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Abstract:

Immunological effector cells and molecules have been shown to access intracranial
tumor sites despite the existence of blood brain barrier (BBB) or immunosuppressive
mechanisms associated with brain tumors. Recent progress in T-cell biology
and tumor immunology made possible to develop strategies of tumor-associated
antigen-specific immunotherapeutic approaches such as vaccination with defined
antigens and adoptive T-cell therapy with antigen-specific T cells including
gene-modified T cells for the treatment of patients with brain tumors. An array
of recent reports on the trials of active and passive immunotherapy for patients
with brain tumors have documented safety and some preliminary clinical efficacy,
although the ultimate judgment for clinical benefits awaits rigorous evaluation in
trials of later phases. Nevertheless, treatment with lymphocytes that are engineered
to express tumor-specific receptor genes is a promising immunotherapy against
glioma, based on the significant efficacy reported in the trials for patients with other
types of malignancy. Overcoming the relative difficulty to apply immunotherapeutic
approach to intracranial region, current advances in the understanding of human
tumor immunology and the gene-therapy methodology will address the development
of effective immunotherapy of brain tumors.

INTRODUCTION

Central nervous system (CNS) has been considered as an immunological privileged
site that may provide a unique difficulty for cancer immunotherapy. However, recent
studies have clearly demonstrated that immunological maneuvers such as delivery of
effector cells and molecules could target tumor sites in CNS. Currently, advances in
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2 GLIOMA: IMMUNOTHERAPEUTIC APPROACHES

cancer immunology from multiple aspects have provided strategies of antigen-specific
immunotherapy for malignancy. In this article, we briefly overview the recent progress
in the understanding of interaction of immune cells and central nerve system, review
the recent novel strategies of immunotherapy of cancer with a special focus on adoptive
therapy with gene-modified T cells and discuss how these promising strategies can be
applied to treat patients with brain tumors.

INTERACTION OF IMMUNE SYSTEM WITH CENTRAL NERVOUS
SYSTEM

Historically, the brain has been assumed as an immune-privileged site because of (1)
the presence of blood brain barrier (BBB), (2) the lack of lymphatics and conventional
dendritic cells (DC) and (3) immunosuppressive environment evidenced by the lack
of allograft rejection in the brain. However, recent studies have demonstrated that
immune cells do interact with CNS that is strongly evidenced in the diseases such as
multiple sclerosis or experimental autoimmune encephalitis. In addition, the immune
effector cells and molecules were shown to approach to intracranial tumors in numerous
preclinical studies in mouse.!

BBB, that consists with the CNS capillary endothelial cells, functions with
pericytes, parenchymal membrane, and astrocytic feet as a neurovascular unit (NVU).?
The BBB in patients with brain tumor appear to be compromised,** associated with
increased edema and/or pericyte swelling. These disruptions are considered to affect
the migration of immune cells and the perfusion of effector molecules into the
parenchyma. Moreover, it is now well understood that immune cells do move across
the intact BBB.?

The primary antigen presenting cells (APC) in CNS have been referred to various
cell types including vascular endotherial cells, smooth muscle cells, astrocytes,
perivascular macrophages, choroid plexus epitherial cells, neurons and DC. Recent work
focused on CNS DC as more potent antigen presenting- and T-cell stimulating-APC
compared to CNS microglias and macrophages.® Other reported the suppressing activity
of plasmacytoid DC, the major population of CNS DC, suggesting a regulatory role
for plasmacytoid DC in T-cell activation in CNS.” Cervical lymph nodes have been
shown to play an important role as the major draining lymph node for DC in CNS.%?

Immunosuppressive factors have been found in the environment associated with
brain tumor. These include soluble factors such as TGF-f1, -2 and -3,'%!2 PGE2,!313
IL-10''® and gangliosides.’*?' Interactions between cell surface molecules such as
Fas-FasL,?#PD-1-PD-L1,*** receptor-binding cancer antigen expressed on Sico cells,?
and CD70?72 has been suggested to play a role in the suppression of immunological
reaction against brain tumor. These factors may play an important role for brain
tumor in their evasion from immunosurveillance and may be attractive targets for the
manipulation for effective immunotherapy.

