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Figure 6 Correlation analysis between VAV3 expression and compounds: half-maximal inhibitory concentration identifies erlotinib as a
potential therapeutic compound. (A) Graph showing the correlation between VAV3 expression (two probes showed similar results, depicted for
218807_s_at) and erlotinib (left panel) or thapsigargin (right panel) logarithmic half-maximal inhibitory concentration (ICs,) values across all cancer
cell ines. Spearman’s correlation coefficient (SCC) and the corresponding P-values are shown. Red lines indicate trends, and insets show results
for breast cancer cell lines only. (B) Graph showing the inhibitory effect of erlotinib on long-term estrogen-deprived MCF7 (MCF7-LTED) cells
relative to parental MCF7 cells. (C) Top panels, Western blot analysis results for VAV3 (total), pT173 VAV3 and control tubulin a (TUBA) from MCF7
and MCF7-LTED cells in basal and erlotinib exposure conditions. Bottom panels, Western blot analysis results for pT173 VAV3 and control TUBA
from MCF7 and MCF7-LTED cells with or without epidermal growth factor (EGF).
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observations, exposure to erlotinib significantly reduced
the viability of MCF7-LTED relative to MCF7 cells
(Figure 6B). VAV3 expression was not reduced by expos-
ure to erlotinib (contrary to exposure to YC-1), but we ob-
served a partial reduction in pY173 VAV3 in MCF7-LTED
cells (Figure 6C, top panels). Accordingly, exposure to
EGF increased pY173 VAV3 in this setting (Figure 6C,
bottom panels). Collectively, these results further endorse
a critical role for VAV3 in endocrine therapy resistance.

Discussion

The results of this study suggest that VAV3 function
mediates the response to endocrine therapies in breast
cancer and, as a result, the acquisition of resistance. In this
context, VAV3 might be a key effector whose expression is

differentially regulated by ERa [7]. Thus, the expression
regulation of VAV3 would be relatively more dependent
on ERa in the endocrine therapy-resistant setting. Con-
versely, in previous studies, researchers have proposed
that VAV3 is an activator of ERa [55,56]. These observa-
tions could indicate the existence of a feedback mechan-
ism that would ultimately regulate growth factor signaling.
Indeed, VAV3 has been shown to activate receptor protein
tyrosine kinases and RAC1 [54-56], and an inhibitor of
this protein can decrease both estrogen-induced cell pro-
liferation and MCF7-tamoxifen-resistant cell growth [56].
Notably, authors of an independent report identified
VAV3 as a marker for posttreatment recurrence of pros-
tate cancer [57]. Together with our analysis of VAV3 in
breast tumors, these observations further endorse the link
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between the VAV3-RAC1-PAK1 signaling axis and re-
sistance to endocrine therapies. Nevertheless, analysis of
differential gene expression by exposure to YC-1 may
point to complementary mediators of endocrine therapy
resistance. Activation of ERBB4 has previously been linked
to this setting [58-60], and two other identified perturba-
tions (GLI3 and PTCHI) belong to the Hedgehog signal-
ing pathway, which has been highlighted as a possible
therapeutic target in this setting [61]. Whether these pro-
teins act functionally in concert with VAV3 or whether
they represent necessary alterations in different biological
processes or pathways remains to be determined.

The association between genetic variation in VAY3 and
the response to tamoxifen could allow the stratification of
patients according to potential clinical benefit. However,
this association should be replicated in independent stud-
ies with larger samples. The rs10494071 minor allele has a
relatively high frequency in the Japanese population, but is
rare in individuals of European ancestry (45% and 5%,
respectively, according to HapMap data). This is also
the case with a variant in linkage disequilibrium with
rs10494071 (data not shown). These observations indicate
that an attempt to replicate the association in a non-
Japanese population will require dense genotyping at the
specific locus. k ,

Although the results of the genetic association should be
replicated, they are consistent with the anticipated func-
tional role of VAV3 and with the observations made in gene
expression analyses. In our present study, we identified an
association between the rs10494071 minor allele and better
tamoxifen response, and, in turn, we found in our analysis
of a tumor data set that low VAV3 expression correlates
with better tamoxifen response [45]. Additionally, these
observations seem to be coherent with the role of the
rs10494071 variant as an expression quantitative trait locus
for VAV3, with the minor allele being associated with
significantly lower gene expression in monocytes [44].
Importantly, in a previous study in which the researchers
identified VAV3 as a marker for posttreatment recurrence
of prostate cancer, the association was in the same direction
[57]. Moreover, these results are consistent with, and the
conclusions further endorsed by, the associations revealed
for nuclear VAV3 and tamoxifen therapy response, as well
as the observed correlations between the expression of
VAV3 and known tumor markers linked to therapy re-
sponse. However, further work is required to elucidate the
functional difference between nuclear and cytoplasmic
VAV3, which is reminiscent of the results for PAK1 [49]
and could be linked to the activation of the androgen re-
ceptor, as previously shown in prostate cancer [46,62].

