performed 3 times.

Comet assay

Human osteosarcoma cells were cultured with or without 3
UM ATO. An equivalent volume of vehicle was used as the
control. Cells were trypsinized and electrophoresed on agarose
gels as previously reported [26]. Tail moment (TM) and tail
length (TL) were used to evaluate DNA damage in individual
cells. Image analysis and quantification were performed using
NIH ImagedJ software. TM = % DNA in the tail x TL, where % of
DNA in the tail = tail area (TA) x tail area intensity (TAl) x
100/(TA x TAl) + [head area (HA) x head area intensity (HAI)].

Western blotting

Human osteosarcoma cells were cultured with or without 3
UM ATO. An equivalent volume of vehicle was used as the
control. The cells were dissolved in NP40 buffer containing
0.5% NP40, 10 mM Tris-HCI (pH 7.4), 150 mM NaCl, 3 mM
pAPMSF (Wako Chemicals, Kanagawa, Japan), 5 mg/mL
aprotinin  (Sigma, St. Louis, MO, USA), 2 mM sodium
orthovanadate (Wako Chemicals), and 5 mM EDTA. Sodium
dodecyl sulfate-polyacrylamide gel electrophoresis and
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immunoblotting were performed subsequently. The following
antibodies were used: phospho-histone H2AX (Ser139)
(YH2AX) (Cell Signaling Technology, MA, USA), cleaved
caspase-3 (Asp175) (Cell Signaling Technology), poly (ADP-
ribose) polymerase (PARP) (Cell Signaling Technology), Bcl-2
(Cell Signaling Technology), BclxL (Cell Signaling
Technology), SAPK/NK (Cell Signaling Technology),
Phospho-SAPK/JNK (Thr183/Tyr185) (Celi Signaling
Technology), NF-xB p65 (Cell Signaling Technology), phospho-
NF-kB p65 (Ser468) (Cell Signaling Technology), and tubulin
(Santa Cruz, California, USA). Bands were visualized using the
ECL chemiluminescence system (Amersham, Giles, UK).

Xenograft model

143B cells (1 x 10%) and 100 pL Matrigel (BD, NJ, USA)
suspension were subcutaneously inoculated into 5-week-old
nude mice. The mice were randomly allocated to treatment with
either ATO (10 pg/g) or an equivalent volume of vehicle (30
mM NaOH, pH 7.0). ATO and vehicle were administered
intraperitoneally every day. ATO and vehicle treatment was
started at 1 week after inoculation, at which time, the tumors
had grown to a visible size. The tumor size was measured
using the formula LW? /2 (L and W represent the length and
width of tumors, respectively). This study was carried out in
strict accordance with the recommendations in the Guide for
the Care and Use of Laboratory Animals of Kagoshima
University. The animal experiment protocol was approved by
the Institutional Animal Care and Use Committee, Graduate
School of Medical and Dental Sciences, Kagoshima University
(Permit Number: MD11017). All surgeries were performed
under general anesthesia, and every effort was made to
minimize the number of animals used and animal pain.

Immunohistochemistry

ApopTag® Peroxidase In Situ Apoptosis Detection Kit was
used for TUNEL staining according to the supplier’s protocol
(MerckMillipore, Billerica, MA, USA). The sections were stained
with methyl green (Merck-Chemicals, Darmstadt, Germany) to
identify nuclei.

Statistical analysis

All examinations were performed 3 times, except where
otherwise stated, and all samples were analyzed in triplicate.
All results are presented as mean (SD). Statistical differences
between groups were assessed by Student'’s t-test for unpaired
data using Microsoft Office Excel (Microsoft, Albuquerque, NM,
USA) and Kaplan 97.

Results

ATO prevents GLI transcription and proliferation of
osteosarcoma cells

To determine whether ATO prevents GLI transcription in
osteosarcoma cells, real-time PCR was performed for ATO-
treated cells. Four human osteosarcoma cell lines showing
upregulation of GLI transcription were examined [9,10]. The
human osteosarcoma cell lines were treated with ATO at
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previously reported concentrations, which inhibit human cancer
cell proliferation by inhibiting activation of the Hedgehog
pathway [25]. Real-time PCR revealed that ATO prevented the
transcription of GLI target genes, including PTCH1, GLI1, and
GLJ2, in human osteosarcoma cell lines (Figure 1). The WST-1
assay showed that proliferation of the 143B, Saos2, HsOs1,
and U20S cell lines was inhibited by ATO (Figure 2). We next
evaluated the effects of ATO on anchorage-independent
growth of osteosarcoma cells. The colony formation assay
showed that ATO treatment decreased the number of colonies
in soft agar (Figure 3). These findings showed that ATO
treatment prevents GLI transcription and growth of
osteosarcoma cells in vitro.

