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Figure 1. Identification of eight candidate genes involved in erythroid
proliferation. From our screening, eight candidate genes with full-length
insertions were detected. They were angiotensinogen (AGT), retinol dehy-
drogenase 11 (RDHI1), ferritin heavy chain subunit (FHS), interferon-
induced transmembrane protein 2 (/FITM2), ribosomal protein L11
(RPLI1), ferritin light chain (FLC), serpin peptidase inhibitor clade A
(SERPINAI), and D-site binding protein (DBP). In colony formation as-
says, RPL11-transduced cells yielded the highest average number of col-
onies (about 184). All colonies were cultured for 1 month in semisolid

339 Q34 medium without Epo.
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Results

Determination of candidate genes, and mechanisms
involving in erythroid proliferation of RPLI1- and
RDH]1-transduced cells

To identify candidate genes involved in human erythropoi-
esis, we first prepared lentiviruses expressing eight candi-
date genes, and used these viruses to transduce UT-7/Epo
cells. These genes encoded angiotensinogen (AGT), ferritin
heavy chain subunit (FHS), interferon-induced transmem-
brane protein 2 (IFITM2), ferritin light chain (FLC), ribo-
somal protein L11 (RPL11), retinol dehydrogenase 11
(RDH11), serpin peptidase inhibitor clade: A (SERPINA1),
and D-site (DBP) binding protein. After culture in semi-
solid medium without Epo for 1 month, we found that
two of these candidate factors, RPL11 and RDH11, resulted
in formation of a larger number of colonies than the other
genes (RPL11, 1844 = 6.2; RDH11, 10.0 = 0; Fig. 1).
Colonies were positive for Venus expression (data not
shown).

To further investigate cell proliferation, we next trans-
ferred the colonies derived from UT-7/Epo and RPL11-
and RDHI1-transduced cells into liquid culture and
subjected them to proliferation assays at various time
points. In the assay we used, higher absorbance at
450 nm reflected higher cell proliferation. UT-7/Epo cells
incubated with Epo (m) proliferated most rapidly, whereas
no proliferating cells could be detected in UT-7/Epo cells
incubated without Epo (x), particularly on days 4 and 6
(Fig. 2A). In contrast to nontransduced cells, both of the
RPL11- (A) and RDHI11- (@) transduced cells cultured
in the absence of Epo increased cell proliferation.
Compared to RDH11- (@) transduced cells, RPL11- (A)

A ® UT-7/Epo (+) EPO
X UT-7/Epo (-) EPO
1 A LV-RPLI11 (-) EPO
® LV-RDHI1I (-) EPO
0.8
O o~
5 A
B 0.4
< S
0.2
0 - —
0 2 4 6
Culture days
B
UT-7/Epo UT-7/Epo " .
(+) EPO () EPO t’ .
| ® @
LV-RPL11 ‘ LV-RDH11 [
(-) EPO (-) EPO
i <

Figure 2. (A) Erythroid proliferation of transduced cells cultured without
Epo. Cell proliferation assay of UT-7/Epo and RPLI1I- and RDHII-
transduced cells in liquid culture. Without Epo, UT-7/Epo cells could
not proliferate, whereas in the presence of Epo, these cells could prolifer-
ate very well, especially at days 2 and 4, with average ODs of 0.12 and
0.51, respectively. At day 6, RPL11-transduced cells without Epo yielded
the highest cell number among these three groups, with an average OD of
0.93. (B) Cell morphology. UT-7/Epo cells in the presence of Epo (Upper
left). UT-7/Epo cells, RPL11- and RDH11-transduced cells by lentiviruses
(LV-RPL11, LV-RDHI11), were cultured in the absence of Epo for 72 hours
(upper right, lower left, and lower right, respectively). Cells were cytospun
and subjected to May—Grunwald Giemsa staining. Scale bar = 10 um.

transduced cells proliferated 2.35-, 2.67-, and 6.64-fold
faster on days 2, 4, and 6, respectively; these differences
were statistically significant. In addition, on day 6,
RPL11- (A) transduced cells exceeded the proliferation
of UT-7/Epo cells (m) cultured in the presence of Epo.
Even under the Epo-free condition, both RPL11- and
RDHI11-transduced cells maintained their proliferation,
suggesting that the products of the transduced genes could
substitute for Epo signaling in UT-7/Epo erythroleukemic
cells.

