Pharmacogenomics toward personalized tamaxifen therapy for breast cancer

test until robust confirmatory data are available from
adequately powered prospective trials 7273}

Recently, as a result of meta-analysis on data from
4973 tamoxifen-treated patients, the International
Tamosxifen Pharmacogenomics Consortium (12 glob-
ally distributed sites) reported that CYP2D6 poor
metabolizer status was associated with poorer invasive
DFS using strict inclusion criteria (IDFS: HR: 1.25;
95% CI: 1.06, 1.47; p = 0.009) 1171, The potential role
of CYP2D6 genotype assessment in determining if the
patients with ER-positive breast cancer should receive
tamoxifen is still controversial. Prospective studies are
necessary to establish if genotype-guided personalized
tamoxifen therapy improves clinical outcomes of the
patients with ER-positive breast cancer 17].

Dose-adjustment study of tamoxifen based
on CYP2D6 genotypes

The breast cancer patients who are heterozygous and
homozygous for decreased function and null alleles of
CYP2DG are reported to show lower plasma concentra-
tions of endoxifen and 4-hydroxytamoxifen compared
with patients with homozygous wild-type allele {277,
resulting in worse clinical outcome in tamoxifen thes-
apy. Kiyotani ez #/. reported tamoxifen dose adjustment
study using 98 Japanese breast cancer patients, who
had been taking 20 mg of tamoxifen daily as adjuvant
serting 119]. In their study, dosages of ramoxifen were:
increased to 30 and 40 mg/day for the patients who have
one ot no normal allele of CYP2DG, respectively. In the
patients with CYP2D6*1/*10 and CYP2D6*10/*10,
the plasma endoxifen levels after dose increase were
1.4- and 1.7-fold higher, respectively, than those before
the increase {p < 0.001) n91. These plasma concentra-
tions of endoxifen achieved similar level of those in
the CYP2DG6 wild-type patients receiving 20 mg/day
of tamoxifen. In addition, they showed thar the inci-
dence of adverse events was not significantly different
berween before and after dose adjustment, and con-
cluded that their study provided the evidence that dose
adjustment could be useful for the patients carrying
CYPZDG*I0 allele to maintain the effective endoxifen
level. Similar genorype-guided tamoxifen dosing study
was reported [920]. Irvin ez a/. also showed the similar
results, and the feasibility of genotype-driven tamoxi-
fen dosing and demonstrates that doubling the tamoxi-
fen dose can increase endoxifen concentrations in IM
and PM patients 19}.

Possible genetic markers for clinical
response to tamoxifen

As shown in Figure 1, UGTs, SULTs and the other
CYPs are involved in the metabolism of tamoxifen.
Some reports suggest that genetic variations in these

genes may affect the efficacy or roxicity of tamoxifen
therapy (142227.76-79]. Several genetic polymorphisms
are reported in SULTIAI and some investigations
on SULTIAI*2, which causes decreased SULT1A1L
activity, failed to find association with ramoxifen effi-
cacy 12380). Genetic polymorphisms in the CYP344
have been reported, however, their contribution to
influence the tamoxifen metabolism might be small
because of their low allelic frequencies. On the other
hand, CYP3A45*3 allele is known w influence to
CYP3AS5 expression level [31]. Several studies inves-
tigated the association of CYP345*3 with tamoxifen
metabolism or clinical outcome of tamoxifen therapy,
however, none of them report their significant associa-
tion [27.74-76,81-83]. CYP2C19*2 and CYP2C19*3 are
known to be null allele, and CYP2CI19%17, which is
recently identified genetic variation and located in pro-
moter region of this gene, is associated with increased
CYP2CI19 activity (UM phenotype) (77.78]. The signifi-
cant association with clinical outcome after tamoxifen
treatment was found in CYP2C19*17 carriers, but not
in CYP2CI19*2 not *3 carriers (75781, ABCC2 plays
an important role in the biliary excretion of conju-
gated drugs and xenobiotics (84.85]. Tamoxifen and
its metabolites are excreted into the biliary tract in
liver as glucuronides or sulfates (86;. In a recent study,
an intronic SNP in ABCC2 was found to be signifi-
cantly associated with the clinical outcome of breast
cancer patients treated with tamoxifen, however, this
SNP was not associated with plasma concentration
of endoxifen or other metabolites (141, This suggests
that the contribution of ABCC2 to biliary excretion
of tamoxifen and its metabolites might be limited. A
genome-wide association study for clinical outcome
of the breast cancer patients treated with tamoxifen
was reported [79]. In this study, 240 patients were ana-
lyzed by genome-wide genotyping, and 105 and 117
cases were used for replication studies as independent
cohorts, respectively. Out of 15 SNPs which showed
significant associations with recurrence-free survival
in genome-wide association study stage, rs10509373 in
ClI0orfll gene on 10q22 was significantly associated
with tamoxifen efficacy in the two independent rep-
lication stages (79]. Although further validation stud-
ies and functional analysis would be required to verify
their results, Cl00rf11 could be a promising genetic
marker to predict the clinical outcomes of patients
receiving tamoxifen therapy i79].