ATO promotes DNA damage and apoptotic cell death

To examine whether ATO treatment promoted cell death or
cell cycle arrest, we performed flow cytometric analysis. The
results showed that ATO treatment increased the population of
sub-G1 cells (Figure 4). These findings show that ATO
treatment promotes apoptotic cell death in osteosarcoma cells.
To examine whether ATO promotes DNA damage, we
performed a comet assay, which can be used to detect single
cell DNA damage by the cellular elution pattern through
agarose gels. The comet assay showed that ATO treatment
altered the elution profiles (Figure 5). These findings show that
ATO treatment promotes the accumulation of DNA damage in
osteosarcoma cells. In addition, we used western blotting to
examine the expression of DNA damage markers and
apoptosis-related proteins after ATO treatment. Western blot
analysis showed that ATO treatment increased the expression
of yH2AX, a marker of double-strand breaks, cleaved poly
(ADP-ribose) polymerase (PARP), and cleaved-caspase 3. In
contrast, ATO treatment decreased the expression of Bcl-2 and
Bcl-xL (Figure 6A). These findings suggest that ATO treatment
promotes apoptotic cell death caused by accumulation of DNA
damage.

It has been reported that ATO promotes apoptotic cell death
and phosphorylation of JNK [27]. Although western blot
analysis showed that ATO treatment increased the amount of
phosphorylated JNK, inhibition of JNK activity had no effect on
osteosarcoma cell proliferation with or without ATO, as seen
with Ewing sarcoma cells (Figure S1) [23]. It has been reported
that ATO treatment decreases the phosphorylation of NF-xB
and promotes cell death [28]. Our findings showed that ATO
treatment did not affect the status of NF-kB phosphorylation
(Figure S1).

Hedgehog signaling prevents DNA damage caused by
CDDP treatment

To examine whether activation of Hedgehog signaling affects
accumulation of DNA damage, we performed western blot
analysis after cisplatin (CDDP) treatment. Western blotting
showed that CDDP treatment upregulated the expression of
YH2AX. Treatment with Sonic Hedgehog attenuated the
upregulation of yH2AX (Figure 6B). In addition, we examined
the effect of ATO treatment on the attenuation of DNA damage
by Hedgehog activation. The attenuation of DNA damage
caused by Hedgehog activation was reversed by ATO
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Figure 1. ATO prevents the transcription of GLI target genes. Human osteosarcoma cells were cultured with or without 1 pM
ATO. An equivalent volume of vehicle was used as the control. Total RNA collected from osteosarcoma cell lines was examined by
real-time polymerase chain reaction (PCR). A comparative Ct (AACt) analysis was performed to examine fold changes in mRNA
expression compared with B-actin. Real-time PCR showed that ATO decreased the transcription of GLI target genes, including
PTCH1, GLI1, and GL/2, in 143B, Saos2, HsOs1, and U20S cells. The experiment was performed in triplicate with similar results
(error bars represent mean [SD]) (*P < 0.01, **P < 0.05).

doi: 10.1371/journal.pone.0069466.g001
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Figure 2. ATO prevents human osteosarcoma cell proliferation. WST assay showed that the growth of 143B, Saos-2, HsOs1,
and U20S cells was prevented by 1 pM or 3 uM ATO treatment for 96 h. An equivalent volume of vehicle was used as the control.
The experiment was performed in triplicate with similar results (*P < 0.05, **P < 0.01) (error bars represent mean [SD]).

doi: 10.1371/journal.pone.0069466.g002
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treatment (Figure 6C). These findings suggest that ATO
promotes the accumulation of DNA damage by inhibiting
Hedgehog signaling.

ATO prevents osteosarcoma growth in vivo

143B osteosarcoma cells were intradermally inoculated into
nude mice, and palpable tumors were formed within 7 days.
Then, ATO or an equivalent volume of vehicle was injected
intraperitoneally. The injections were administered every day.
Compared with vehicle treatment, treatment with ATO
significantly prevented tumor growth (Figure. 7). Kaplan-Meier
analysis showed that ATO treatment provided a significant
survival benefit (Figure 7A). TUNEL staining showed that ATO
treatment induced apoptotic cell death. The number of
apoptotic cells was significantly increased in ATO-treated
tumors (Figure 7B).