Morphological observation by May—Grunwald Giemsa
staining indicated that by 72 hours, UT-7/Epo cells cultured
without Epo had condensed nuclei and exhibited apoptotic
features (Fig. 2B). On the other hand, relatively larger cells
with less condensed nuclei were observed in both RPL11-
and RDH11-transduced samples, compared with nontrans-
duced cells, irrespective of the presence of Epo. This
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Figure 3. The proliferation of UT-7/Epo cells in the supernatant of
RPL11- and RDHI1I-transduced cells. In order to investigate whether
RPL11- and RDH11-transduced cells proliferated in an autocrine manner,
UT-7/Epo cells were cultured in the absence of Epo with the supernatant of
RPL11- and RDHI11-transduced cells. The proliferation of UT-7/Epo cells
cultured in the supernatant of RPL11- and RDH11-transduced cells was
significantly decreased.

observation implies that RPL11- and RDHI11-transduced
cells proliferated in an immature state.

To investigate whether RPL11- and RDH11-transduced
cells proliferated in autocrine manner, culture medium
from respective transduced cells was used to culture UT-7/
Epo without Epo. At days 4 and 6, the proliferation of
UT-7/Epo cells was moderately suppressed by the culture
medium from RPL11-transduced cells but completely sup-
pressed by that from RDH11-transduced cells (Fig. 3). The
Epo levels of culture supernatant of respective transduced
cells were measured and were not detected, as observed
with nontransduced UT-7/Epo without Epo (data not shown).

To evaluate differentiation stage, we used intracellular
staining to assess Hb expression in transduced UT-7/Epo
cells after 2 days of culture. Based on flow-cytometric anal-
ysis, 94.0% of UT-7/Epo cells cultured with Epo expressed
B-globin, whereas only 1.2% of them expressed vy-globin.
Similarly, UT-7/Epo cells cultured without Epo predomi-
nantly expressed B-globin. By contrast, both RPL11- and
RDH11-transduced cells cultured without Epo expressed
v-globin (41.5% and 38.3% of cells, respectively), whereas
~30% of both types of transduced cells expressed B-globin
(Supplementary Figure 1, online only, available at www.
exphem.org). Taken together, these data indicate that trans-
duction of RPL11 and RDH11 into UT-7/Epo cells induced
and maintained their proliferation in an immature state.

Change of cell-cycle status in RPL11- and RDHI11-
transduced cells.

To investigate the mechanisms underlying proliferation, we
performed cell-cycle analyses by BrdU and 7-AAD stain-
ing, followed by flow cytometry (Supplementary Figure 2,
online only, available at www.exphem.org). UT-7/Epo cells
cultured with Epo exhibited a prolonged S phase after 24,
48, and 72 hours of culture. On the other hand, UT-7/Epo

cells cultured without Epo exhibited a reduction in the num-
ber of S-phase cells (35.0%, 17.7%, 8.2%), in accordance
with increasing the number of apoptotic cells (0.5%,
5.9%, 14.8%). By contrast, both RPL11- and RDH11-
transduced cells cultured without Epo exhibited a lower
percentage of apoptotic cells at every time point than non-
transduced cells did. UT-7/Epo cells cultured with Epo had
the lowest percentage of apoptotic cells among these cell
lines, whereas UT-7/Epo cultured without Epo had the high-
est percentage of apoptotic cells and G,/M arrest, especially
after 72 hours of culture (Fig. 4).

To clarify the mechanisms of inhibition of apoptosis in
RPL11- and RDHI1-transduced cells cultured without
Epo, we evaluated the expression of two antiapoptotic pro-
teins, BCL-XL and BCL-2. We found that both types of
transduced cells expressed these proteins. By contrast,
UT-7/Epo cultured without Epo did not express either anti-
apoptotic - protein, reflecting the higher percentage of
apoptotic cells in this group. As previously reported [6],
prominent BCL-XL expression and slight BCL-2 expres-
sion were detected in UT-7/Epo cells cultured in the pres-
ence of Epo (Fig. 5). Quantitative RT-PCR to detect
BCL-XL expression also showed the same results (Fig. 6).