Conclusion

There have been several reports on the association
between CYP2DG genotype and clinical outcome or
tamoxifen metabolism in breast cancer patients treated
with tamoxifen. The results of the assaciation studies

Review

) future science group

wyewfuturemedicine.com

291



6T

(€351 {5107) saruouabospuiivyd

§ noiS 20ueIns 2y

Table 2. Studies evaluating association of CYP2D6 genotype with response to tamoxifen therapy.

Positive Goetz et al. 190 - 20 mg/day for 5 years DFS 2.44 (1.22-4.90) 0.012 {74)
Goetz et al. 180 100 20 mg/day for 5 years RFS 2.69(1.34-5.37) 0.005 [15]
Schroth et al. 206 100 - RFS 2.24 (1.16-4.33) 0.02 {71
Newman et al. 115 63.5 20 mg/day, median duration >4 years RFS 1.9 (0.8-4.8) 0.19 (58]
Kiyotani et al. 58 100 20 mg/day for S years RFS 8.67 (1.06-71.08)  0.044 {12}
Xu et al. 152 100 - DFS 4.7 (1.1-20.0} 0.04 {54)
Schroth et al. 1325 100 ‘ For 5 years RFS 2.12 (1.28-3.50) 0.003 (18]
Kiyotani et al. 282 100 20 mg/day for 5 years RFS 9.52 (2.79-32.45)  0.0032 [14]
Ramon et al. 91 39.8 - DFS 0.016 iss)
Park et al. 110 21.80 20 mg/day, median duration 3.9 years RFS 5.59 (0.93-33.5) 0.05 167}
Thompson et al. 542 100 20 mg/day for 5 years RFS 1.52 (0.98-2.36) 0.06 168)
Teh et al. 95 - 20 mg/day RFS 13.14 (1.54-109.9) 0.004 [59]
Sirachainanetal. 39 100 - DFS 0.036 {60}
Damodaranetal. 132 6.80 For 5 years . RFS 7.15(1.77-28.89)  0.006 {61}
Goetz et al 453 100 20 mg/day for 5 years Disease event  2.45 (1.05-5.73) 0.04 I571
Province et al. 4973 (1996) 100 20 mg/day for 5 years 1DFS 1.25 (1.06-1.47) 0.008 117

Negative  Wegman et al. 76 50 40 mg/day for 2 years RFS <1.0¢ - i53)
Nowell et al. 160 14.2 Not reported DFS 0.67 (0.33-1.35) 0.19 (22}
Wegman et al. 103 - 40 mg/day for 2 years RFS 0.87 (0.38-1.97) 0.74 [23)

MM - 40 mg/day for 5 years RFS 0.33 (0.08-1.43) 0.14

QOkishiro et al. 173 42.2 20 mg/day, median 52 months RFS 0.94 (0.34-2.60) 0.95 {62]
Stingl et al. 493 58 20 mg/day TTP - 0.10 {63]
Kiyotani et al. 167 0 20 mg/day for 5 years RFS 0.64 (0.20-1.99) 0.44 (64]
Abraham et al. 3155 48.4 20 mg/day RFS 1.57 (0.64-3.84) 0.32 {561
Lash et al. 340 - - Disease event 1.3 (0.60-2.9) 0.88 [6s}
Park et al. 130 18.2 - RFS 1.34 (0.42-4.28) 0.63 166)
Rae et al. 588 95.7 20 mg/day for 5 years RFS 1.22 (0.76-1.96) 0.44 {69)
Regan et al. 973 100 ’ 20 mg/day for 5 years RFS 0.58 (0.28-1.21) 0.35 211
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Pharmacagenomics toward personalized tamoxifen therapy for breast cancer Review

of tamoxifen metabolism with CYP2D6 genotype are
consistent in most of the studies, however, the results
of the association studies of tamoxifen efficacy with

tion berween CYP2D6 genotype and clinical outcome
after tamoxifen therapy, one of the largest meta-anal-
ysis performed by International Tamoxifen Pharmaco-
CYP2D6 genotype are still controversial. Although genomics Consartium reported that CYP2D6 could be
there might be several reasons for these controversial a strong predictor of invasive DFS using strict inclu-
results, well-designed prospective studies will clarify if sion criteria {postmenopausal women with ER-posi-
CYP2DG genotype test could improve the outcomes of  tive breast cancer receiving 20 mg/day tamoxifen for
women with ER-positive breast cancer. Moreover, the 5 years). In cither case, prospective studies are essen-
combined genetic test of CYP2D6 with a few predictive  tial to finally conclude if genotype-guided selection
genetic markers may provide new insights into personal-  of tamoxifen therapy improves clinical outcomes of
ized selection of hormonal therapy for the patients with  women with ER-positive breast cancer. If the results
breast cancer, The potent CYP2D6 inhibitors includ-  will show the positive association of CYP2D6 genotype
ing paroxetine should be avoided in the breast cancer with clinical outcome of tamoxifen-treated patients,
patients receiving tamoxifen as alternative treatment US FDA may approve and recommend routine use of
should be available in most cases. the CYP2D6 geniotype test for personalized tamoxifen
therapy in adjuvant or metastatic breast cancer setting,

