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NOON

ed-on. three cell lines. After 12 hours, cells were lysed with lysis buffer and further processed
d-and analyzed using LAS3000 (Fuji Film Co., Tokyo, Japan). (B) Determination of signaling
phokmase arrays performed on three cell lines demonstrated that STAT5a (Y699) activation
, with:a pixel density of ~0.4. In UT-7/Epo cultured with Epo, the level of STAT5a (Y699) phos-

phorylation was almost at the same as in both types’ ‘of "ansduced cells cultured with Epo, with a pixel density of ~0.8. The Akt (T308) and AMPKal

pathways were also activated at almost the same leve
only in transduced cells, with pixel density ratios:(tran:

Discussion
Our findings indicate that the overexpression of RPL11 and
RDHI11 can maintain the growth and proliferation of UT-7/
Epo cells in culture conditions in the absence of Epo. Inter-
estingly, the proliferation of bo RPL11- and RDH11-
transduced cells was not dué““to,a ocrine manner as shown
in Figure 3. Gene transfer.of RPLI1I to UT-7/Epo cells re-
sulted in more increased number of cells and colonies
than that of RDHII. In addition, the percentage of
apoptotic cells in RPL11-transduced cells was much lower
than that in RDHI11-transduced cells. Therefore, it is
possible that RPL11 has greater potential than RDH11 to
induce the proliferation of UT-7/Epo cells. RPL11 has
been recently demonstrated to be essential for normal cell
proliferation by supporting ribosomal biogenesis and tran-
scription capacity [9]. In the special context of erythroid

1 all cell Tines, with pixel densities of ~0.8. CREB, and Lyn kinases were predominantly activated
ed cells vs. UT-7/Epo cells) of ~2.

proliferation, RPL11 has been previously reported to in-
crease the translation of a specific set of transcripts, such
as Bagl, which encodes an Hsp70 cochaperone, and
Csdel, which encodes an RNA-binding protein, and both
were expressed at increased levels in erythroblasts [10]. A
recent report using zebrafish embryos also showed that
RPL11 could support hematopoietic iron metabolism and
Hb synthesis, whereas the promotion of erythroid prolifer-
ation by RDH11 is due to all-frans-retinoic acid, an active
metabolite of this enzyme’s catalytic process [11-13]. As
demonstrated in this study, these effects result in promotion
of erythroid proliferation by RPL11 and RDH11. Notably,
increased expression level of RDHII gene in UT-7/Epo
cells might not significantly increase the level of retinoic
acids produced in these cells, because the substrate for
the enzymatic reaction is limited. Moreover, the apoptosis
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transduced cells were harvested and processed for immunocytochemistry. The phosphorylation of CREB and Lyn was demonstrated.
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Figure 9. Quantitative RT-PCR of STATS5 target genes. The expression of PIM2 did not differ significantly among the samples (left). By contrast, CCND1
was upregulated in RPL11-and RDH11-transduced cells (2.47- and 43.37-fold, respectively) relative to the control UT-7/Epo cells (right). RO = Il HH.

induced by retinoic acid might be another reason that
RDH11-transduced cells proliferate less rapidly than those
transduced with RPL11 [14]. Only 30% of RPL11- and
RDH11-transduced cells could produce a-globin, compared
with 80% of UT-7/Epo cells. Several possibilities might
explain this reverse switching, including increased expres-
sion of specific miRNAs [15~18]. In RDH11-transduced

Q28 cells, retinoic acid can also inhibit HDACs, resulting in

activation of transcriptional processes and ultimately
increased expression of y-globin [19].