In summary, recent works have explored the characteristics of CNS as an
immune-specialized rather than immune-privileged site. Many of the fundamental
mechanisms shown in non-CNS models seem to work also in CNS in general. Future
work will segregate the generality and specificity of immune reaction in CNS more
precisely and will help the development of effective immunotherapy of brain tumor.
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ANTIGEN-RECEPTOR GENE-MODIFIED T CELLS FOR TREATMENT OF GLIOMA 3
DEVELOPMENT OF SPECIFIC CANCER IMMUNOTHERAPY

Immune system has been considered to protect host by eliminating exogenous agents
as nonself while keeping self-tissues intact, known as immunological tolerance. Therefore,
whether tumor cells that developed from normal tissues can be recognized by immune
system or not had been a warm debate. In 1953, Foley et al*? showed the existence of tumor
specific antigens in 3-methylcholanthrene-induced mouse tumors by demonstrating the
development of specific immunity to individual tumor in mice immunized with different
tumor lines. Burnet and Thomas***! formally introduced the notion that the immune system
could protect the host from neoplastic disease as the cancer immunosurveillance hypothesis.
However, following studies indicated the low immunogenisity of the naturally occurring
spontaneous tumors compared to the carcinogen-induced tumors and suggested the difficulty
ofimmunotherapy of human malignancies. In 1980s, technology to establish tumor-reactive
cytotoxic T cells from peripheral blood mononuclear cells or tumor infiltration lymphocytes
(TIL) has emerged. In 1991, Boon and his colleagues®* identified MAGE-1/MAGE-A1
as a tumor antigen of human melanoma recognized by a cytotoxic T-cell line established
from a patient with malignant melanoma. Since this memorial milestone, numerous tumor
antigens and their epitopes recognized by CD8* or CD4* T cells have been identified.** Recent
studies confirmed the high incidence of tumor formation in a variety of immunodeficient
mice clearly indicating the existence of immunosurveillance of cancer.?*

Identification of the tumor antigens in human tumors made possible to develop
the therapeutic approaches to enhance the specific immunity against tumors. Specific
immunotherapy of tumor consists of two major approaches. In one approach, identified
tumor antigen in many kinds of form are directly administrated into hosts as cancer vaccine
to develop specific immune response in patients, known as active immunotherapy. Another
approach use technologies to establish tumor-reacting immune cells in vitro by culturing
patients lymphocytes in order to react to tumor antigens, followed by the administration
of established immune cells into patients, known as passive immunotherapy. Recent
progress in the gene-therapy technology provided the means to endow T cells with defined
antigen specificity as well as increased functional properties.

ACTIVE IMMUNOTHERAPY OF CANCER

Initially, tumor cells and their lysates have been tested for their potential as vaccine
against tumor. Recent progress in the identification of tumor-associated antigens made
possible to utilize the synthetic peptides of antigen epitopes for T-cell recognition,
recombinant or synthetic proteins that contain multiple T-cell epitopes, or nucleic acids
that encode the antigens. In 2010, Provenge® was approved by FDA for the treatment
of patients with prostate cancer as the first drug of therapeutic vaccine against tumor
in USA. This vaccine consists of in vitro cultured patients’ immune cells including
DC that incorporate fusion protein of PAP and GM-CSF. Oncophage® utilizes the heat
shock protein manufactured from patient’s own tumor tissue. This heat shock protein is
considered as a molecular chaperone that contains antigenic peptides derived from the
tumor. Oncophage® was approved in 2008 in the Russian Federation and subsequently
in EU for the treatment of patients with renal cancer. DCVax-Brain® is a DC vaccine
utilizing patient’s DC pulsed with patient’s own tumor lysate and was approved in 2007
in Switzerland as a drug to treat brain cancer.
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4 GLIOMA: IMMUNOTHERAPEUTIC APPROACHES
ACTIVE IMMUNOTHERAPY OF BRAIN TUMOR

A variety of mouse models have demonstrated that peripheral vaccinations against
intracranial tumor can be effective despite the existence of BBB and immunosuppressive
characteristics of tumor.! Clinical trials of cancer vaccines for patients with brain tumors,
however, are in the early stages and await precise evaluation of their effectiveness in
randomized studies, although encouraging results indicated some objective clinical
responses and potential improvements of patient’s survival.