Future perspective

The dose-adjustment studies based on the CYP2D6
genotypes showed that the increase of tamoxifen dose
was able to increase the plasma endoxifen level, and
expected to improve the prognosis of the tamoxifen-
treated patients with reduced CYP2DG genotype (5.19].
A large-scale prospective study will clarify whether
the dose-adjustment strategy could improve tamoxi-
fen therapy in breast cancer patients. Although there
are some discrepant reports questioning the associa-
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« Tamoxifen treatment reduced the risk of breast cancer relapse for at least 15 years, particularly estrogen
receptor positive mvaswe tumors in premenopausal women.

CYP2D6 is known to be a key enzyme to generate one of the potent tamoxifen metabolites, endoxifen.
Although there are some discrepant reports questioning the association between CYPZD6 genotype and
clinical outcome after tamoxifen therapy, the highest level of evidence to test the CYP2D6-tamoxifen
hypothesis will come from larger scale prospective clinical trials.

Combined analysis of newly identified genetic marker(s) with previously identified ones, CYP2D6, ABCC2 and
so on, might be useful to predict the clinical outcome of patients receiving tamoxifen therapy.
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Lymph node shape in computed tomography
imaging as a predictor for axillary lymph node
metastasis in patients with breast cancer
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Abstract. The aim of the present study was to evaluate whether
preoperative computed tomography (CT) is a useful modality
for the diagnosis of axillary lymph node metastasis. The axil-
lary lymph node status was examined in patients with primary
breast cancer who had undergone surgery. In total, 75 patients
were analyzed with preoperative contrast CT images, following
which the patients underwent an intraoperative sentinel lymph
node biopsy to determine possible predictors of axillary lymph
node metastasis. The lymph node shape was classified into
three groups, which included fat-, clear-and obscure-types.
Multivariate analysis revealed that clear-type lymph nodes
in preoperative contrast CT imaging may be an independent
predictor of lymph node metastasis (odds ratio, 15; P=0.003).
Therefore, the results indicated that preoperative CT examina-
tion is useful to predict axillary lymph node metastasis.

Introduction

Axillary lymph node excision in breast cancer was previously
the standard optimal surgical procedure for breast cancer.
However, currently this procedure is not always essential since
the status of axillary lymph node metastasis can be predicted
by an intraoperative sentinel lymph node biopsy (SNB) (1).
Despite this development, a number of institutions in Japan
perform lymph node excision for cases demonstrated to be
negative by intraoperative SNB. Thus, axillary lymph node
dissection tends to be unnecessary, particularly in a number of
patients with early stage breast cancer (2).

Axillary lymph node metastasis is a multifactorial event,
and several clinicopathological factors have been reported

Correspondence to: Professor Koichi Hirata, First Department
of Surgery, School of Medicine, Sapporo Medical University,
South 1 West 16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
E-mail: gkutomi@yahoo.co jp

Key words: breast cancer, computed tomography, lymph node shape

as predictors of lymph node metastasis in breast cancer (3).
However, since only a few methods exist for precisely
predicting the axillary lymph node metastasis of an individual
patient with breast cancer, a number of patients may not receive
appropriate treatment for such metastasis.

The development of diagnostic imaging systems has facili-
tated the evaluation of axillary lymph node metastasis prior to
surgery for breast cancer (4). Computed tomography (CT) is one
of the representative modalities that can be used to evaluate the
lymph node status, and is commonly used in hospitals due to
its noninvasive and inexpensive characteristics. However, the
number of studies investigating the clinical usefulness of CT in
determining the axillary lymph node status is limited (5).

Therefore, the aim of the present retrospective study was
to examine whether contrast CT imaging for the preoperative
evaluation of the axillary lymph node status was a clinically
useful modality.

Materials and methods

Fatients. A tota] of 75 patients with primary breast cancer thathad
undergone surgical treatment at the First Department of Surgery
of Sapporo Medical University (Sapporo, Japan) between 2009
and 2010 were recruited for the study. The clinical data from
the Medical Records Department were retrospectively obtained.
Written informed consent was required from all patients. All
the patients were Japanese females that had been pathologi-
cally diagnosed with invasive ductal carcinoma without distant
dissemination by whole body CT and bone scintigraphy. In this
department, preoperative contrast CT is normally performed.
Data on clinical information were confirmed from the
medical records of the patients and are shown in Table I.
Tumor status was classified according to UCLA-integrated
staging system classification with tumor, node and metastasis
categories (6). The expression of the estrogen receptor or
progesterone receptor was designated as positive when posi-
tive staining was observed and a total Allred score of =3 was
achieved. Tumors that were immunohistochemically scored
2+ or 3+ and were fluorescence in sifu hybridization-positive,
were regarded as HER2-positive (7). Patients were classified
into the following two groups: Group A consisted of patients



682

KUTOMI et al: A PREDICTOR FOR AXILLARY LYMPH NODE METASTASIS

Figure 1. CT images showing (A) fat-, (B) clear-and (C) obscure-type axillary lymph nodes. CT, computed tomography.

who had been diagnosed as negative by SNB, while group B
comprised patients who had been diagnosed as axillary lymph
node metastasis-positive.