Our experiments also demonstrated that STATS5a was
markedly activated to almost the same extent in all cell
lines, whereas the CREB and Lyn kinases were highly acti-
vated in RPL11-and RDHI11-transduced cells. Lyn is a
hematopoiesis-specific kinase, and its role in erythroid pre-
cursors has also been identified. Lyn activation. triggers
phosphorylation of STATS5 molecules by phosphorylation
of protein phosphatase SHP-1 [20,21]. Activation of

Q29 CREB by the cAMP signaling pathway can also induce

STATS activation [22,23]. By inhibition of STATS5 activity
using STATS inhibitor, the proliferation of both RPL11-
and RDHI1 1-transduced cells significantly decreased, espe-
cially at day 2 with the dosage of 200 pmol/L (Fig. 8B).
Thus, it appears that activation of STATS was specifically
involved in erythroid proliferation in both types of trans-
duced cells, in accordance with a previous report [24]. Sur-
prisingly, our data showed that STATS inhibitor could
inhibit the proliferation of RPL11-transduced cells, but
not as strongly as that of RDHI1-transduced cells. This
observation indicates that the signaling pathways involving
in proliferation of RPL11-transduced cells might be more
complex. Moreover, the JAK2 phosphorylation could not
be demonstrated in our study. From previous report,
JAK2 phosphorylation could be detected for only a
2-hour interval immediately after adding Epo into the
Epo-deprived culture medium [25]. Another important pos-

sibility is that JAK2 activation is not the upstream signaling
pathway of STATS5 in our conditions. Thus, STATS phos-
phorylation in both RPL11- and RDHI11-transduced cells
may be the direct activation resulting from Lyn and
CREB phosphorylation.

The activation of antiapoptotic proteins, BCL-XL and
BCL-2, by STATS might also be one of the mechanisms
that maintains the growth and survival of these cells [26].
Furthermore, CCNDI expression was highly upregulated
in both types of transduced cells, especially in RDH11-
transduced cells. STATS can induce CCNDI expression,
thereby stimulating cell-cycle progression and further
inducing proliferation [27-29]. However, the high accumu-
lation of CCND! at day 3 in RDH11-transduced cells might
have been due to their active entries from Gy/G; to late S
phases, concomitant with the accumulation at G,/M phases,
as demonstrated in RDHI11 cell cycle determination at
72 hours [27]. )

In conclusion, our study demonstrates that both of
RPL11 and RDHI11 can induce proliferation in the UT-7/
Epo cell line in the absence of Epo. Our data provide
more insights into the mechanisms underlying induction
of erythroid proliferation, a promising treatment strategy
for patients with conditions such as Diamond-Blackfan
anemia (DBA). DBA is caused by mutations of components
of the small and large ribosomal subunits, such as RPLS
and RPL11 [30-32]. Therefore, transduction of RPL11
should help to improve patients’ symptoms and signs. In
addition, transduction of RDH11 results in increased syn-
thesis of all-zrans-retinoic acid, a potential therapeutic
approach for treating the refractory anemia in myelodys-
plastic syndromes [33]. Our findings also indicate that
STATS activation is involved in this proliferation process.
Finally, CREB and Lyn protein kinases might participate
in the activation of STATS in our transduced cells, resulting
in further upregulation of CCNDI expression.
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Supplementary Figure 1. Analysis of hemoglobin content in RPL11- and RDH11-transduced cells. Hemoglobin production in both types of transduced
cells was compared with that in the parental UT-7/Epo cells. Switching of hemoglobin type was demonstrated to have occurred: adult hemoglobin (B-globin)
was highly expressed in UT-7/Epo cells, whereas fetal hemoglobin (y-globin) was highly expressed in both types of transduced cells.
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Supplementary Figure 2. Cell cycle determination using FITC-
conjugated anti-BrdU, analyzed by flow cytometry of UT-7/Epo cultured
with Epo. The Go/G;, S, Go/mol/L, and apoptotic groups were gated as
shown.
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TLR7 Ligand Augments GM-CSF-Initiated Antitumor
Immunity through Activation of Plasmacytoid Dendritic Cells

Megumi Narusawa’, Hiroyuki Inoue’?®, Chika Sakamoto’, Yumiko Matsumura’, Atsushi Takahashi’,
Tomoko Inoue’, Ayumi Watanabe', Shohei Miyamoto', Yoshie Miura', Yasuki Hijikata®,