Besides DCVax-Brain®, there have been a substantial number of studies
utilizing brain tumor cell-based vaccine approaches that have basically demonstrated
safety and preliminary efficacy.*>* These studies utilize either irradiated or fixed
tumor cells, tumor cell lysates, DC pulsed with tumor/tumor lysates/peptides
eluted from tumor, or DC-tumor fusion cells. The whole tumor cell-based
approach has benefits as to: (1) it does not require the identification of antigens;
(2) it may contain multiple antigens to be recognized by a wide variety of immune cell
types including both CD8* and CD4* T cells. However, the whole tumor cell-based
medicinal product may have its limitation and shortcomings as to: (1) because of the
component of self antigens it may induce immunological tolerance mediated by regulatory
mechanisms such as regulatory T cells, (2) normal brain components may otherwise
induce autoimmune encephalitis, and (3) high costs, troublesome procedures, and complex
quality control issues associated with large-scale culture of autologous tumor cells may
hamper feasibility and widespread application.

Taking advantage ofthe identification of brain tumor-associated antigens, peptide-based
vaccine strategies including DC vaccines pulsed with antigenic peptides have been evaluated.
It has been difficult to find a tumor antigen that is widely expressed in brain tumors but
completely absent in normal tissues. Nevertheless, a variety of molecules are known to be
expressed preferentially in brain tumors and epitope peptides to elicit T-cell response were
identified (Table 1). Among these, some peptides are in the process of clinical evaluation as
therapeutic vaccines. Yajima et al*® reported a Phase I study of personalized peptide-based
vaccine in patients with recurrent malignant gliomas. In this trial, each patient was tested
for their humoral immune response against a panel of antigens prior to the enrollment. The
personalized combination of peptides was decided according to the positive immune reaction
to the peptides because the authors consider that it can be a measure of pre-existence of
sensitized T-cell population. The treatment was well tolerated and resulted in an 89-week
median survival ofthe treated patients. Izumoto et al>¢ reported a Phase I1 clinical trial utilizing
aWilm’s Tumor (WT) 1-derived peptide. In this study, median progression-free survival was
20 weeks and possible association between the WT1 expression level and clinical responses
was reported. However, the overexpression of WT1 antigen in solid tumors including brain
tumors is controversial, and therefore the rationale for WT1-based immunotherapy for
brain tumor awaits further evaluation. Recently Okada et al’” reported a Phase I/II trial of
a vaccination with a-type 1 polarized DC (aDC1) loaded with 4 glioma-associated antigen
epitope synthetic peptides (EphA2gs3 591, IL-13 R02345.353:1a9v, Y KL-40501210, GP100500.217:112)
and administration of polyinosinic-polycytidylic acid [poly(IC)] stabilized by lysine and
carboxymethylcellulose (polyICLC) in patients with recurrent malignant gliomas. They
reported that the regimen was well tolerated. The vaccine induced the upregulation of type
1 cytokines including IFNa and CXCL10. Of 22 patients enrolled, 9 achieved progression
free status lasting at least 12 months. Two patients experienced objective clinical tumor
regression. Of these two patients, one demonstrated sustained complete response.
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ANTIGEN-RECEPTOR GENE-MODIFIED T CELLS FOR TREATMENT OF GLIOMA 5
Table 1. CTL epitopes of glioma
Antigens HLA Restriction Expression in Normal Cells References

EphA2 A*0201 Site of cell-to-cell contact 87-89

IL-13R A*0201, A¥2402 Testis 90-93

egpl00 16 HLA class I Melanocytic cells 94
epitopes

YKL-40 A*0201 Macrophages, Neutrophils, Serum, Blood  57,95,96

vessels, Extracellular matrix, Astrocytes

SOX2 A*0201 Testis, Neutal stem cells, Fetal brain 97-99

SOX11 A*0201 Fetal brain 98

HER2/neu 13 HLA class 1 Ubiquitously expressed 94
epitopes

EGFRvIII A*0201 No 100

MAGE-1 11 HLA class 1 Testis, Placenta 94
epitopes

TRP-2 A*0201 Melanocytis cells 101

AIM-2 Al Testis, Liver 94

Survivin A*0201, A*2402, Undetected in most differentiated normal ~ 102-105
Al, A3 adult tissues