Signaling pathways of two transduced cell lines

To elucidate the signal transduction pathways involved in
RPL11- and RDHI11-driven proliferation, we performed
phosphokinase array analysis after 12 hours of culture in
the absence of Epo (Fig. 7A). The phosphorylation statuses
of p53 (S392), Akt (T308), and AMPKal were almost the
same among the four samples tested: UT-7/Epo cells
cultured with or without Epo and RPL11- and RDHI11-
transduced cells cultured without Epo. The phosphorylation
of p38 was the highest in UT-7/Epo cells cultured with Epo,
and phosphorylation of p53 (S46) was the highest in
RDHI1 1-transduced cells. On the other hand, phosphoryla-
tion levels of both CREB and Lyn were higher in RPL11-
and RDHI11-transduced cells, and phosphorylated Chk-2
and AMPKa2 were upregulated in the Epo-free condition,
regardless of gene transduction. Phosphorylated STAT5a
(Y699) and HSP27 were downregulated in UT-7/Epo cells
cultured without Epo relative to UT-7/Epo cells cultured
with Epo; these phosphoproteins were upregulated in
RPL11- and RDHI11-transduced cells to the same level as
in UT-7/Epo with Epo (Fig. 7B).

To ascertain that STATS signaling pathway was
involved in the proliferation of RPL11- and RDH11-
transduced cells, we conducted phosphokinase array and
proliferation assay using these cells in the presence of
STATS inhibitor. Our results from phosphokinase array
confirmed that STATS phosphorylation was dramatically
decreased in the presence of STATS inhibitor (Fig. 8A).
Importantly, proliferation assay revealed that RDHI11-
transduced cells showed significantly decreased prolifera-
tion at any observed points in the presence of 100 and
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Figure 4. Cell-cycle determination of three cell lines. At 24, 48, and 72 hours after cultured, cells were collected and analyzed with flow cytometry. UT-7/
Epo cells without Epo exhibited the highest apoptosis and G,/M arrest at 72 hours (14.8% and 27.5% of cells, respectively). The lowest percentage of
apoptosis and the highest percentage of S phase arrest at every time point were observed in UT-7/Epo cultured with Epo. Between the 2 types of transduced
cells, RPL11-transduced cells exhibited the lower percentage of apoptosis than RDH11-transduced cells, especially at 24 and 48 hours.

200 pmol/L STATS inhibitor, whereas RPL11-transduced
cells showed significantly decreased proliferation only at
day 2 in the presence of 200 pmol/L. STATS inhibitor
(Fig. 8B). CREB, Lyn, and JAK2 phosphorylation were
also studied using immunocytochemistry, and the phos-
phorylation of both CREB and Lyn were observed
(Fig. 8C). Of note, the phosphorylation of JAK2 could
not be demonstrated in our study (data not shown).

UT-7/Epo (+EPO) UT-7/Epo (-EPO)
24h 48h 72h 24h 48h 72h
BCL-XL _ BCL-XL
BCL-2 - BCL-2
B-ACTIN | B-ACTIN
LV-RPL11 (-EPO) LV-RDH11 (-EPO)
24h 48h 72h 24h 48h 72h
BCL-XL BCL-XL _
BCL-2 [ BCL-2 -
B-ACTIN | B-ACTIN |=——

Figure 5. Expression of antiapoptotic proteins was demonstrated by West-
ern blotting. Neither BCL-XL nor BCL-2 was detected in UT-7/Epo
cultured without Epo, whereas the expression level of BCL-XL was higher
than that of BCL-2 in UT-7/Epo cultured with Epo. Both types of trans-
duced cells also expressed BCL-XL and BCL-2 at every time point. B-
ACTIN was used as internal control.

To further examine STAT-5 regulated genes, we
observed the expression of PIM2 and CCNDI by real-
time PCR analysis [7,8]. The results showed that PIM2 ex-
pressions were not different among the samples, but
CCND1 expression was elevated by 43.4-fold in
RDHI1-transduced cells and 2.5-fold in RPLI11-
transduced cells compared with those in the UT-7/Epo
control (Fig. 9).
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Figure 6. Quantitative RT-PCR of Bcl-xL gene. The expression of Bcl-xL
gene of RPL11- and RDH11-transduced cells was demonstrated. The high-
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Discussion [