It has been firmly established that growth factor signal-
ing influences the response to endocrine therapies and,
consequently, the acquisition of resistance. Among other
evidence, overexpression of growth factor receptors,
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including EGFR, has been associated with decreased sensi-
tivity to endocrine therapy and poorer prognosis [63].
Akin to this observation, other researchers have reported
that cell models of endocrine therapy resistance overex-
press several growth factor receptors, also including EGFR
[17]. In turn, these observations have led to the design of
clinical trials to assess the target inhibition of the recep-
tors [64]. In this scenario, the analysis of VAV3 expression
and/or function could potentially help to identify patients
that may benefit from therapies aimed at preventing and/
or overcoming endocrine therapy resistance.

Conclusions ' :

In this study, we have identified VAV3 as a critical medi-
ator. of endocrine therapy resistance in breast cancer
downstream of ERa and growth factor receptor signaling.
The expression of VAV3 may be specifically regulated by
ERax in the endocrine therapy-resistant setting. The re-
sults of our genetic and immunohistochemical studies in-
dicate that VAV3/VAV3 represents a promising biomarker
for predicting the response to endocrine therapies. Despite
the lack of targeted therapies for VAV proteins, inhibition
of EGFR signaling could potentially prevent and/or over-
come endocrine therapy resistance mediated by VAV3.
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Additional file 1: Table S1. Resuits from the chemical compound
screen.

Additional file 2: Table S2. Values of YC-1 1Csp (uM) in breast cancer
cell lines.

Additional file 3: Figure S1. Assessment of the activation of sGC in the
viability inhibition of MCF7-LTED cells. (A) BAY 41-2272 shows an effect,
but less than that of YC-1. (B) A-350619 (activator of sGC) and sulindac
sulfide (inhibitor of phosphodiesterase) do not show the predicted effects
in MCF7-LTED cells. In fact, the contrary is observed; A-350619 appears to
be more effective in MCF7 cells. )

Additional file 4: Figure S2. Study of the binding mode of YC-1 to
ERa. (A) Predicted binding mode of YC-1 (purple) in the unconstrained
conformation of ERa (chain C,'PDB code 3058). The binding mode of
WAY6 (white sticks) is shown as reference. (B) Docking pose of YC-1
(purple) in the unconstrained conformation of ERa (chain C, PDB code
3058) resembling the experimentally observed structure. This binding
mode is three score units worse than the one shown above. The binding
mode of WAY6 (white sticks) is shown as reference.

Additional file 5: Figure S3. Signaling pathways differentially
expressed between breast cancer cell lines “sensitive” and “insensitive” to
YC-1 exposure (defined by the 1Cso 10 uM threshold). (A) High expression
of the cell cycle pathway shows significant association (false discovery
rate <5%) with YC-1 sensitivity. Pathway annotations correspond to those
in the Kyoto Encyclopedia of Genes and Genomes (KEGG). (B} High
expression of the ribosome pathway shows significant association with
lower YC-1 sensitivity.

Additional file 6: Table $3. Pathways potentially associated (false
discovery rate <5%) with the breast cancer response to YC-1.

Additional file 7: Figure S4. Analysis of ERa localization and levels
following exposure to YC-1. (A) ERa is mislocalized upon exposure to
YC-1 in both MCF7 and MCF7-LTED cells. (B) Total ERa levels are reduced
upon exposure to YC-1 in both MCF7 and MCF7-LTED cells, although
relatively more in MCF7-LTED cells. {C} Subcellular fractionation does not
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reveal differences for ERa. Ponceau protein staining and detection of the
62 kDa nucleoporin (NUP62) were used as loading controls.