SART-1 A*2402, A*2601 Testis 106,107

WTI1 A*0201, Kidney, Bone marrow, Pleura, Peritonium, 108-112

A*2402, Al

Testis, Ovary, Hematopoietic stem cells

PASSIVE IMMUNOTHERAPY OF CANCER

Passive immunotherapy of cancer includes the administration of various immune
effector cells and effector molecules such as mAbs, cytokines, or receptor ligands. The
approach to administrate effector molecule is very important in the scope of manipulation
of immunological balance in the tumor-bearing hosts. However, it rather belongs to the
molecular targeted therapy. This review solely focuses on the administration of effector
T cells.

All ofadoptive T-cell therapies remain as experimental therapies at present. However,
the strategy to administrate a large number of tumor-reactive T cells is an attractive approach
to the treatment for patients with malignancy. Indeed, adoptive immunotherapy with in
vitro expanded lymphocytes derived from patient’s TIL for the treatment of malignant
melanoma has demonstrated objective clinical response by RECIST criteria in around 50%
of enrolled patients in recent early phase trials.*® Initial trials to administrate tumor-reactive
T-cell line/clone were unsuccessful in both clinical response and persistence of infused
cells.”*¢! Recent advances in several areas of human T-cell biology suggested that these
disappointed results might be related to two major obstacles. One obstacle comes from
immunosuppressive environment of tumor-bearing hosts.®? The second comes from the
reduced quality of T cells generated by long term in vitro culture for their expansion.®
To overcome these obstacles, recent protocols incorporate the pretreatment of patients
with lymphodepleting chemotherapy and/or irradiation. The reason for the effectiveness
of these pretreatment is not fully understood but is suggested to depend on (1) depletion
of immunosuppressive cell populations such as regulatory T cells, (2) ablation of cytokine
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6 GLIOMA: IMMUNOTHERAPEUTIC APPROACHES

competition between infused and pre-existing lymphocytes, known as cytokine sinks,
(3) supply of spaces for infused cell to expand, known as homeostatic expansion, and
(4) improvement of APC function and availability.’® Recent protocols also tend to use
lymphocytes cultured in relatively short period in vitro in order to preserve T-cell quality
to maintain in vivo survival. Combination of these maneuvers with high dose IL-2
administration has reported a significant improvement of adoptive therapy with TIL for
patients with progressive malignant melanoma as up to 72% of patients demonstrated
objective clinical response of CR or PR in RECIST criteria.** Although the combination of
conditioning of patients has shown to be effective, if every kinds of adoptive T-cell therapy
requires such intensive pretreatment and/or IL-2 administration for in vivo maintenance
of infused cells as well as successful clinical response needs further evaluation.

ANTIGEN-RECEPTOR GENE-MODIFIED T CELLS FOR TREATMENT
OF CANCER

In addition to the advances in the control of T-cell quality and fate, ex vivo genetic
manipulation has been developed to extend the availability of adoptive T-cell therapy.
Adoptive T-cell therapy has been almost exclusively applied to patients with malignant
melanoma with very limited exceptions. It is because the isolation and expansion of
tumor-reacting lymphocytes that pre-exist in patients has been difficult in patients with
other solid tumors. Moreover, the T cells with T-cell receptor (TCR) of sufficiently high
affinity are generally in very low incidence because majority of human tumor-associated
antigens are of self-antigens to some extent and are poorly immunogenic. To overcome
this problem, genetic engineering of polyclonal patients’ lymphocytes by retrovius or
lentivirus vector encoding tumor-reactive TCR has been developed.®>® In this technique,
large amount of polyclonal lymphocytes can be redirected their specificity by in vitro culture
in relatively short period to a tumor-associated antigen with considerably high affinity
because the TCR is derived from a preselected T-cell clonereactive to tumor (Figs. 1 and 3).
The adoptive transfer of lymphocytes engineered to express MART-1 specific TCR into
patients with metastatic melanoma demonstrated long-lasting maintenance in 2 out of
15 patients enrolled, both demonstrated objective tumor regression.®® Subsequent trial
with higher avidity of TCR demonstrated objective clinical response in up to 30% of
patients.®”” Recent report on the usage of artificially modified high avidity TCR reacting to
NY-ESO-1 antigen demonstrated objective clinical responses in four (60%) of six patients
with synovial cell sarcomas and five (45%) of 11 patients with melanoma.®