Discussion

We and other researchers have previously reported that
inhibition of the Hedgehog pathway prevented the growth of

PLOS ONE | www.plosone.org

osteosarcoma cells [9,10,29]. In particular, we showed that
knockdown of GLI2 prevented osteosarcoma cell growth in
vitro and in vivo [9]. ATO prevents Ewing sarcoma,
medulloblastoma, and basal cell carcinoma growth by inhibition
of GLI transcription [23-25]. To apply our previous findings in
clinical settings, we examined the effects of ATO in human
osteosarcoma. We showed that ATO prevents the transcription
of GLI target genes and promotes apoptotic cell death in
osteosarcoma cells as a result of accumulation of DNA
damage. In addition, ATO re-induces the accumulation of DNA
damage attenuated by recombinant Sonic Hedgehog
treatment. These findings suggest that ATO inhibits the
activation of Hedgehog signaling and promotes apoptotic cell
death in osteosarcoma cells as a result of accumulation of DNA
damage. In addition, our findings showed that ATO decreased
the expression of Bcl-2 and Bel-xL. GLI1 and GLI2 upregulate
the transcription of Bcl-2 and Bcl-xL [30-33]. Inhibition of the
Hedgehog pathway by ATO treatment may downregulate Bcl-2
and Bcl-xL to promote apoptotic cell death in osteosarcoma
cells. Singh et al. reported that ABCG2, a drug transporter
protein, is a direct transcriptional target of Hedgehog signaling
[33]. These findings suggest that activation of Hedgehog
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doi: 10.1371/journal.pone.0069466.9004

signaling promoted the export of CDDP by the ABCG2
transporter and reduced the accumulation of DNA damage in
osteosarcoma cells. Inhibition of the Hedgehog pathway by
ATO treatment may be useful as an adjunct treatment to
conventional chemotherapy for osteosarcoma. In addition,

PLOS ONE | www.plosone.org

several molecular mechanisms have been reported for
inhibition of the Hedgehog pathway by ATO. Kim et al. reported
that ATO prevented growth of medulloblastoma by reducing
stability of GLI2 protein and ciliary accumulation of GLI2 [25].
Elspeth et al. reported that ATO prevents growth of cancer cell
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lines and Ewing sarcoma by inhibiting GLI transcription through
direct binding to GLI [23]. Although there were some
discrepancies related to the mechanism of Hedgehog pathway
inhibition by ATO, these studies independently suggest that
ATO inhibits malignant tumor growth by inhibition of the
Hedgehog pathway at the level of GLI transcription factors.
These mechanisms may prevent osteosarcoma growth after
ATO treatment. Because aberrant activation of the Hedgehog
pathway has been implicated in several malignant tumors, the
pharmaceutical industry has invested in the development of
Hedgehog pathway inhibitors. SMO inhibitors have been
evaluated in recent clinical trials [34,35]. However, treatment
with SMO inhibitors showed a lack of efficacy in a portion of
patients. Investigation of the underlying mechanism revealed
that the patient tumors showed a mutation in SMO that
prevented binding of the SMO inhibitors to SMO [15]. Several
genes with potential mutations within SMO and downstream of
SMO have been found [16—21,36]. In addition, non-Hedgehog
pathway-mediated activation of GLI transcription has been

PLOS ONE | www.plosone.org

reported [37—41]. In this regard, direct GLI inhibition by ATO is
likely to be useful for treating tumors with mutations within or
downstream of SMO. For example, inhibition of GLI, but not
SMO, inhibited tumor growth in myeloid leukemia, colon
carcinoma, hepatocellular carcinoma, and osteosarcoma
[9,42—44]. Originally, arsenic was used in the 17" century to
treat leukemia. ATO has been approved for the treatment of
intractable acute promyelocytic leukemia in Japan. Our findings
suggest that ATO is one of the most suitable molecular target
reagents for inhibiting the Hedgehog pathway in human
osteosarcoma. We have now obtained approval from the ethics
committee for clinical research, Kagoshima University, to use
ATO for treating patients with intractable osteosarcoma.