Additional file 8: Figure S5. Expression analysis with exposure to YC-1.
(A) High expression of the Ribosome pathway (false discover rate <5%) is
shown in the parental MCF7. (B) Top panels, the Ribosome pathway is
significantly altered (that is, underexpressed) in MCF7 cells, but not in
MCF7-LTED cells, exposed to YC-1. Bottom panels, both MCF7 and
MCF7-LTED cells show underexpression of the cell cycle pathway with
exposure to YC-1. (C) Western blot analysis results of phospho-serine
235/236 S6 ribosomal protein, E2F1 and control TUBA in MCF7 and
MCF7-LTED cells in basal or YC-1-exposed conditions.

Additional file 9: Table S4. Pathways differentially expressed (false
discovery rate <5%) in MCF7 and/or MCF7-LTED cells, in basal and/or
YC-1 conditions.
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predicted E2F1 target sets (false discovery rate <1%) in MCF7 and
MCF7-LTED cells exposed to YC-1.

Additional file 11: Figure S6. Results from RAC1 activity assays with
depletion and/or reconstitution of MYC-Vav3. Left panel, graph
depicting RAC1 activity from triplicate assays in the conditions depicted
across the x-axis. The asterisks correspond to significant differences

(P < 0.05). Right panels, Western blot analysis results of total VAV3,

MYC (for MYC-Vav3) and control TUBA in MCF7 and MCF7-LTED cells
transduced with shRNA control (pLKO.1) or ShRNA-VAV3 plus MYC-Vav3
constructs.

Additional ﬁle 12: Table S6. Results of the GWAS and the replication
study for SNPs in VAV3.
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Abstract

Peripheral neuropathy is a common dose-limiting toxicity for patients treated with paclitaxel. For
most individuals there are no known risk factors that predispose patients to the adverse event, and
pathogenesis for paclitaxel-induced peripheral neuropathy is unknown. Determining whether there
is a heritable component to paclitaxel induced peripheral neuropathy would be valuable in guiding
clinical decisions and may provide insight into treatment of and mechanisms for the toxicity.
Using genotype and patient information from the paclitaxel arm of CALGB 40101 (Alliance), a
phase III clinical trial evaluating adjuvant therapies for breast cancer in women, we estimated the
variance in maximum grade and dose at first instance of sensory peripheral neuropathy. Our
results suggest that paclitaxel-induced neuropathy has a heritable component, driven in part by
genes involved in axon outgrowth. Disruption of axon outgrowth may be one of the mechanisms
by which paclitaxel treatment results in sensory peripheral neuropathy in susceptible patients.

Keywords
paclitaxel; neuropathy; polygenic; heritability; pathway

Introduction

Peripheral neuropathy is a common and often dose-limiting toxicity associated with cancer
chemotherapy treatment. Paclitaxel is a chemotherapeutic agent in the taxane family, and
functions by inhibiting microtubule assembly and inducing apoptosis. It is commonly
prescribed in the treatment of carcinomas of the breast, ovary, lung, and head and neck!.
Sensory peripheral neuropathy induced by paclitaxel is dose-dependent and is the most
common toxicity associated with this microtubule inhibitor. Severe toxicity (Grade 3 or
higher) generally occurs in 5-10% of patients although rates as high as 30% have been
reported for certain dosage regimens2. Known risk factors for-paclitaxel induced neuropathy
include prior exposure to a neurotoxic agent or medical conditions associated with
peripheral neuropathy, such as diabetes?~9, though most patients who suffer from paclitaxel-
induced neuropathy do not have an identifiable predisposition. The pathogenesis of
paclitaxel induced peripheral neuropathy is unclear. Paclitaxel treatment may target axons,
myelinating Schwann cells, or the dorsal root ganglion and neuron cell bodies of peripheral
nerves’. At any of these sites, damage may be mediated by microtubule stabilization or
mitochondrial disruption8. At very high single or cumulative doses almost all patients will
experience some degree of peripheral neuropathy, but in certain susceptible patients
neuropathy will occur at lower cumulative doses or with greater severity. Interindividual
susceptibility to paclitaxel induced peripheral neuropathy may be driven by an overall
increase in exposure to paclitaxel, or an increased sensitivity to damage or decreased
capacity for repair at any of the putative targets of paclitaxel in the peripheral neuron.