The existence of endogenous TCR in T cells has been reported to be associated
with the inefficient expression of transduced TCRs in T-lymphocytes. It is because
endogenous TCR competes with introduced TCR for CD3 molecules. In addition, the
introduced TCR o and f chains form mispaired TCRs with endogenous TCR subunits,
which not only further decrease the expression level of transduced TCR pairs but also
cause the generation of T cells with unexpected specificities including self-reactivity.®
To improve the efficacy of TCR engineering, we developed novel retroviral vectors
encoding both siRNA that down-regulate the endogenous TCR and asiRNA-resistant TCR
specific for tumor-associated antigens such as MAGE-A4 or WT1 (Fig. 2). These vectors
efficiently suppressed the endogenous TCR and enhanced the expression of transduced
tumor-associated antigen-specific TCR resulting in the enhanced tumor cytotoxicity.”
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ANTIGEN-RECEPTOR GENE-MODIFIED T CELLS FOR TREATMENT OF GLIOMA 7
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Figure 1. Antigen recognition of TCR-engineered CD8* T cells. Polyclonal T cells are redirected their
antigen specificity by retroviral or lentiviral transfer of tumor-reactive TCR gene. A large amount of
tumor-reactive T cells are generated by relatively short period of in vitro culture.

Anotherunique attempt to provide tumor-reacting capacity to polyclonal lymphocytes
by genetic engineering is to engineer lymphocytes to express a chimeric antigen receptor
(CAR) that consists of antigen-binding region of mAb fused with the signal-transduction
domain of CD3C or FceRly (Fig. 3).”' Theoretical advantages of this method are (1)
independence of MHC class I expression of tumor, (2) capability to engineer not only
CD8* T cells but many of other cell types including CD4* T cells, (3) avoidance of the
influence of endogenous TCR that is one major obstacles in TCR transduction, and (4)
better persistence and penetration into tumor site compared to mAb drug. Initial clinical
trials (a trial targeting a-Folate receptor to treat ovarian cancer,” a trial targeting carbonic
anhydrase IX to treat renal cell carcinoma,” a trial targeting CD20 to treat lymphoma™)
demonstrated very limited persistence of transferred cells without clear clinical responses.
The absence of appropriate costimulatory signal was considered to be responsible at least
in part for these results. To overcome this obstacle, next generation of CARs that includes
signal transduction domains of CD28 and some other costimulatory receptors such as
0X40,4-1BB have been developed.” Recently, the improved persistence of lymphocytes
engineered to express anti-CD19 CAR incorporating CD28 signaling fragment in patients
with lymphoma has been demonstrated.”

One alternative approach for prolonged in vivo persistence of CAR engineered
lymphocytes was demonstrated utilizing Epstain-Barr virus (EBV)-specific T cells
engineered to co-express CAR specific for GD2.7 In this trial, CAR engineered
EBV-specific cytotoxic T cells persisted longer than CAR engineered polyclonal T cells
in patients with neuroblastoma. The authors reasoned that EBV-specific engineered T
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Figure 2. Retrovirus vectors to down-regulate endogenous TCR by siRNA. Novel retrovirus vectors
that encode both siRNA to down-regulate endogenous TCR and codon-optimized TCR specific for
tumor-associated antigens were created. These vectors achieved high expression of induced TCR with
low proviral copy number in the transduced lymphocytes.

cells could receive optimal costimulation by physiologic condition using EBV-specific
TCR, enhancing survival and anti-tumor activity.