We examined whether the inhibitory effect of ATO on
osteosarcoma growth is mediated, at least in part, by JNK or
NF-kB [45-47]. As previously reported, treatment with ATO
increased JNK phosphorylation. However, treatment with a
JNK inhibitor did not prevent osteosarcoma growth. In contrast,
treatment with ATO did not affect NF-kB activation. These
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findings indicate that JNK or NF-kB activation does not affect
the cytotoxicity of ATO in human osteosarcoma.

For in vivo examinations, we administered ATO
intraperitoneally at 10 mg/kg body weight, as previously
reported [25]. Kim et al. examined the ATO levels in mouse
sera collected after ATO administration by injection at 10 mg/kg
body weight. The peak concentration following intraperitoneal
injection at 10 mg/kg was 2.6-fold higher than the peak plasma
levels in human patients following intravenous ATO injection at
a dose of 0.15 mg/kg body weight [48]. Area under the curve
calculations revealed that the total exposure to ATO in mice at
the 10 mg/kg dose was 2-fold higher than that in patients. To
decrease the ATO concentration, combinations of drugs that

PLOS ONE | www.plosone.org
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inhibit other Hedgehog signaling components, including SMO
inhibitors, were used to achieve greater pathway inhibition at
lower ATO concentrations [25]. In addition, Kim et al. reported
that combined use of ATO and itraconazole, a commonly used
antifungal that inhibits SMO by a mechanism distinct from that
of cyclopamine and other known SMO antagonists, decreases
the dose of ATO and itraconazol required to prevent
medulloblastoma and basal cell carcinoma growth associated
with acquired resistance to SMO antagonists [24].

In summary, our findings showed that ATO inhibits the
Hedgehog pathway and human osteosarcoma cell growth in
vitro and in vivo. The combined administration of conventional
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anticancer agents or other Hedgehog pathway inhibitors with
ATO may be valuable for treating osteosarcoma patients.

Supporting Information

Figure $S1.

Western blot analysis showed that ATO

treatment decreased the expression of phosphorylated
JNK. Western blot analysis showed that ATO treatment did
not affect the expression levels of NFkB and phosphorylated
NFkB proteins. WST assay showed that JNK inhibitor did not
affect the proliferation of osteosarcoma celis.
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Abstract Lymph node micrometastasis (LNM) can now
be detected thanks to the development of various bio-
logical methods such as immunohistochemistry (IHC) and
reverse transcription-polymerase chain reaction (RT-
PCR). Although several reports have examined LNM in
various carcinomas, including gastrointestinal (GI) cancer,
the clinical significance of LNM remains controversial.
Clinically, the presence of LNM is particularly important
in patients without nodal metastasis on routine histologi-
cal examination (pNO0), because patients with pNO but
with LNM already in fact have metastatic potential.
However, at present, several technical obstacles are
impeding the detection of LNM using methods such as
IHC or RT-PCR. Accurate evaluation should be carried
out using the same antibody or primer and the same
technique in a large number of patients. The clinical
importance of the difference between LNM and isolated
tumor cells (<0.2 mm in diameter) will also be gradually
clarified. It is important that the results of basic studies on
LNM are prospectively introduced into the clinical field.
Rapid diagnosis of LNM using IHC and RT-PCR during
surgery would be clinically useful. Currently, minimally
invasive treatments such as endoscopic submucosal dis-
section and laparoscopic surgery with individualized
lymphadenectomy are increasingly being performed.
Accurate diagnosis of LNM would clarify issues of cur-
ability and safety when performing such treatments. In the
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near future, individualized lymphadenectomy will develop
based on the establishment of rapid, accurate diagnosis of
LNM.

Keywords Lymph node metastasis - Micrometastasis -
Esophageal cancer - Gastric cancer - Colorectal cancer

Introduction

One of the characteristics of malignant tumor is the ability
to metastasize. If a tumor has high malignant potential,
metastasis is often seen in wide areas. Thus, lymph node
metastasis is one of the most important prognostic factors
in various carcinomas, including gastrointestinal (GI)
cancer. Even if complete lymph node dissection is per-
formed in patients with early cancer, recurrent disease is
sometimes encountered. Usually, histological examination
for lymph node metastasis is performed using representa-
tive sections from the removed nodes. However, lymph
node micrometastasis (LNM) may be identified in multiple
sections of lymph nodes despite not being detected by
routine histological examination using hematoxylin and
eosin (HE) staining. Even in early gastric cancer, we found
lymph node metastasis in 10.5 % of patients when addi-
tional sections of nodes were examined [1]. However, such
procedures are labor-intensive and not cost-effective in
active clinical practice.