Given the wide interindividual variability in incidence and severity of the toxicity
independent of any known risk factors, it is likely that there is an underlying genetic basis
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for susceptibility to paclitaxel-induced neuropathy. Small candidate gene studies focusing on
genes involved in paclitaxel pharmacokinetics and pharmacodynamics (e.g., ABCBI,
CYP2CS) or paclitaxel targets (e.g., B-tubulin) have had mixed results, with some identifying

=11 'and others failing to replicate previous results!2- 13,

variants associated with neuropathy
Recently, a genome-wide association study from this group!4 identified several SNPs with
moderate effect size in FZD3, FGD4, and EPHAS associated with severity or dose at onset
of paclitaxel-induced sensory peripheral neuropathy. An independent genome-wide study
identified SNPs in RWDD3 and TECTA associated with onset of paclitaxel-induced
neuropathy!>, but these findings were not replicated by others'®. The large number of
putative causative variants identified, many with small effect size, and the discrepancies
from study to study suggest a complex polygenic etiology for susceptibility to paclitaxel-
induced neuropathy.

Pharmacogenomic studies, especially those involved in the study of drug toxicities, come
with their own particular set of challenges. Sample sizes are often limited, and phenotype
definitions can be imprecise!”. This is compounded in cases where the toxicity does not
appear to be driven by one or a few polymorphisms with large effect size, such as CYP2D6
polymorphisms and morphine toxicity!8, but rather by a number of variants each with small
potential contribution to disease, as we propose is the case for paclitaxel-induced peripheral
neuropathy. For these phenotypes, determining the extent to which genetic variability
contfributes to a particular toxicity can be challenging. Traditional heritability studies require
large numbers of siblings or family structures that are not practicable, especially when
studying potentially toxic drugs. Even when evidence for a heritable component to toxicity
is available, candidate gene/candidate variant studies or traditional genome-wide association
studies will likely be unable to identify variants with small effects that together explain a
large portion of the expected heritability.

Recently, a method has been developed to estimate additive genetic variation or narrow-
sense heritability driven by common SNPs (i.e. those typically captured on genotyping
platforms) in unrelated individuals using linear mixed models!® 20, This approach was
applied to genome-wide SNP data in breast cancer patients treated with paclitaxel to
determine the extent to which paclitaxel-induced sensory peripheral neuropathy is heritable
and to identify causal SNPs driving this heritability.

Materials and Methods

Patient Data and Study Design

The patient cohort for this study was taken from the paclitaxel arm of CALGB 40101
(Alliance), a Phase III trial studying adjuvant therapy for patients with breast cancer; all
patients in the current study were also enrolled in CALGB 60202 (Alliance), the
pharmacogenomic companion study, and signed an IRB-approved, protocol-specific
informed consent for use of their specimens. Paclitaxel was administered every two weeks
over three hours at 175 mg/m? for four or six cycles. A total of 1,040 paclitaxel-treated
individuals were included in the cohort; after quality control, including principal component
analysis, call rate (>98%), and clustering performance, 859 Caucasian patients were retained
for further analysis. Germline DNA was genotyped on the HumanHap610-Quad Genotyping
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BeadChip (Illumina) platform. SNP quality control measures for minor allele frequency (=
0.01), genotyping call rate (299%), and Hardy-Weinberg equilibrium in controls (exact test
p = 0.001) were applied using PLINK (v1.07). Genotyped data was imputed to call
genotypes of un-typed SNPs using MACH?!-22 (1.0) and the 1000 Genomes? Pilot I (June
2010) data from unrelated Caucasian (CEU) individuals as a reference; imputed data was
filtered for 12 > 0.9. Recent publications describe further details regarding the

124

pharmacogenomic!'# and clinical?* studies. Details regarding patient selection, SNP quality

control and imputation are outlined in Supplemental Figure 1.

Two phenotypes are of interest in studying paclitaxel-induced neuropathy — severity of the
neuropathy and cumulative dose at onset of neuropathy. These outcomes may be driven by
distinct or overlapping sets of genes. Peripheral neuropathy was graded on a scale of 0 to 5
according to the National Cancer Institute Common Toxicity Criteria for Adverse Events
(NCI-CTCAE) version 2.0. The distribution of neuropathy grades in our cohort (Figure 1)
matches expected numbers from prior clinical trials?> 26, Because the linear mixed
modeling approach requires a continuous quantitative or binary phenotype, both severity of
neuropathy and dose at onset of neuropathy were treated as continuous variables. Severity of
neuropathy was modeled using the highest grade of neuropathy over the course of treatment
with log-transformed cumulative dose administered at highest grade of neuropathy (mg/m?)
as a covariate. For patients who did not experience the toxicity, cumulative dose
administered over the course of the study was used as the covariate. Onset of neuropathy
was modeled using deviance residuals from a time-to-event analysis as a continuous
phenotype. The deviance residuals are a normalized transform of the martingale residuals,
which estimate the difference at a particular cumulative dose t between observed (incidence
of grade 2 or peripheral higher neuropathy, 0 or 1) and expected events (predicted hazard for
neuropathy at dose t) for a given patient. Residuals from survival models have been
previously used to model time to onset of various phenotypes as a quantitative trait when it
is not possible to apply a survival model directly?’-2%. The time-to-event analysis was
conducted using-a null Cox proportional hazards model without predictors, with time
defined as cumulative paclitaxel dose and event defined as first instance of grade 2 or higher
peripheral neuropathy!4. For patients who did not experience grade 2 or higher neuropathy,
cumulative dose administered over the course of the study was used, producing right—
censored dosage date. Deviance residuals from the Cox score test were calculated using the
survival package in R30-31,