On-targetadverse events, however, have been reported for TCR gene therapies targeting
melanocyte-differentiating antigens especially when high-avidity TCRs were used.®’” The
patients in the trial showed severe histological destruction in normal tissues where melanocytic
cells exist, such as skin, eyes, and inner ears. T cells engineered to express TCR specific
to carcinoembryonic antigen also induced a severe transient inflammatory colitis.” Case
reports exploring the severe adverse events seen in the patients receiving T cell with CAR
targeting CD19 or HER2/neu™ highlighted the potential risk in the usage of receptor
genes reactive not only to tumor cells but also a subset of normal cells. These observations
showed the potential power of T-cell therapy to overcome the immunological tolerance
in cancer patients as well as the need of careful approach in clinical trials. Interestingly,
lymphocytes engineered to express TCR specific to a cancer/testis antigen, NY-ESO-1,
did not demonstrate adverse events despite the fact that this TCR was modified to be very
high affinity,* suggesting the importance of the selection of target antigen. Incorporation of
suicide gene might also be one of the promising ways to solve the risk of on-target toxicity.

Invitro experiments and mouse models have shown the strategy of genetic engineering
of lymphocytes to enhance their functions as well as resistance to tumor-mediated
immunosuppression through the addition of genes encoding homeostatic or pro-inflamatory
cytokines,**® chemokine receptors,*” anti-apoptotic molecules,®® and costimulatory
molecules®® as well as the silencing of coinhibitory molecules,®® although these
modifications await the validations of their concepts in clinic.
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Figure 3. Adoptive cell therapy with antigen-receptor gene-modified lymphocytes. TCR genes derived from tumor-reactive cytotoxic T cells are transduced into
patients’ lymphocytes. Alternatively, single chained VH domain and VL domain derived from antibody reactive to tumor-associated antigen are fused with signal
transduction domain of CD3( to create a chimeric antigen receptor (CAR) gene. CAR gene is transduced into patient’s lymphocytes to generate tumor-reactive T
cells (T-body). These lymphocytes genetically engineered to become tumor-reactive are adoptively transferred into patients with tumor. Modified from Figure 6-2;
Naoko Imai et al. In: Masabumi Shibata, ed. Cancer Biology. Yodosha, 2011:260-9.
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10 GLIOMA: IMMUNOTHERAPEUTIC APPROACHES
PASSIVE IMMUNOTHERAPY OF BRAIN TUMOR

Based onthe above discussion on the understanding that CNS is an immune-specialized
rather than immune-privileged site, we envisage that adoptive T-cell therapy with tumor
antigen-specific T cells can be applied to the treatment of patients with brain tumors.
Several clinical trials using adoptive T-cell therapy for patients with brain tumor are
currently active according to the NIH clinical trial database (www.clinicaltrials.gov).
These include the usage of CMV-specific T cells, T cells genetically engineered to express
IL-13-Zetakine, and CAR targeting HER2. As mentioned previously, CAR targeting
GD2 expressed in EBV-specific T cells showed promising outcome in early phase trial,’
encouraging the extensive evaluation of this strategy into trials with later phases. Since
the list of tumor-associated antigens for brain tumor consistently grow (Table 1), the
evaluation of adoptive T-cell therapy against new targets will also prove useful for the
development of effective and safe therapeutic protocols for patients with brain tumor.

CONCLUSION

Passing more than a half of a century after Frank Macfarlane Burnet proposed the
concept of cancer immunosurveillance, we are facing a stage that immunotherapy is
emerging as a realistic and useful modality in the treatment for patients with cancer.
This is also unmistakably true in the challenge to fight with brain tumor. Among
the immunotherapies that are currently in development, adoptive T-cell therapy with
lymphocytes genetically engineered to express tumor antigen-specific receptor is certainly
a promising strategy to treat patients with glioma. To further overcome the multiple layers
of immuno-suppression/evasion mechanisms of tumor, the progress in basic science in
immunobiology and oncology harmonized with extensive effort in clinical studies is
indispensable. Combination of active and passive immunotherapy with manipulation of
immunologic balance in cancer patients will open a new gate for effective immunotherapy
of cancer.
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PRI R RIS &, SR EOMEA R HIT 3 b OB% <, WENRIHEE L
T B b OB, CT-XFURIREBRSIZ b0 L3% <, MEOMEFT7 72 Y —2BRT
B Eb%V. 1O EED CI-XHEASFBE L TuE 2 s LIFLIERB SN S,

2) MERE (BERISENHER)