Evaluation of axillary lymph nodes by preoperative contrast
CT. Although the axillary lymph nodes were not palpable in
any patient, enhanced whole body CT (Aquilion 64; Toshiba,
Tokyo, Japan) with contrast was preoperatively performed
since this is the standard procedure in Japan. A helical CT
unit (64-slice CT system; Light Speed VCT vision; GE
Healthcare, Milwaukee, WI, USA) was used for the evalua-
tion of the axillary lymph nodes. The patients were in a supine
position and raised their arms during the CT examination. CT
images of the axillary lymph nodes were obtained as 2-mm
slices through the axilla. The most caudally located enhanced
lymph nodes were considered to be the sentinel lymph nodes.
Lymph node size and shape were evaluated, as well as the
Hounsfield units (HU) of the axillary lymph nodes in the CT
images. The average of the region of interest (ROI) was used
to evaluate the HU as a CT score. Lymph node shapes were
classified into three groups, according to a previous study (8).
Nodes with an internal fat concentration were classified as the
fat-type (Fig. 1A), those with a size of =10 mm that appeared
as rounded nodes without any internal fat were classified as the
clear-type (Fig. 1B), while the nodes with unclear borders were
classified as the obscure-type (Fig. 1C).

SNB. Prior to the initiation of surgery, 3-5 ml indigo carmine
was injected into the peritumor, as well as subcutaneous and
intradermal portions of the areola. Sentinel lymph nodes were
located following massaging the expected area for 2-3 min.
All the sentinel lymph nodes identified were sliced into
2-mm sections and stained with hematoxylin and eosin. A
surgeon conducted the SNB, while a pathologist evaluated the
specimens during the surgery. Finally, SNB specimens were
embedded in paraffin and evaluated.

Statistical analysis. Analysis of the continuous variables,
including age, tumor size, lymph node size and the CT score,
was conducted with the t-test, whereas the * test was applied
for the categorical variables (Table I). For the logistic regres-
sion analysis, odds ratios and 95% confidence intervals (ClIs)
were calculated following adjustment for age. All the statis-
tical analyses and corresponding P-values were two-sided,
and P<0.05 was considered to indicate a statistically signifi-
cant difference. All statistical calculations were performed

Table 1. Clinical characteristics of the 75 patients with breast
cancer.

Characteristics Patients
Mean age, years (range)

Total (n=75) 56 (35-84)

Pre-menopause (n=28) 54 (32-60)

Post-menopause (n=47) 60 (40-82)
pT. n (%)

pTis 14 (18.7)

pT1 23 (30.6)

pT2 38 (50.7)
HR status, n (%)

ER(+), PgR(+) 40 (53.4)

ER(+), PgR(-) 19 (25.3)

ER(-), PeR(+) 7(9.3)

ER(-), PgR(-) 9 (12.0)
HER2 status, n (%)

Positive 11 (14.7)

Negative 64 (85.3)
PN, n (%)

pNO 56 (74.7)

pNI1 19 (25.3)

pN2 0
Surgery, n (%)

Breast-conserving 28 (37.3)

Mastectomy 47 (62.7)

*UCLA-integrated staging system classification with tumor, node and
metastasis categories (2002). HR, hormone receptor; ER, estrogen
receptor; PgR, progesterone receptor.

using JMP version 9.0 software (SAS Institute, Cary, NC,
USA).

Results

Characteristics of the patients. A total of 75 patients who had
received adequate treatment for primary breast cancer were
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Table II. Differences in the distributions of possible predictors for positive SNB.
Characteristics Group A (n=56) Group B (n=19) P-value
Menopause (pre/post), n 17/39 11/08 0.034
Tumor size®, cm 1.55+0.15 2.19+0.26 0.034
Axillary lymph node size®, cm 0.56+0.05 0.92+0.09 0.0007
Axillary lymph node shape in contrast CT
(fat/clear/obscure), n 17/08/31 2/14/3 <0.0001
CT score (RO 0.16+21.6 31.4+319 <0.0001

*Average of the ROI. *Results are expressed as the mean =+ standard deviation. SNB, sentinel lymph node biopsy; CT, computed tomography;

RO, region of interest.

Table III. Univariate and multivariate analyses of the predictors of SNB.