Yoshihiro Tanaka®, Makoto Inoue®, Koichi Takayama?, Toshihiko Okazaki*, Mamoru Hasegawa®,
Yoichi Nakanishi?, and Kenzaburo Tani'*®

Abstract

Vaccination with irradiated granulocyte macrophage colony-stimulating factor (GM-CSF)-transduced autol-
ogous tumor cells (GVAX) has been shown to induce therapeutic antitumor immunity. However, its effectiveness
is limited. We therefore attempted to improve the antitumor effect by identifying little-known key pathways in
GM-CSF-sensitized dendritic cells (GM-DC) in tumor-draining lymph nodes (TDLN). We initially confirmed that
syngeneic mice subcutaneously injected with poorly immunogenic Lewis lung carcinoma (LLC) cells transduced
with Sendai virus encoding GM-CSF (LLC/SeV/GM) remarkably rejected the tumor growth. Using cDNA
microarrays, we found that expression levels of type I interferon (IFN)-related genes, predominantly expressed
in plasmacytoid DCs (pDC), were significantly upregulated in TDLN-derived GM-DCs and focused on pDCs.
Indeed, mouse experiments demonstrated that the effective induction of GM-CSF-induced antitumor immunity
observed in immunocompetent mice treated with LLC/SeV/GM cells was significantly attenuated when pDC-
depleted or IFNo. receptor knockout (IENAR /™) mice were used. Importantly, in both LLC and CT26 colon
cancer-bearing mice, the combinational use of imiquimod with autologous GVAX therapy overcame the
refractoriness to GVAX monotherapy accompanied by tolerability. Mechanistically, mice treated with the
combined vaccination displayed increased expression levels of CD86, CD9, and Siglec-H, which correlate with
an antitumor phenotype, in pDCs, but decreased the ratio of CD4"CD25 FoxP3" regulatory T cells in TDLNs.
Collectively, these findings indicate that the additional use of imiquimod to activate pDCs with type I IFN
production, as a positive regulator of T-cell priming, could enhance the immunologic antitumor effects of GVAX
therapy, shedding promising light on the understanding and treatment of GM-CSF-based cancer immunother-
apy. Cancer Immunol Res; 2(6); 568-80. ©2014 AACR.

Introduction is not satisfactory, raising an urgent need to improve the
antitumor effect of GVAX. Although GM-CSF signaling is
essential in conventional DC (¢cDC) maturation, which leads
to effective generation of tumor-associated antigen (TAA)-
specific T cells and differentiation, the underlying molecular
mechanism of how GM-CSF sensitizes and matures DCs (GM-
DC, i.e., GM-CSF-sensitized DCs) to trigger host antitumor
immunity remains unclear.

Therefore, in this study, we attempted to improve the
antitumor effects of GVAX therapy through identification of
the key cluster genes upregulated in GM-DCs that operate T-