SR (differentiation antigens) & IAIBESR 04, EHERIC LERSEDBND
7, BRI - RO GIFWEET 2 b0, BHEREAIECRE SNk gpl00, Melan A,
FuyF—Eulid, CTRLERERTE (A7 794 F) EFETEAZ /Y —LHORR
THEH, JHETHRESNRL TwS, BEROREE TR CORNBCHT 3 CTLIR XD, BH
DEFAEEE NG Z L5 5, BV LOERCHH LT u, 2AMIIC & o OB
TIRBOOTHRENESRT h29 <, BEEEET 2 EMMcT T2 BDGEREE-I T
WS B

3) BEERTEY
BEUEFEY (mutation) W AAOMAMERC»H 2 BETRE I KT 2 B8R
F FHIETH D REEHESTE C, IR CHENAEE LItk b, f-#F=Y, CDK4,
A A= B ECERERPREENTwEY, L REEILEHOWRTH S0, Bl
INTIZERADIAIEE L v, 7, BRI RIEIC 2 5 15 BCR-ABL, #AM{ETras,
BASMINEAT P53 & 3 KIBBIOLER 2B B b OLHEE L TRMIND T EDRES
NCHDH, BRADHHPHAEN TS,

4) BRFER
MRFEBHT (overepressed antigens) ¥ IIERHMIIC SRIL TL 52, 2AMIIIC BRI
BET 3 b0, BAMEOMIL EEICPPD5bONS ., HBAPEDA TEIERT % Her-2/
neu 7 E5HIT 5B,

5) 9A4IATIER

PANADPCBEBORECHEET 20055, 74 LABEFERSHIEN T DLy
vy rEZY, WEFESTF FEEoTH5 2 E4%w (W4 LAHE (viral antigens)), L
FeW 0T, TANRFERIBEOBAFRIZIGBIIRE 45 2 EX—RIT, CoR0wH - L
FIIC TR & MU BRI 5 5 N B BIEHIR & 385 5.

b SE R =4 A (human papillomavirus : HPV) & FE8AsA QI L T
D, FEEDAMIETIE, HPV YA LAY 820 (B6, B7) 2581, CTLOMIHR 2 4%
TEWbhoTwD, ¥k, LRIV 85— 4 A (Epstein Barr virus : EBY) i Bl
Y voSiE, BEEAS AL E ORI S L, EBV-EBNA-2, -3, -4, ~61ZEBV-LMP2 %L 0%
YADEDBHIR 5B T EDBHENT LS, CDA L3 — THIRICEHR L, A TR 50
BEE RS P THIEAIEY 4 VA (HTLV-1) OHETFREYCH % Tax b CTL ORI~
TERERE,
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19915~
BLOF ATEFEE

WA S I8 H
— HARRNTFF

OB - CD8" % 5 —THIf2IIMHC 7 T 2 TIZHR
SRR SR [ ERTVBIAHRERML, BT S

P AR OHES.
(+ L)

A TREMER LSS )|
(BFE ) R E AR & 55%) I ORI

H6-1 DANEERNE UISEND A RIEREE

BAFUEDNERES N CLEE, FURICH T S RN RS 2B DRRAORFEDMNTOIN CEL. SRINGRERAIC
EO AR S F X ST CERRE TS T B T IC R D BE AW CHRENREINSORGERD (DA F VR
] SEEEREOU)GR (EEEEU ) SRR EHS CRETRIRS U BE B A0OD AR ER U
b, PAFIRTHRTSHE LT, BFAMBISRIVIREMIERE L, BEICHTT WS [eilams] e

VR ZEEN & LTSRN RIEEE

BIANURDSEE S TR, DASFEITE THIROTEEIC & D234 20T 2 BRI S
EAAA SN, iz, SEBEE O 2R TH 5 CD8*F 5 — THIlNA TEL & ¢ 2 BFREOMTE
BTN TE T, BRIGHEFERES - VISR T X9 T 2 F vk, & Mg
By D20l kEL AT BN,