Univariate analysis

Multivariate analysis

Predictors Odds ratio 95% CI P-value Odds ratio 95% CI P-value
Tumor size (=2 cm, <2 cm) 0.84 0.29-2.39 074 045 0.10-1.8 0.26
Lymph node size (0.5, <0.5) 0.12 0.0062-0.64 0.01 0.16 0.0071-1.6 0.12
Shape
Obscure 0.15 0.040-0.58 0.006 0.30 0.056-1.6 0.15
Clear 17 4.7-60 <0.001 15 2.5-89 0.003
Fat 0.27 0.56-1.3 0.102 0.16 0.025-1.1 0.06
CT score (ROJ?; 20, <0) 0.22 0.047-0.74 0.013 0.95 0.15-6.0 0.95

*Average of the ROI. Values in brackets are the optimal cut-off point defined using a receiver operating characteristic curve. CI, confidence
interval; SNB, sentinel lymph node biopsy; CT, computed tomography; ROI, region of interest.

analyzed in the study (Table I). A mastectomy was performed
for 61% of the population.

Patients were classified into the following two groups
according to the histological diagnosis from the SNB. Group A
(n=56) patients were diagnosed as axillary lymph node metas-
tasis-negative by SNB, while group B (n=19) patients were
diagnosed as axillary lymph node metastasis-positive.

Difference in the distributions of the possible predictors of
axillary lymph node metastasis. Differences in the meno-
pausal status, histological type, tumor size, axillary lymph
node size, axillary lymph node shape in contrast CT and
CT scores (the average of the ROI) were analyzed between
groups A and B (Table II). The menopausal status, tumor
size, axillary lymph node size, axillary lymph node shape and
CT score exhibited statistically significant differences when
comparing the two groups (Table II). In addition, the ratio of
the premenopausal group was higher in group B compared
with group A (P=0.034), and the primary tumor size, axillary
lymph node size and CT score (ROI) were larger in group B
compared with group A (P=0.034, P=0.0007 and P<0.0001,
respectively). Furthermore, of the 56 patients in group A,
fat-, clear- and obscure-type lymph nodes were observed in
17 (30.4%), 8 (14.3%) and 31 cases (55.3%), respectively. By

contrast, fat-, clear- and obscure-type lymph nodes were iden-
tified in two (10.5%), 14 (73.7%) and three cases (15.8%) in
group B, respectively, indicating that there were statistically
significant differences (P<0.0001) in the distribution of the
Iymph node shapes in preoperative contrast CT between the
two groups (Table II).

Identification of the predictors for axillary lymph node
metastasis. To identify the risk factors for axillary lymph
node metastasis, logistic regression analysis of the meno-
pausal status, tumor size, axillary lymph node size, axillary
lymph node shape and CT score was conducted since the
aforementioned predictors significantly differed between the
groups (Table I1I). In univariate analysis, the menopausal
status, axillary lymph node size, obscure-type lymph nodes,
clear-type lymph nodes and the CT score were demonstrated
to be predictors of lymph node metastasis (P=0.036, P=0.01,
P=0.006, P<0.001 and P=0.013, respectively, with 95% Cls
of 0.11-0.93, 0.0062-0.64, 0.04-0.58, 4.7-60 and 0.15-6.0,
respectively). In addition, with regard to the multivariate
analysis, clear-type axillary lymph nodes were shown to be
significantly associated with axillary lymph node metastasis
following adjustment for the menopausal status, axillary
Iymph node size, obscure-type lymph nodes and the CT
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score (P=0.003; 95% CI, 2.5-89; Table I1I), indicating that
the axillary lymph node shape in preoperative contrast CT
imaging was an independent indicator of axillary lymph
node metastasis (SNB-positive).

Discussion

Lymph node metastasis is an important factor that affects the
prognosis and management of patients with breast cancer (9).
Although the axillary lymph nodes should be dissected for
patients who are considered to be axillary lymph node-positive,
lymph node dissection often causes complications, including
arm edema, motor disturbance of the arm and axillary numb-
ness (10-12). Therefore, axillary lymph node dissection should
be performed only following consideration of whether the
procedure is essential in each patient with breast cancer. In the
present study, to identify preoperative predictors for axillary
lymph node metastasis, the association of possible predictors
and preoperative contrast CT observations were investigated
with axillary lymph node metastasis. Axillary lymph node
shape in preoperative contrast CT imaging was found to be
an independent predictor of metastasis. As shown in Table I11,
multivariate analysis indicated that clear-type axillary lymph
nodes in contrast CT were likely to be a predictor of metas-
tasis (odds ratio, 15; P=0.003; 95% ClI, 2.5-89). Although
soybean-shaped lymph nodes have been reported to be signifi-
cantly metastatic and ‘C’-shaped and ring-like lymph nodes
are more likely to be nonmetastatic in contrast-enhanced CT
imaging (8), the clear- and fat-type lymph nodes defined in the
present study were demonstrated to correspond to the former
and latter, respectively. The pathological association between
the lymph node shape in contrast CT and the localization of
cancer cells in lymph nodes has not yet been established. Thus,
further clinicopathological investigations may clarify how the
localization of cancer cells in lymph nodes influences their
imaging or shape in contrast CT.