In recent clinical trials of patients with diverse solid can-
cers, cancer immunotherapy such as therapeutic vaccination
with granulocyte macrophage colony-stimulating factor
(GM-CSF) gene-transduced tumor vaccines (GVAX), as well
as sipuleucel-T (Provenge; Dendreon), the first FDA-approved
GM-CSF-based therapeutic dendritic cell (DC) vaccine for
prostate cancer, induced antitumor immune responses with
tolerability (1-3). However, the efficacy of this therapy alone
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cell priming in tumor-draining lymph nodes (TDLN) by con-
ducting a ¢cDNA microarray analysis. We used a syngeneic
Lewis lung carcinoma (LLC)-bearing mouse, which exhibited
remarkable tumor regression following subcutaneous admin-
istration of fusion (F) gene-deleted nontransmissible Sendai
virus vector-mediated GM-CSF gene-transduced LLC (LLC/
SeV/GM) cells (4). Using this experimental system, the expres-
sion microarray analysis elucidated that pathways involving
Toll-like receptor 7 (TLR7) and interferon regulatory factor 7
(IRF7), which induce type I interferon (IFN) production in
plasmacytoid DCs (pDG; ref. 5), were upregulated in GM-CSF-
activated mature DCs. Further activation of this pathway using
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Figure 1. Tumor development of poorly immunogenic LLC and B16F 10 cells modified to produce GM-CSF was markedly inhibited. A, dose-escalation studies
to assess GM-CSF production from LLC/SeV/GM celis (MOl = 0, 3, 10, and 100). GM-CSF production levels in the supermnatants from the 48-hour
culture were measured by ELISA. B and C, tumorigenicity assays using LLC cells. B, a total of 3.0 x 10° LLC and LLC/SeV/GM (MOl of 1, 10, or 100)
cells were subcutaneously inoculated into the right flank of C57/BLBN mice (1 = 3). C, atotal 0f 2.0 x 10° LLC, LLC/SeV/GFP, or LLC/SeV/GM (MOI=100) cells
were inoculated into the right flank of C57/BL6N mice (n = 6). Significant tumor regression (left) and prolonged survival (right) was shown in mice treated
with LLC/SeV/GM cells. D, tumerigenicity assays using B16F10 cells. In total, 1.0 x 10° B16F10, B16/SeV/GFP, or B16/SeV/GM (MOI = 30) cells were
inoculated into the right flanks of C57/BLEBN mice (n = 6). Significant tumor regression (left) and prolonged survival {right) were observed in mice treated with
B16/SeV/GM cells. The asterisks indicate statistically significant differences (*, P <0.05; **, P < 0.01; ***, P < 0.001). Kaplan-Meier survival curves are shown,
and mortality was determined by the log-rank test (LLC vs. LLC/SeV/GM and LLC/SeV/GFP vs. LLC/SeV/GM; P < 0.001, LLC vs. LLC/SeV/GFP; P = 0.67,
B16 vs. B16/SeV/GM and B16/SeV/GFP vs. B16/SeV/GM; P < 0.05).
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Tabile 1. Canonical pathways identified by IPA
Pathways —log (P value) Molecules
Role of pattern recognition receptors in 7.42E+00 0AS1, C3, OAS2, IL6, CCL5, Oasif, OAS3, IFNA1/IFNA13,
recognition of bacteria and viruses TLR2, IFIH1, IRF7, DDX58, TLR7, PIK3R6, EIF2AK2
Pathogenesis of multiple sclerosis 5.33E+00 CXCL10, CXCL9, CCL4, CCL5, CXCL11
Activation of IRF by cytosolic pattern 4.38E+00 DHX58, IFIH1, IRF7, DDX58, ZBP1, STAT2, IL6, IFIT2,
recognition receptors IFNA1/IFNA13, ISG15
IFN signaling 3.96E+00 IFIT3, IFIT1, OAS1, MX1, IFI35, STAT2, IFNA1/IFNA13
DC maturation 3.01E+00 FCGR2A, HLA-DMB, IL6, MAPK13, FCGR2B, TREM2,
IFNA1/IFNA13, FCGR1A, TLR2, COL1A2, IL1RN,
FSCN1, PIK3R6, STAT2
Hepatic fibrosis/hepatic stellate cell activation 2.58E+00 COL1A2, CXCL3, FN1, CXCLS, IGF1, PDGFA, CCL21,
CD14, MMP13, CCLS5, IL8, IFNA1/IFNA13
Role of hypercytokinemia/hyperchemokinemia 2.49E+00 CXCL10, CCL4, IL1RN, CCL5, IL6, IFNA1/IFNA13
in the pathogenesis of influenza
Communication between innate and 2.47E+00 CXCL10, TLR2, CCL4, IL1RN, TLR7, CCLS5, IL6,
adaptive immune cells IFNA1/IFNA13, Ccl9
Role of tissue factor in cancer 2.45E+00 F10, PDIA2, PIK3R6, HCK, MMP13, F7, LIMK2,
MAPK13, FGR, F2
LXR/RXR activation 2.26E+00 APOE, SCD, C3, MSR1 (includes EG:20288), IL1RN, LPL,
CLU, CD14, IL6, GC

TLR7 agonist enhanced the therapeutic antitumor effects of
GVAX therapy using irradiated autologous GM-CSF gene-
transduced vaccine cells in both LLC and CT26 tumor-bearing
mouse models with augmented pDC activation. These results
showed that the combination of GVAX and imiquimod is an
effective therapeutic strategy for cancer immunotherapy, and
indicate that activated pDCs have a critical role in the GM-
CSF-induced induction of antitumor immunity.

