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Figure 4 | Raftlin-mediated endocytosis is essential for PV-RNA-induced IFN-B production by human cells. (a) Left panels: HEK293 cells were
transfected with control, raftlin or TICAM-1 siRNAs (20 pmol), together with the expression vector for human TLR3 and the IFN-B reporter plasmid. Forty-
eight hours after transfection, cells were washed and stimulated with 20 pgml =7 poly(1:C) or PV-RNAs. After 6 h, luciferase reporter activity was measured
and expressed as the fold induction relative to the activity of unstimulated cells. Representative data from three independent experiments are shown
(mean s.d.). Student's t-test was used for statistical analysis. *P<0.05 and **P<0.01. Right panels: Knockdown of raftlin or TICAM-1 was confirmed
using western blotting. (b) Hela cells were transfected with the control or raftlin siRNAs. Forty-eight hours after transfection, cells were washed and
stimulated with 20 ugmi—1 PV5 for 3h. Total RNA was extracted, and quantitative PCR was performed using primers for the IFN-B and raftlin genes.
Expression of genes was normalized to glyceraldehyde 3-phosphate dehydrogenase mRNA expression. Data are shown as the mean + s.d. Representative
data from three independent experiments are shown. *P<0.05. (c¢) Hela cells were incubated with 15 pgml =1 Cy3-PV5 for 30 min at 4 °C. After
washing, cells were incubated for up to 60 min at 37 °C. At timed intervals, cells were fixed and permeabilized. After staining with anti-TLR3 mAb and
anti-EEAT pAb (upper panels) or anti-LAMP1 mAb (lower panels), cells were incubated with an Alexa Fluor-488- or -633-conjugated secondary

Ab and then analysed using confocal microscopy. Red, Cy3-PV5; green, TLR3 or LAMPT; blue, EEAT; light blue, nuclei with 4',6-diamidino-2-phenylindole;
white, merged PV5 with TLR3 and EEAT; and yellow, merged PV5 with LAMP1. Scale bar, 10 um. Co-localization between PV5 and TLR3, EEA1 or LAMP1
was analysed by counting the merged PV5 spots with each molecule in 70 PV5-internalizing cells. The data are shown as % of merged PV5

with EEAT, LAMP1 or TLR3 at indicated time points.
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Figure 5 | Mouse splenic DCs produce type | IFN and cytokines in response to PV-RNAs in a TLR3-dependent manner. (a) Splenic CD11c ™ DCs (1 x 108

per ml) isolated from TLR3 ™=/~ or WT mice were stimulated with 20 pgml =

T poly(l:C) or PV-derived RNAs in FCS-containing medium. Twenty-four hours

after stimulation, culture supernatants were collected, and IFN-0/8 in the supernatants was quantified using ELISA. TNF-a and [L-6 levels were
measured using CBA. Representative data from three independent experiments are shown (mean % s.d.). (b) Poly(I:C) and PV5 (20 pgml ~") were
pre-treated with RNaselll for 30 min at 37 °C or left untreated before adding to CDT1 splenic DCs (1 x 10° per mi) isolated from WT mice. Twenty-four
hours after stimulation, TNF-o. and IL-6 levels were measured in culture supernatants using CBA (left panels). RNaselll-treated poly(l:C) and PV5

were electrophoresed on a 2% agarose gel (right panels).

failed to induce TLR3-mediated IFN-f promoter activation by
either extracellular stimulation in FCS-free medium or direct
endosomal delivery using DOTAP (Fig. 7b,c). When PV5-D2
and -D4 were added to mouse splenic DCs or bone marrow-
derived macrophages in the FCS-free conditions, IFN-§
and proinflammatory cytokines, including TNF-o and IL-6, were
produced in a TLR3-dependent manner, though their levels
were relatively low compared with those induced by PV5-D1,
D3 or D5 (Fig. 7d). These results suggest that longer stem
structure with bulge and internal loops typically shown in
PV5-D5 mfold model is the core RNA structure required for
TLR3 activation in PV5 and also in PV6. In addition, shorter
mismatched RNA duplexes such as PV5-D2 and -D4 can be

8
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recognized by TLR3 with less activity in mouse DCs/macrophages
if they hold the structure, which differs from TLR3 response in
HEK293 cells. Given that RNA molecules have an appropriate
tertiary interactions, the stability and TLR3-binding ability of
these RNA molecules must be influenced by RNA tertiary
structure.