The development of sensitive immunohistochemical
techniques and reverse transcription-polymerase chain
reaction (RT-PCR) has led to the detection of LNM that
could not be found on routine histological examination.
According to previous reports, cytokeratin (CK) AE1/
AE3 and CAMS5.2 monoclonal antibodies are often used
for immunohistochemistry (IHC). Each technique has
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specific advantages and disadvantages. Since IHC is
relatively simple, the techniques are available in many
institutions. However, problems arise in determining how
many sections are sufficient for detection of LNM, the
high cost of antibody, and false-positive results. On the
other hand, RT-PCR offers an objective method for
estimating LNM. Epithelial markers are usually available
for detecting LNM, because epithelial components are not
normally present in the lymph node. Although this
approach offers high sensitivity, false-positive results are
sometimes seen because of the presence of pseudogenes.
Several epithelial markers can be used to recognize
LNM in lymph nodes, but one of the key problems is
determining what kind of marker is suitable for each
carcinoma. Usually, CK, carcinoembryonic antigen
(CEA) and squamous cell carcinoma-related antigen
(SCC) are used for the detection of LNM.

This review focuses on the clinical significance of
LNM detected by IHC and RT-PCR methods in carci-
nomas of the GI tract such as esophageal, gastric and
colorectal cancer. Several reports have investigated LNM
in specific lymph nodes such as recurrent nerve lymph
nodes in esophageal cancer, para-aortic lymph nodes in
gastric cancer, and lateral lymph nodes in colorectal
cancer. Excluding those papers, we here review only
reports in which LNM was examined in all dissected
lymph nodes in GI cancer.

Definition of lymph node micrometastasis

Historically, several terms for tiny metastatic foci have
been used, including occult metastasis, harbored metas-
tasis, tumor microinvolvement and tumor deposit.
Micrometastasis is currently defined according to the
criteria of the tumor—node-metastasis (TNM) classifica-
tion established by the International Union Against Can-
cer (UICC) in 2002, and is completely differentiated from
isolated tumor cells (ITC) by size [2]. ITC represent
either single tumor cells or small clusters of cells mea-
suring <0.2 mm in greatest dimension and are commonly
identified by IHC, but can be confirmed by routine HE
staining. Moreover, ITC basically do not demonstrate
evidence of metastatic activity, such as proliferation or
stromal reaction, or penetration of vascular or lymphatic
sinus walls. Patients with ITC in lymph nodes are staged
as pNO (i+). On the other hand, micrometastasis refers to
tumor cell clusters measuring >0.2 mm but <2.0 mm in
greatest dimension. Patients with micrometastasis in
lymph nodes are staged as pN1 (mi). Furthermore,
patients with node positivity as diagnosed by non-mor-
phological findings using RT-PCR are staged as pNO
(mol+).

Lymph node micrometastasis in esophageal cancer

Several reports have investigated LNM detected by THC in
esophageal cancer (Table 1) [3-14]. The numbers of
patients were relatively small, with all but two reports
involving less than 100 patients. Two reports focused on
T1 tumors, but the remaining reports covered advanced
esophageal cancer. In Eastern countries, squamous cell
carcinoma was a major histological type, while both
squamous cell carcinoma and adenocarcinoma were
included in Western countries. CK antibody (AE1/AE3)
was commonly used for IHC. Single sections were used in
5 reports, and multiple sections in 7 reports. The definition
of LNM varied. Seven authors defined LNM as identifi-
cation of tumor cells in patients classified as pNO according
to routine HE staining. The remaining authors defined
LNM by tumor size. The incidence of LNM ranged from
8.1 to 55.5 %. Since the diagnosis of LNM was based on
morphology, this discrepancy might be due to the estima-
tion of each author. Shiozaki et al. [11] conducted a multi-
institutional study and the results of LNM were compared
between institutional researchers and pathologists. Among
164 patients with pNO, 51 patients were diagnosed as
micrometastasis-positive by institutional evaluation, but
the pathologists identified only 25 patients as having
micrometastasis-positive lymph nodes. Institutional posi-
tivity for micrometastasis was negated by these patholo-
gists for the following reasons: (1) lack of nuclei in
CK-positive cells; (2) location of stained cells outside the
lymph node structure; or (3) stained cells appearing mor-
phologically different from cancer cells or epithelial cells.
If the evaluation of LNM detected by IHC differs between
each institution, the results from different reports will
naturally also be different. Common criteria for identifying
LNM using IHC are thus necessary. Regarding the prog-
nostic impact, 7 of 13 authors reported that the presence of
LNM was related to poor prognosis. In particular, the two
reports that included more than 100 cases both found sig-
nificant differences in prognosis between the presence and
absence of LNM [7, 11].