Materials and Methods
Mice

Five- to 10-week-old female immunocompetent C57/BL6N
and BALB/cN mice were purchased from Charles River Lab-
oratories Japan and housed in the animal maintenance facility
at Kyushu University (Fukuoka, Japan). Type I IFN receptor
knockout (IFNAR ™) mice were purchased from The Jackson
Laboratory. All animal experiments were approved by the
Comumnittee of the Ethics on Animal Experiments in the Faculty
of Medicine, Kyushu University. Mouse experiments were
carried out at least twice to confirm results.

Tumor cell lines
LLC and CT26 cells were purchased from the American Type
Culture Collection (ATCC) and passaged for 3 to 4 months after

resuscitation. The mouse melanoma cell line (B16F10) was a
kind gift from Dr. Shinji Okano (Kyushu University) and was
validated as free from Mycoplasma infection; no other valida-
tions were performed. Both LLC and CT26 cells were validated
as free from Mycoplasma infection. No other validations were
performed; besides, the former were found as free from ectro-
melia virus. LLC and B16F10 cells were maintained in Dulbec-
co's Modified Eagle Medium (DMEM; Nakalai Tesque) supple-
mented with 10% heat-inactivated fetal bovine serum (FBS)
and 1% antibiotic mixture (Nakalai Tesque). CT26 was main-
tained in RPMI-1640 (Nakalai Tesque) supplemented with 10%
FBS and 1% antibiotic mixture.

Gene transduction with nontransmissible recombinant
Sendai virus vectors

LLC, B16F10, or CT26 cells were infected with nontransmis-
sible Sendai virus vectors encoding green fluorescence protein
(GFP) or mouse GM-CSF (SeV/GFP or SeV/GM, respectively),
which were prepared by DNAVEC Corp. (6), at the indicated
multiplicity of infection (MOI) for 90 minutes (termed as LLC/
SeV/GFP, LLC/SeV/GM, : B16/SeV/GFP, B16/S¢V/GM, or
CT26/SeV/GM cells, respectively). They were cultured for 48
hours after viral gene transduction and used for following
mouse studies.

Figure 2. GM-CSF-sensitized DCs elicited superior capacities to stimulate T-cell proliferation and to mobilize TAA-phagocytosed mature DCs into TDLNs. A,
CFSE-labeled allogeneic MLR assay. Iradiated CD11¢*DCs from mice treated with indicated tumor challenge were mixed with CFSE-labeled allogeneic
T cells. After 3 days of coculture, the proliferation rates of T cells were assessed by flow cytometric analysis. Representative histograms depict CFSE
expression of allogeneic CD4*CD3" or CD8*CD3™ T cells (left). Bar graphs, mean + SEM percentage of CFSE-diluted cells/total indicated T cells (right). B,
representative histograms depict frequency distributions of MFI of CD80 or CD86 expression in CD11¢™* DCs from indicated mouse groups on day 2 or

4 after the tumor challenge (leff). Bar graphs, mean + SEM of MFI of CD80 on DCs in TDLNS (right). C, representative dot plots show PKH267CD11c™
celis gated by their FSC/SSC profiles in TDLNs or CLNSs (left). Bar graphs, mean -+ SEM of percentage of CD11c PKH26™ cells in TDLNs or CLNs (right). D, bar
graphs, mean -+ SEM of MFI of CD86 expression levels in PKH26"CD11c" cells (*, P < 0.05; ***, P < 0.001).
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