Tumor size has been reported to be one of the main
predictors of axillary lymph node metastasis in several
studies (13-16). Although statistically significant differences
were observed in the distribution of tumor size between
groups A and B (Table II), tumor size was not found to be
an independent predictor for axillary lymph node metastasis
in the present study (Table III). However, future studies with
larger sample sizes are required to validate the association
between tumor size and lymph node metastasis, since 50% of
the tumors in the present study were small (<20 mm). SNB
has become a standard procedure, and preoperative evaluation
of the axillary lymph nodes based on imaging modalities is
considered to be important for selecting appropriate breast
cancer treatment (16,17). Several diagnostic imaging modali-
ties have been used for the preoperative diagnosis of the
sentinel lymph node status. Ultrasonography, magnetic reso-
nance imaging and multidetector CT have been reported to be
useful imaging systems to preoperatively evaluate the lymph
node status (18-20).

Lymph node size was also shown to be associated with
Iymph node metastasis through univariate analysis; however,
lymph node size is unlikely to be an independent predictor
according to the results from the multivariate analysis
(Table III). In the present study, univariate analysis demon-
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strated that the CT score (ROI) was a predictor of lymph
node metastasis, indicating that high contrast lymph nodes on
CT images, which may be a consequence of vessel develop-
ment in the lymph nodes, may be associated with metastasis
(Table I11). These observations indicate that the evaluation
of the lymph node status by preoperative contrast CT may
support the intraoperative diagnosis by SNB.

In Japan, CT examinations are indispensable for the preop-
erative metastatic search, and are conducted in all institutions.
CT is also considered to be very important for preoperative
sentinel lymph node examination. The results of the present
study indicate that preoperative CT examinations are useful
in predicting axillary lymph node metastasis, and can provide
supportive information for intraoperative sentinel lymph node
diagnosis. Although further large-scale studies are required
to validate these results, the observations of the present study
provide useful information for identifying predictors of axil-
lary lymph node metastasis, and may aid surgeons to determine
appropriate surgical strategies for individual patients with
breast cancer.
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Abstract

Introduction: Endocrine therapies targeting cell proliferation and survival mediated by estrogen receptor a (ERa)
are among the most effective systemic treatments for ERa-positive breast cancer. However, most tumors initially
responsive to these therapies acquire resistance through mechanisms that involve ERa transcriptional regulatory
plasticity. Herein we identify VAV3 as a critical component in this process.

Methods: A cell-based chemical compound screen was carried out to identify therapeutic strategies against resistance
to endocrine therapy. Binding to ERa was evaluated by molecular docking analyses, an agonist fluoligand assay and
short hairpin (sh)RNA-mediated protein depletion. Microarray analyses were performed to identify altered gene
expression. Western blot analysis of signaling and proliferation markers, and shRNA-mediated protein depletion in
viability and clonogenic assays, were performed to delineate the role of VAV3. Genetic variation in VAV3 was assessed
for association with the response to tamoxifen. Immunohistochemical analyses of VAV3 were carried out to determine
its association with therapeutic response and different tumor markers. An analysis of gene expression association with
drug sensitivity was carried out to identify a potential therapeutic approach based on differential VAV3 expression.

Results: The compound YC-1 was found to comparatively reduce the viability of cell models of acquired resistance.
This effect was probably not due to activation of its canonical target (soluble guanylyl cyclase), but instead was likely a
result of binding to ERa. VAV3 was selectively reduced upon exposure to YC-1 or ERa depletion, and, accordingly, VAV3
depletion comparatively reduced the viability of cell models of acquired resistance. In the clinical scenario, germline
variation in VAV3 was associated with the response to tamoxifen in Japanese breast cancer patients (rs10494071
combined P value = 84 x 107%). The allele association combined with gene expression analyses indicated that low
VAV3 expression predicts better clinical outcome. Conversely, high nuclear VAV3 expression in tumor cells was
associated with poorer endocrine therapy response. Based on VAV3 expression levels and the response to erlotinib in
cancer cell lines, targeting EGFR signaling may be a promising therapeutic strategy.

Conclusions: This study proposes VAV3 as a biomarker and a rationale for its use as a signaling target to prevent
and/or overcome resistance to endocrine therapy in breast cancer.
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Introduction

Endocrine therapies are the cornerstone of the curative
and palliative treatment of ERa-positive breast cancer.
However, even patients who initially respond to these
therapies may eventually develop resistance. Current
knowledge of the molecular mechanisms of acquired re-
sistance to endocrine therapies suggests a model in which
crosstalk between ERa and growth factor signaling path-
ways plays an important role [1-3]. There may also be
resistance mechanisms partially or totally independent of
growth factor signaling, such as mutations in the ESRI
gene, which encodes for ERa, that alter ligand and/or
coactivator binding [4-6].

Beyond the alterations in growth factor signaling path-
ways identified to date, the binding plasticity of ERa to
chromatin is central in therapeutic resistance and cancer
progression [7]. This plasticity is mediated by the inter-
action of ERa with FOXA1 and, importantly, as a result,
a rewired transcriptional program that endorses resistance
[8]. In this scenario, however, it is not fully understood
which transcriptional outputs—possibly those involved in
growth factor signaling pathways—may be critical in the
acquisition of the resistant phenotype.