Our findings indicate that the ove on of RPL11 and
RDH11 can maintain the growth and.proliferation of UT-7/
Epo cells in culture conditions in the absence of Epo. Inter-
estingly, the prohferat1on of both of RPLll ‘and RDH11-
transduced cells was not due to ,utocnne manner as shown
in Figure 3. Gene transfer. of RPLII to UT- 7/Epo cells re-
sulted in more increased number of cells and colomes
than that of RDHJ 1. In addition, the percentage of
apoptotic cells in RPL11-transduced cells was much lower
than that in RDHI11-transduced cells. Therefore, it is
possible that RPL11 has greater potential than RDH11 to
induce the proliferation of UT-7/Epo cells. RPL11 has
been recently demonstrated to be essential for normal cell
proliferation by supporting ribosomal biogenesis and tran-
scription capacity [9]. In the special context of erythroid

ansdhced cells cultured. w1th Epo -with-a p1xel densuy of ~0 8. The Akt (T308) and AMPKal
“all cell lines, w1th plXEl densmes of ~0.8, CREB and Lyn kmases were predommamly activated
uced cells vs. UT- ~7/Epo cells) of ~2 :

UT-1/Epo (HEPO
UT-7/Epo (DEPO
LV-RPL11 (JEPO
LV-RDH11 (OEPO

NOOH

prohferatmn RPL11 has been prev10usly reported to in-

crease the translation of a spec1ﬁc set of transcripts, such

as Bagl, which encodes an Hsp70 cochaperone, and
Csdel, which encodes an RNA- -binding protein, and both
were expressed at 1ncreased levels in erythroblasts [10]. A
recent report usmg zebraﬁsh embryos also showed that
RPL11 could suppo t hematopmetlc iron metabolism and
Hb synthes1s whereas e promotion of erythr01d prolifer-
ation by RDH11 is due to all- trans-retinoic acid, an active
metabolite of this enzyme’s cate}lytlc process [11-13]. As
demonstrated in this study, these effects result in promotion
of erythroid proliferation by RPL11 and RDH11. Notably,
increased expression level of RDHII gene in UT-7/Epo
cells might not significantly increase the level of retinoic
acids produced in these cells, because the substrate for
the enzymatic reaction is limited. Moreover, the apoptosis
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Figure 8. (A) Phospho-kinase array with STATS inhibitor at a final concentration of 100 pmol/L for 12 hours. To ascertain the STATS signaling pathway
involved in RPL11- and RDH11-transduced cells, STAT5 inhibitor was added in the culture medium. STATS5a (Y699) was demonstrated to be significantly
decreased by phosphokinase array. (B) Cell proliferation assays of RPL11- and RDH11-transduced cells with STATS inhibitor. RPL11- and RDHI11-
transduced cells were cultured for 2, 4, and 6 days in the presence of STATS5 inhibitor at final concentrations of 100 and 200 pmol/L. Cells were harvested
and processed for proliferation assay. At day 2, the proliferations of RPL11- and RDH11-transduced cells were significantly inhibited at 200 umol/L. of
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Figure 9. Quantitative RT-PCR of STATS target genes. The expression of PIM2 did not differ significantly among the samples (left). By contrast, CCNDI
was upregulated in RPL11-and RDH11-transduced cells (2.47- and 43.37-fold, respectively) relative to the control UT-7/Epo cells (right). RQ = H H H.

induced by retinoic acid might be another reason that
RDH11-transduced cells proliferate less rapidly than those
transduced with RPL11 [14]. Only 30% of RPL11- and
RDHI11-transduced cells could produce a-globin, compared
with 80% of UT-7/Epo cells. Several possibilities might
explain this reverse switching, including increased expres-
sion of specific miRNAs [15-18]. In RDHI1-transduced

Q28 cells, retinoic acid can also inhibit HDACs, resulting in

activation of transcriptional processes and ultimately
increased expression of y-globin [19].

Our experiments also demonstrated that STAT5a was
markedly activated to almost the same extent in all cell
lines, whereas the CREB and Lyn kinases were highly acti-
vated in RPL11-and RDHI11-transduced cells. Lyn is a
hematopoiesis-specific kinase, and its role in erythroid pre-
cursors has also been identified. Lyn activation triggers
phosphorylation of STATS molecules by phosphorylation
of protein phosphatase SHP-1 [20,21]. ~Activation of