1) BRI OFEE
AR S § SERWCEBRBCRETS I LICE Y, BEEN RN IEINE O %Y
R B AECHZ, BAVIFELUTHMTESZ0TRE, PARES v 2H2z0bD, =
B h=7RFFF (CTLLE b—7, ~o8—2¥ b—7, ERBf#HEEEnY7R7F P
), #he®a— 19 % mRNA, cDNAL EDH 2, IEENEz 0L 0P, BAVIREZHRS ¢
AR S ORBUERMIERZ 5T 2 2 EARALNTRE, TRFTIREAL LTRES
T BIRHRAMA T 792 & LT, BB AT 5 DCVax-Brain (SR ehiehh i c Bk
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X7 B ORBHAMIKL, Sk Northwest Biotherapeutics &k, 20078 7 i 24 A TR, BB
WAACHTE 2 Oncophage (BEBEMEL DML 3 v 7 ¥ v RV H-RTF FHEER,
J Antigenics #;, 20084F 4 FBlza s 7oRR), BRIESA IS 3 Provenge (PAP (prostatic
acid phosphatase) #if & GM-CSFREE ¥ /8 2 B CIE{E L 72 H CRHAME, Dendreontt,
20104 4 BICKEITHER) 255, £, FHHBAT 7+ LT, FEEIAKCHT S Gar-
dasil (HPV6, 11, 16, 18MOL1 ¥ v/ 7 EOIEBPNE Y 4 VAR F+ 72 25 b
(adjuvant), #Merck ik, 200646 Aizd-TkR), Cervarix (HPVI6HE XK ISMAOLL 5>
ROBADIEEPHE T 4 VAR T+ 7Y 287 b, #GlaxoSmith Klinetk, 2007455 Hiz&c
K#B, BATY 20094810 &R BT CiBLMesnTwS, BliE, Shblsbcy, EGFRy
I, MAGE-A3, NY-ESO-17% Y% L L% < OEKRBASENA b, BIH, 5
HRERIC D 25 Db P e,

DU FYORREIFSRAICERT SO TR, SEGMELERERRETSY A L A1 P Toll-
ke BRENRHAT, HEATORSHMUCET 2HRHRESL TAEMELOLORL, TF
FEBLOHFAENTLS,

2) REliEEE )
AP CHAYURR B AR USRI 2 B L, BEICET 2 HETH 5 O, BIEEA L LCR i
BRE->TOBHOREL, TRTHBRNERCH 3, NCIoS. A. Rosenberg & /)b — 71318 ;%
PR B OISR Y » 53R & MBS EN Y » BT L, BRICRET 2 L0 9%
WrfToTwD, BIOWME TR, LHREE X U2 L BIRIREE e BRSOy il
MFR%FTS < ik D, RECISTHAECOZMHEAI~T2% L) REFARFETRLTHE W, #
BHE U CHBERRIE Y VR BRI S S ORI AT T L L ETRESLTLRL TS
Fas. LHLEDD, Zb2 bMEes o Ry o ke i s Hiils (R kR
L TIE) JERICHEL ¢, BIRSEAICE B RIBESNS, 22T, BECIHMEETY
ADFEME T, ATHICKROERIY v B (R 2 4 GEETUE TR
Fok) PRAasnTVwE, B6-2RRT I, PAMBERNLY S — THIY v —v Rk
5O PRRMB L OMET IO ML, T4 VAR P —HEEMWT, BEY v SBRicHc
MEFEAT2LOTHZ 1D W),
i) THRZSSHEGETEA THRIIRES ‘ |
THIEZER (T cell recoptor : TCR) WHATHA T #INENEE X 3 AFURRERAYF 7 — Tl
77—y bEshk TCRIBET % BEARIM L D 8 54k CDS* THIlICEA L <kl z
s L AT SR Wik 5985 TS 5. S. A. Rosenberg 513, MART-12#9& L
P RANIEIC T SR ™ 19, CBA R L LKA KT 25089, NY-ESO-1 %5
92 LA RGN - AN S B3R B R AT, 12~ 67 %OBEAHE L T
B, L, JURBHAIEE EERET 3 2 L 0T 3 THIIZHEET 2 £ OB CHER
s 2 RAEAOBE S 523 (MR CH 2 MART-1 2 RB L Cw 2 HM, [, NER, 2
MERHER TS 2 CEAR R L TV A ABRIOGE). Co L, THMEREE M) 5k
HofFo L LS Y RADLEMHOMEE L 2 2 LwIFLEE, 2102 RN ~DIE
DHAEERLC 03, bHETE, ZER¥ LS IAL ARRSLBRATEEL LT,