In recent years, different breast cancer cell models
have been generated in efforts to decipher the mecha-
nisms of acquired resistance to endocrine therapies
[3,9,10]. One popular model was based on the long-term
estrogen deprivation (LTED) of the ERa-positive breast
cancer cell line MCF7 [11-14]. This model was designed
to recapitulate the effects of the therapeutic use of aro-
matase inhibitors (Als) in postmenopausal breast cancer
[15]. Relevant differences, but also similarities, have been
described between the MCF7-LTED model and other
cell models of acquired resistance [16,17]. Although this
observation raises potential limitations, the results ob-
tained with these models should be evaluated in the
corresponding clinical settings. In our present study,
in which we start with an analysis of the response of
MCF7-LTED cells to different small compounds and
then report our testing of predictions in different cohorts
of breast cancer patients, we propose that VAV3/VAV3 is
a key ERa-downstream determinant of the response to
endocrine therapies.

Methods

Cell culture and viability assays

MCEF-7 cells were routinely cultured and maintained in
Roswell Park Memorial Institute medium containing
10% fetal bovine serum and 2 mM glutamine. MCF7-
LTED cells were established in phenol red-free medium
containing 10% dextran-coated, charcoal-stripped serum
[17]. All other cell lines used in this study were cultured
according to standard protocols [18]. The epidermal
growth factor (EGF) (Sigma-Aldrich, St Louis, MO, USA)

Page 2 of 16

was used at 10 ng/ml for 5 minutes. Cellular viability
was evaluated using standard methylthiazol tetrazolium
(MTT)-based assays (Sigma-Aldrich). The results of these
assays are expressed relative to vehicle-treated controls
and to the original time point.

Chemical compound screen

MCF7 and MCF7-LTED cells were plated in 384-well
microtiter plates, and five compound dilutions (1 nM to
10 uM final concentration) from the Library of Pharma-
cologically Active Compounds (LOPAC1280) (1,258 com-
pounds; Sigma-Aldrich) were added to the cultures. Cell
viability was assessed after 72 hours using MTT-based
assays and the EnVision spectrofluorometer (PerkinElmer,
Waltham, MA, USA). The screen was performed in tripli-
cate. Data quality was assessed (Z'-factor>0.5 for all
screens), and data analysis was performed using the
cellHTS2 module in the Screensaver database [19]. The
data were normalized between 0 and 1 using positive
(1 uM phenylarsene oxide) and negative (0.1% dimethyl
sulfoxide (DMSQ)) controls. For hit selection, the dif-
ference between the normalized percentage inhibition
(NPI) in MCF7 and MCF7-LTED cells was calculated
by subtraction (ANPI = NPI(MCF7-LTED) - NPI(MCF?)),
and the differentials were clustered with the MeV software
package [20] using the Cluster Affinity Search method
with the Euclidean distance metric (threshold of 0.7).
Based on the 18 clustered differential profiles, 83% of the
compounds (1 = 1,047) had no differential effect between
the cell lines, 1% (n=13) were more selective towards
MCE7-LTED cells and 0.5% (1 =6) were more selective
toward MCF7 cells. The YC-1 compound was purchased
from Sigma-Aldrich and from Chemgen Pharma Inter-
national (custom synthesis order; Calcutta, India), and
erlotinib was purchased from Santa Cruz Biotechnology
(Santa Cruz, CA, USA).

c¢GMP, subcellular fractionation, and Western blotting

The ¢cGMP levels were measured using the Amersham
c¢GMP Direct Biotrak EIA system (GE Healthcare Life
Sciences, Pittsburgh, PA, USA). Fractionation was perfor-
med with a subcellular protein fraction kit (Thermo Fisher
Scientific, Asheville, NC, USA). Cells were lysed in buffer
containing 50 mM Tris-HC] pH 8, 0.5% Nonidet P-40,
100 mM NaCl and 0.1 mM ethylenediaminetetraacetic
acid, supplemented with protease inhibitor cocktail (Roche
Molecular Biochemicals, Indianapolis, IN, USA) and 1 mM
NaF. Lysates were clarified twice by centrifugation at
13,000 x g, and protein concentration was measured
using the Bradford method (Bio-Rad Laboratories,
Hercules, CA, USA). Lysates were resolved in SDS-PAGE
gels and transferred to Immobilon-P membrane (EMD
Millipore, Billerica, MA, USA) or polyvinylidene fluoride
membrane (Roche Molecular Biochemicals), and target
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proteins were identified by detection of horseradish
peroxidase-labeled antibody complexes with chemilu-
minescence using an Amersham ECL Western Blotting
Detection Kit (GE Healthcare Life Sciences),