Q29 CREB by the cAMP signaling pathway can also induce

STATS activation [22,23]. By inhibition of STATS5 activity
using STATS inhibitor, the proliferation of both RPL11-
and RDH11-transduced cells significantly decreased, espe-
cially at day 2 with the dosage of 200 pumol/L (Fig. 8B).
Thus, it appears that activation of STATS was specifically
involved in erythroid proliferation in both types of trans-
duced cells, in accordance with a previous report [24]. Sur-
prisingly, our data showed that STATS inhibitor could
inhibit the proliferation of RPLI1-transduced cells, but
not as strongly as that of RDHI11-transduced cells. This
observation indicates that the signaling pathways involving
in proliferation of RPL11-transduced cells might be more
complex. Moreover, the JAK2 phosphorylation could not
be demonstrated in our study. From previous report,
JAK2 phosphorylation could be detected for only a
2-hour interval immediately after adding Epo into the
Epo-deprived culture medium [25]. Another important pos-

sibility is that JAK2 activation is not the upstream signaling
pathway of STATS in our conditions. Thus, STAT5 phos-
phorylation in both RPL11- and RDH11-transduced cells
may be the direct activation resulting from Lyn and
CREB phosphorylation.

The activation of antiapoptotic proteins, BCL-XL and
BCL-2, by STATS might also be one of the mechanisms
that maintains the growth and survival of these cells [26].
Furthermore, CCNDI expression was highly upregulated
in both types of transduced cells, especially in RDHI11-
transduced cells. STATS can induce CCNDI expression,
thereby stimulating cell-cycle progression and further
inducing proliferation [27-29]. However, the high accumu-
lation of CCND]1 at day 3 in RDH11-transduced cells might
have been due to their active entries from Gy/G; to late S
phases, concomitant with the accumulation at G,/M phases,
as demonstrated in RDH11 cell cycle determination at
72 hours [27]. ;

In conclusion, our study demonstrates that both of
RPL11 and RDHI11 can induce proliferation in the UT-7/
Epo cell line in the absence of Epo. Our data provide
more insights into the mechanisms underlying induction
of erythroid proliferation, a promising treatment strategy
for patients with conditions such as Diamond-Blackfan
anemia (DBA). DBA is caused by mutations of components
of the small and large ribosomal subunits, such as RPL5
and RPL11 [30-32]. Therefore, transduction of RPLI11
should help to improve patients’ symptoms and signs. In
addition, transduction of RDH11 results in increased syn-
thesis of all-frans-retinoic acid, a potential therapeutic
approach for treating the refractory anemia in myelodys-
plastic syndromes [33]. Our findings also indicate that
STATS activation is involved in this proliferation process.
Finally, CREB and Lyn protein kinases might participate
in the activation of STATS in our transduced cells, resulting
in further upregulation of CCNDI expression.
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Supplementary Figure 1. Analysis of hemoglobin content in RPL11- and RDH1 1-transduced cells. Hemoglobin production in both types of transduced
cells was compared with that in the parental UT-7/Epo cells. Switching of hemoglobin type was demonstrated to have occurred: adult hemoglobin (B-globin)
was highly expressed in UT-7/Epo cells, whereas fetal hemoglobin (y-globin) was highly expressed in both types of transduced cells.
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Supplementary Figure 2. Cell cycle determination using FITC-
conjugated anti-BrdU, analyzed by flow cytometry of UT-7/Epo cultured
with Epo. The Go/Gi, S, G/mol/L, and apoptotic groups were gated as
shown.
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TLR7 Ligand Augments GM-CSF-Initiated Antitumor
Immunity through Activation of Plasmacytoid Dendritic Cells
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Abstract

Vaccination with irradiated granulocyte macrophage colony-stimulating factor (GM-CSF)-transduced autol-
ogous tumor cells (GVAX) has been shown to induce therapeutic antitumor immunity. However, its effectiveness
is limited. We therefore attempted to improve the antitumor effect by identifying little-known key pathways in
GM-CSF-sensitized dendritic cells (GM-DC) in tumor-draining lymph nodes (TDLN). We initially confirmed that
syngeneic mice subcutaneously injected with poorly immunogenic Lewis lung carcinoma (LLC) cells transduced
with Sendai virus encoding GM-CSF (LLC/SeV/GM) remarkably rejected the tumor growth. Using ¢cDNA
microarrays, we found that expression levels of type I interferon (IFN)-related genes, predominantly expressed
in plasmacytoid DCs (pDC), were significantly upregulated in TDLN-derived GM-DCs and focused on pDCs.
Indeed, mouse experiments demonstrated that the effective induction of GM-CSF-induced antitumor immunity
observed in immunocompetent mice treated with LLC/SeV/GM cells was significantly attenuated when pDC-
depleted or IFNo. receptor knockout (IFNAR /™) mice were used. Importantly, in both LLC and CT26 colon
cancer-bearing mice, the combinational use of imiquimod with autologous GVAX therapy overcame the
refractoriness to GVAX monotherapy accompanied by tolerability. Mechanistically, mice treated with the
combined vaccination displayed increased expression levels of CD86, CD9, and Siglec-H, which correlate with
an antitumor phenotype, in pDCs, but decreased the ratio of CD4"CD25"FoxP3™ regulatory T cells in TDLN.
Collectively, these findings indicate that the additional use of imiquimod to activate pDCs with type I IFN
production, as a positive regulator of T-cell priming, could enhance the immunologic antitumor effects of GVAX
therapy, shedding promising light on the understanding and treatment of GM-CSF-based cancer immunother-
apy. Cancer Immunol Res; 2(6); 568-80. ©2014 AACR.