The relationship between LNM detected by RT-PCR
and clinical significance was investigated in five studies
(Table 2) [15-19]. Numbers of patients and numbers of
examined nodes were not high. All reports included both
early and advanced carcinoma. Two reports included only
squamous cell carcinoma, two reports covered both squa-
mous cell and adenocarcinoma and one report examined
only adenocarcinoma. The primers for RT-PCR varied,
including CEA, CK19, TACSTD-1, MUCI and SCC.
Double markers were used in two reports. The incidence of
LNM ranged from 8.7 to 36.7 %, and all authors found a
significant difference in prognosis between positive and
negative LNM, with the single exception of a study that did
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Table 1 Immunohistochemical studies in patients with histologically node-negative esophageal cancer diagnosed by hematoxylin—eosin staining

Years Study No. of  Average Depth of Histological Method Antibody Sections  Definition of No. of patients  5-year survival P Prognostic
patients no. of invasion type for IHC  micrometastasis ~ with (positive vs. significance
LNs micrometastases negative)
(%)

1998  Natsugoe 41 - T1-T3 SCC IHC CK (AEl/ Single <0.5 mm 13 (31.7) - <0.05 Yes
et al. [3] AE3)

1999  Glickman 78 7.4 - SCC, AC IHC CK (AEl/ Multiple <2 mm 20 (25.6) - - No
et al. [4] AE3)

2000 Matsumoto 59 46.0 TI-T3 SCC IHC CK (AEl/ Single pNO by HE 39 (55.5) 44.6 vs. 91.0 % 0.002  Yes
et al. [5] AE3) staining

2001  Sato et al. 50 36.8 T1-T4 SCC IHC CK (AEl/ Single pNO by HE 20 (40.0) 78.0 vs. 75.0 % 0.91 No
[6] AE3) staining

2002  Komukai 104 74.7 T1-T3 scc [HC CK (AEl/ Multiple pNO by HE 47 (45.2) 34.0 vs. 72.0 % <0.01 Yes
et al. [7] AE3) staining

2002  Nakamura 53 47.4 T1-T3 SCC IHC CK (AEl/ Single pNO by HE 14 (26.4) - 0.16 No
et al. [8] AE3) staining

2002  Doki et al. 41 52.9 T3-T4 SCC IHC CK (AEl/ Single pNO by HE 11 (26.8) 28.0 vs. 79.0 % 0.0188 Yes
[9] AE3) staining

2003  Tanabe 46 - Tl SCC IHC CK (AEl/ Multiple <5 cells 12 (26.1) - - No
et al. [10] AE3)

2007  Shiozaki 167 - T1-T3 SCC IHC CK (AEl/ Multiple pNO by HE 25 (15.0) 20.0 vs. 70 % 0.0462  Yes
et al. [11] AE3) staining (cluster)