ERa structural analysis and binding assay

Chains A and C of the RCSB Protein Data Bank (PDB)
structure 30S8 [Swiss-Prot:P03372] were superimposed
and used as representative structures of the partially
constrained and unconstrained forms, respectively. Hy-
drogen atoms and protonation states were automatically
assigned using the Protonate 3D function of the Molecular
Operating Environment (Chemical Computing Group,
Montreal, QC, Canada) [21], and the structures were
saved in Mol2 file format, which was then used as input
for docking analysis in rDock [22]. The cavity was defined
as the available space 6 A around the crystallized ligand.
Both WAY6 and YC-1 were docked to each of the con-
formations in exhaustive sampling mode (100 genetic
algorithm runs). The binding mode in chain A (binding
mode 1, as previously described [23]) was considered to
be responsible for the partial agonist activity, and the
binding mode in chain C (binding mode 4, as previously
described [23]) caused a shift in the conformation of
helices 3 and 11, which displaced helix 12 and resulted in
an inactive state. To test the performance of the docking
program, WAY6 bound to chain C was cross-docked to
chain A, and vice versa. The experimental binding mode
of WAY6 was reproduced in both cases, although modes
1 and 4 scored very similarly in chain C, suggesting that
these modes can coexist in the unconstrained (inactive)
conformation. By contrast, binding mode 4 was clearly
disfavored in chain A, indicating that this binding
mode is incompatible with the partially constrained
(active) conformation. The ERa agonist fluoligand assay
was performed by Cerep (Paris, France) using YC-1 final
concentrations from 10 to 250 uM.

Gene expression analyses

RNA samples were extracted using TRIzol reagent (Life
Technologies, Carlsbad, CA, USA) and the RNeasy kit
(QIAGEN, Valencia, CA, USA), and quality was evaluated
in the Agilent 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA). RNAs were amplified using the
Ribo-SPIA system (NuGEN Technologies, San Carlos,
CA, USA) and subsequently hybridized on the Human
Genome U219 microarray platform (Affymetrix, Santa
Clara, CA, USA). The data have been deposited in the
Gene Expression Omnibus (GEO) [GSE:38829]. Publicly
available whole-genome expression data for 51 breast can-
cer cell lines were analyzed using the preprocessed and
normalized values [18]. The Gene Set Expression Analysis
(GSEA) was run using default values for all parameters
[24]. Preprocessed and normalized microarray data from
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breast tumors and tumor response to tamoxifen were
taken from the corresponding repositories: the Stanford
microarray repository (NKI-295 data set) [25] and the
GEO record [GSE:9195], respectively. Cox proportional
hazard regression analysis was used to evaluate differences
in distant metastasis-free survival according to VAV3
expression (three microarray probes were treated
independently).

Chromatin immunoprecipitation data analysis

Chromatin immunoprecipitation (ChIP) data were down-
loaded from the GEO database [GSE:32222] [7] and
analyzed using MACS version 2.0.9 software (macs2diff
function) [26]. Significance was defined by a Q-value <0.01
and using default values for the remaining parameters.
Differentially bound genomic regions were annotated to
the closest ENSEMBL (hgl9) annotated gene using the
R-Bioconductor package ChIPpeakAnno [27]. Previously
aligned reads were extracted from the sequence read arch-
ive [SRP:032421], and sequence counts were normalized
to the library size. ERa and nonspecific immunoglobulin
control (IgG) ChIP assays were performed as previously
described [28,29]. Briefly, the DNA was purified using a
phenol-chloroform extraction protocol, the antibodies
used were anti-ERa (SC-543 and SC-7207; Santa
Cruz Biotechnology) and anti-IgG (ab46540; Abcam,
Cambridge, UK), and three independent biological
replicates were obtained in all cases. The primers used
were site 1: forward 5-CACTTCCTTTCCTGGTTGGA-
3" and reverse 5 -AGTAAAAGGGGTGCCCTCTC-3',
and site 2: forward 5- TGTGGTGTTTCCTGTTAGT
GG-3’ and reverse 5'- TTGCCAATAACTTAAAGCGTA

CGG-3.

Antibodies and RAC1 activity assay

The antibodies we used were anti-E2F1 (KH95; Santa
Cruz Biotechnologies), anti-epidermal growth factor
(anti-EGFR) (1005; Santa Cruz Biotechnologies), anti-
ERa (SP-1; Abcam), antibody against phosphorylated
extracellular signal-regulated protein kinases 1 and 2
(anti-phospho-ERK1/2) (D13.14.4E; Cell Signaling Technol-
ogy, Danvers, MA, USA), anti-NUP62 (nucleoporin
62 kDa, clone 53; BD Transduction Laboratories, San Jose,
CA, USA), anti-PAK1 (2602; Cell Signaling Technology),
anti-RAC1 (05-389; EMD Millipore), anti-phospho-serine
235/236 ribosomal S6 (D57.2.2E; Cell Signaling Technol-
ogy), anti-VAV3 (07-464, Millipore; and 2398, Cell Signaling
Technology), anti-phospho-tyrosine 173 VAV3 (anti-pT173
VAV3, ab52938; Abcam) and anti—tubulin o (anti-TUBA)
(DM1A + DM1B; Abcam). Secondary antibodies for used
for immunofluorescence (Alexa Fluor) were obtained from
Molecular Probes (Eugene, OR, USA). To measure RAC1
activity, we used the Racl G-LISA Activation Assay
Biochem Kit (BK128; Cytoskeleton, Denver, CO, USA).