Introduction is not satisfactory, raising an urgent need to improve the
' antitumor effect of GVAX. Although GM-CSF signaling is
essential in conventional DC (cDC) maturation, which leads
to effective generation of tumor-associated antigen (TAA)-
specific T cells and differentiation, the underlying molecular
mechanism of how GM-CSF sensitizes and matures DCs (GM-
DC, i.e., GM-CSF-sensitized DCs) to trigger host antitumor
immunity remains unclear.

Therefore, in this study, we attempted to improve the
antitumor effects of GVAX therapy through identification of
the key cluster genes upregulated in GM-DCs that operate T-

In recent clinical trials of patients with diverse solid can-
cers, cancer immunotherapy such as therapeutic vaccination
with granulocyte macrophage colony-stimulating factor
(GM-CSF) gene-transduced tumor vaccines (GVAX), as well
as sipuleucel-T (Provenge; Dendreon), the first FDA-approved
GM-CSF-based therapeutic dendritic cell (DC) vaccine for
prostate cancer, induced antitumor immune responses with
tolerability (1-3). However, the efficacy of this therapy alone
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cell priming in tumor-draining lymph nodes (TDLN) by con-
ducting a ¢cDNA microarray analysis. We used a syngeneic
Lewis lung carcinoma (LLC)-bearing mouse, which exhibited
remarkable tumor regression following subcutaneous admin-
istration of fusion (F) gene-deleted nontransmissible Sendai
virus vector-mediated GM-CSF gene-transduced LLC (LLC/
SeV/GM) cells (4). Using this experimental system, the expres-
sion microarray analysis elucidated that pathways involving
Toll-like receptor 7 (TLR7) and interferon regulatory factor 7
(IRF7), which induce type I interferon (IFN) production in
plasmacytoid DCs (pDGC; ref. 5), were upregulated in GM-CSF-
activated mature DCs. Further activation of this pathway using
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Figure 1. Tumor development of poorly immunogenic LLC and B16F10 celis modified to produce GM-CSF was markedly inhibited. A, dose-escalation studies
to assess GM-CSF production from LLC/SeV/GM cells (MOI = 0, 3, 10, and 100). GM-CSF production levels in the supematants from the 48-hour
culture were measured by ELISA. B and C, tumorigenicity assays using LLC cells. B, a total of 3.0 x 10° LLC'and LLC/SeV/GM (MO of 1, 10, or 100)
cells were subcutaneously inoculated into the right flank of C57/BLEN mice (7 = 3). C, a total 0f2.0 x 10° LLC, LLC/SeV/GFP, or LLC/SeV/GM (MOl = 100) cells
were inoculated into the right flank of C57/BLEN mice (n = 6). Significant tumor regression (left) and prolonged survival (right) was shown in mice treated
with LLC/SeV/GM cells. D, tumorigenicity assays using B16F10 cells. In total, 1.0 x 10° B16F10, B16/SeV/GFP, or B16/SeV/GM (MOI = 30) celis were
inoculated into the right flanks of C57/BL6N mice (1 = 6). Significant tumor regression (ieft) and prolonged survival (right) were observed in mice treated with
B16/SeV/GM cells. The asterisks indicate statistically significant differences (*, P < 0.05; **, P < 0.01; ***, P < 0.001). Kaplan-Meier survival curves are shown,
and mortality was determined by the log-rank test (LL.C vs. LLC/SeV/GM and LLC/SeV/GFP vs. LLC/SeV/GM; P < 0.001, LLC vs, L.LC/SeV/GFP; P = 0.67,
B16 vs. B16/SeV/GM and B16/SeV/GFP vs. B16/SeV/GM; P < 0.05).
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