2009  Koenig 38 - T1-T3 SCC, AC IHC CK (AE1/ Multiple <10 cells 3(27.3) 30.0 vs. 76.0 % 0.009  Yes
et al. [12] AE3)

2009 Zingg et al. 86 14.0 T1-T3 SCC, AC IHC CK (Lu-5) Multiple >0.2, <2 mm 7 (8.1) 35.7 vs. 61.1 % n.s. No
[13]

2012 Prenzel 48 28.0 Tl SCC, AC IHC CK (AEl/ Multiple pNO by HE 7 (14.6) 57.0 vs. 79.0 % 0.002  Yes
et al. [14] AE3) staining
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Table 2 RT-PCR studies in patients with histologically node-negative esophageal cancer diagnosed by hematoxylin—eosin staining
Years Study No. of  Total Depth Histological ~ Method ~ Markers No. of patients 5-year survival P Prognostic
patients  no. of of type with (positive vs. significance
LNs invasion micrometastases negative)
(%)
2001  Godfrey 30 387 TI-T3  SCC, AC RT-PCR CEA 11 (36.7) - <0.0001 Yes
et al.
[15]
2005  Xi et al 34 314 Tis-T3 AC RT-PCR CKI19, 5(14.7) - 0.0023  Yes
[16] TACSTD-1
2007 Lietal 93 426 T1-T3  SCC RT-PCR  MUCI 32 (34.4) 18.8 vs. 47.6 % 0.004  Yes
[17]
2011 Sunetal. 82 501 T1-T3  SCC RT-PCR  MUCI 23 (28.1) 21.7 vs. 62.7 % 0.0001 Yes
[18]
2013  Hagihara 46 - T1-T2 SCC, AC RT-PCR CEA, SCC 4 (8.7) - - -
et al.

[19]

not refer to prognosis. The RT-PCR method is more sen-
sitive than THC for detecting LNM because of the greater
quantity of sample. However, several problems remain for
RT-PCR examination. Since these epithelial markers are
not specific for cancer, how many markers are necessary?
What primers are suitable? If esophageal cancer-specific
markers become available, the results of RT-PCR exam-
inations will become more reliable.

Lymph node micrometastasis in gastric cancer

We collected 16 reports in which LNM was investigated by
THC for gastric cancer (Table 3) [20-35]. The definition of
LNM varied. A few studies examined the incidence of ITC
and micrometastasis classified on the basis of the TNM
classification criteria for gastric cancer [30, 31, 34, 36].
LNM is basically defined as the presence of a single or
small clusters of gastric tumor cells identified by THC in
lymph nodes classified as pNO from HE staining. Table 3
summarizes studies reported since 1996 on LNM deter-
mined by IHC in patients with pNO gastric cancer. Num-
bers of patients and average number of lymph nodes
examined ranged from 34 to 308, and from 9.0 to 41.9,
respectively. Seven reports included only early gastric
cancer, while the others included both early and advanced
cancer. All researchers used CK antibody to detect LNM,
and several kinds of CKs such as CAMS.2, AE1/AE3 and
MNF116 were used. The percentage of patients with LNM
ranged from 10.0 to 36.0 %. Even in the 7 reports limited
to early cancer, the incidence of LNM was found in the
range of 10.0 to 31.8 %. This suggests that LNM has fre-
quently already occurred in T1 tumor even if lymph node
metastasis is not identified on routine histological exami-
nation. Prognosis was described in 14 of the 16 reports.
Regarding the relationship between presence and absence

of LNM and prognosis, nine authors found a significant
correlation. The authors who did not find a correlation
between LNM and prognosis indicated that standard gas-
trectomy with D2 lymphadenectomy was an appropriate
treatment for gastric cancer, even in the presence of LNM
determined by IHC [24]. In contrast, in a study of 160
gastric cancer patients with pT1NO tumors, Cao et al. [34]
recently reported LNM as one of the most important
prognostic factors in multivariate survival analysis. When
Yonemura et al. [30] focused on the clinical significance of
ITC (single tumor cells or small clusters of cells measuring
<0.2 mm by TNM classification), patients with ITC
showed a significantly poorer prognosis than those without
ITC. Furthermore, they examined immunohistochemically
the proliferative activity of ITC using Ki-67 (MIB-1) and
demonstrated positive MIB-1 labeling in 12 of 25 ITC
(48.0 %) with a single tumor cell and in 49 of 52 ITC
(94.2 %) with clusters. Similarly, when we assessed the
proliferative activity of ITC and micrometastasis by dou-
ble-staining THC analysis with CY and Ki-67 mAb, Ki-67
positivity rates for LNM and ITC were 92 and 29 %,
respectively [36]. These two studies suggest that, at the
very least, micrometastatic tumor cells in lymph nodes
display proliferative activity. Residual ITC when complete
lymph node dissection is not performed might thus repre-
sent a high risk factor for tumor recurrence.

Some researchers have tried to examine LNM using RT-
PCR (Table 4) [37-41]. According to these studies, sim-
plex or multiplex RT-PCR assay using target molecular
markers is performed for the detection of LNM in gastric
cancer. The number of patients was relatively small,
ranging from 10 to 80, and the markers used varied,
including CEA, CK, Mage3, MUC2 and TFF1. The inci-
dence of LNM detected by RT-PCR was over 20 %. We
compared the incidence of LNM between IHC and RT-
PCR assay in 1,862 lymph nodes obtained from 80 patients
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