Pathway Definitions

Pathways evaluated were selected based on putative pathology for paclitaxel-induced
neuropathy. Five Gene Ontology32 (GO Release 2012-09-15) Biological Process terms were
included: Axonogenesis (GO: 0007409), Myelination (GO: 0042552), Transmission of
Nerve Impulse (GO: 0019226), Microtubule-Related Processes (GO: 0007017), and
Mitochondrial Organization and Transport (GO: 0006839 and 0007005), along with a
manually curated set of genes associated with congenital peripheral neuropathy33 and a set
of genes in the paclitaxel pharmacokinetic/pharmacodynamic pathway3*. For GO terms, all
possible genes (regardless of evidence code) were included. For each pathway, gene
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boundaries for the largest isoform of each gene were extracted from the UCSC Table
Browser using UCSC gene annotations from human genome build 37 (hg19). These gene
boundaries (plus an additional 10 kb upstream and downstream) were used to extract all
dbSNP13533 SNPs in the gene regions. Pathway SNP lists were used to extract the pathway-
specific portion of the genome in PLINK (v1.07)%¢,

For SNP sets grouped by position in the genome (genic vs. intergenic), gene and SNP
annotations were extracted from the UCSC Table Browser using CCDS3” gene annotations
from human genome build 37 (hgl9), and SNP annotations from dbSNP135. Genic regions
were defined as 10 kb upstream and downstream of transcription start and stop sites. For
genes with multiple CCDS isoforms, the longest isoform was used. The Biofilter3® software
(v2.0.0) was used to extract SNPs by genomic position.

Linear Mixed Modeling Heritability Analysis

Heritability estimates for the whole genome and for pathways were generated using the
GCTA (v1.01) software tool3. We estimated the genetic relatedness matrix (GRM) for 859
Caucasians using all post-QC genotyped SNPs. Principal components analysis was
conducted using GCTA, and the first 20 eigenvectors for each individual were used as
covariates in all subsequent analyses to control for any remaining population stratification.
To ensure that all subjects in the study were unrelated, we excluded one of each of a pair of
individuals with genetic relationship greater than 0.03, roughly corresponding to second
cousins or closer familial relationships; ten individuals were excluded in this step. An
additional four individuals were excluded due to incomplete phenotype information for a
final population of 845 unrelated Caucasians (Supplemental Figure 1). All analyses were
restricted to autosomes, and were conducted with the assumption that causal SNPs will have
the same allele frequency distribution as genotyped SNPs.

For pathway specific heritability analyses, a separate GRM was constructed for each
pathway and for its complement (whole genome GRM excluding SNPs in the pathway)
using the set of 845 unrelated Caucasians. Total genetic variance for severity and onset of
neuropathy was partitioned simultaneously onto pathway and “non-pathway” SNPs.
Likewise, for genomic position based heritability analyses, total genetic variance for both
phenotypes was partitioned onto genic and intergenic regions. To correct for the
simultaneous evaluation of multiple pathways, GCTA p-values were Bonferroni corrected
by multiplying each p-value by the number of pathways tested together (seven in the first
round and ten in the second round). Empirical distributions representing the null hypothesis
that the trait is not heritable were generated as follows for each pathway specific heritability
estimate: for severity of neuropathy, residuals and expected values were extracted from
linear regression of grade of neuropathy with log cumulative dose of paclitaxel and the first
20 principal components. For each of 1000 permutations, residuals were permuted, summed
with expected values for each individual, and used to estimate pathway-specific heritability
in GCTA. For onset of neuropathy, deviance residuals were calculated as described, then
input as an independent variable in a linear regression including 20 principal components
from which residuals and expected values were extracted. As with severity of neuropathy,

for each of 1000 permutations, residuals were permuted, summed with expected values for
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