Discussion

In the current study, we demonstrated, for the first time, that
mouse/human TLR3 detects extracellular virus-derived RNA with
stable stem structures to induce innate immune signalling.
Functional PV-RNAs were degradation-resistant, and their ability
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Figure 7 | Mapping of TLR3-activating RNA structure in PV5. (a) Secondary structure of PV5-derived RNAs (PV5-D1-PV5-D5) predicted by the mfold
software. (b) RNAs were incubated in FCS-free or -containing medium at 37 °C. Non-treated RNA or RNA incubated for 30 min were loaded onto a 1%
agarose gel. (¢) TLR3-mediated IFN-f promoter activation induced by PV5 or PV5-derived RNAs in HEK293 cells transiently expressing TLR3. Cells were
stimulated with indicated RNAs (10 pg ml—") (upper panel) or RNAs complexed with DOTAP (Tpugml=") (lower panel). After 6 h, luciferase reporter
activity was measured and expressed as the fold induction relative to the activity of unstimulated cells. Data are shown as the mean * s.d. Representative
data from three independent experiments are shown. (d) Splenic CDTic™ DCs (upper panels) or bone marrow-derived macrophages (lower panels)

(2 % 10° per mi) isolated from TLR3 ™/~ or WT mice were stimulated with 100 pmol mi~" PV5 or PV5-derived RNAs in FCS-free AIM medium. Twenty-
four hours after stimulation, culture supernatants were collected, and IFN-B in the supernatants was quantified using ELISA. TNF-« and 1L-6 levels were
measured using CBA. Representative data from three independent experiments are shown (mean £s.d.).

to activate TLR3 was dependent on the dsRNA region within the structural analysis of the TLR3-dsRNA complex, it has been
RNA molecule, which is required for interaction with the N- and  proposed that 40-50 bp dsRNA was the mmlmum signalling unit
C-terminal dsRNA-binding sites of the TLR3 ECD. Based on the  with two TLR3 molecules®!. Jelinek et al!! reported that dsRNAs,
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>90bp in length, triggered TLR3 oligomerization and efficiently
induced IFN-B and TNF-o production in conventional murine
DCs. Functional PV-RNAs, such as PV5 and PV6, induced
TLR3-dependent IFN-a/f and proinflammatory cytokines from
mouse CDllct DCs (Fig. 5) these RNAs appeared to
oligomerize TLR3 molecules even though they harbour bulges
and internal loops in their duplex structures. If this is the case,
TLR3 recognizes not only perfect duplex of ~90bp dsRNA but
also the mismatched RNA duplex whithin ~ 600-nt PV-RNA.
We identified the core RNA structure required for TLR3
activation in PV5, which is relatively long stem structure with
bulge and internal loops typically shown in PV5-D5 mfold
secondary structure. The fascinated model for TLR3 dimer
formation has been proposed, in which shorter RNA duplexes of
between 21 and 30bp can form less stable complexes with two
TLR3 molecules®®. Thus, TLR3 appears to have flexibility to
recognize RNA molecules.

Interestingly, PV5 segments (approximately 200 nts in length;
PV5 a, b and c) lost the ability to activate TLR3 in HEK293 cells
despite their degradation-resistant structure (Supplementary
Fig. S3c), suggesting that an appropriate topology of multiple
RNA duplexes are required for TLR3 activation. In addition,
PV5-D2 and -D4 failed to activate JEN- promoter in HEK293
cells expressing TLR3, but efficiently induced type I IFN and
proinflammatory cytokine production from mouse splenic DCs
and bone marrow-derived macrophages in a TLR3-dependent
manner (Fig. 7). Recently, it has been reported that TLR3
undergoes cathepsin-mediated proteolytic processing, and both
full-length and C-terminal cleaved form of TLR3 molecules
reside in human retinal epithelial cell line and monocyte-derived
DCs®. It is interesting if shorter RNAs with mismatched
duplex, such as PV5-D2 and -D4, are recognized by protease-
processed TLR3 in mouse DCs or bone marrow-derived
macr%%hages with different binding modes from intact
TLR3%°. Indeed, the cleaved form of TLR3 is predominant
in mouse macrophages®®, but less present in HEK293 cells*,
which may explain the different TLR3 responses to these
RNAs between mouse DCs/macrophages and human HEK293
cells (Fig. 7).

There have been many reports indicating that TLR3-dependent
inflammatory cytokine and chemokine production affects virus-
induced pathology and host survival in RNA virus infections such
as respiratory syncytial virus, influenza A virus and phlebovirus, a
negative-strand RNA virus that produces minimal dsRNA as an
intermediate product®, Furthermore, TLR3 functions as an
endogenous sensor of necrosis and is required for chemokine
production by peritoneal macrophages after co-culture with
necrotic neutrophils?®, However, these biological studies have
suffered from the lack of information about the actual molecules
sensed by TLR3 in such infection/inflammatory states. More
recently, Bernard et al*! demonstrated that UV-damaged self-
noncoding RNA is detected by TLR3. We suppose that viral/host
RNAs with stable stem structures derived from infection- or
inflammation-damaged cells activate TLR3 to induce cytokine
and chemokine production.

In the case of PV infection, TLR3-mediated type 1 IFN
production is important for viral clearance in vivo'>®, In vitro
PV infection of splenic DCs promotes type I IEN production in a
TLR3-dependent manner. The positive-stranded ssRNAs and the
replicative form are robustly present in PV-infected cells, which
might be segmented into functional ssRNAs similar to PV5 and
PV6 extracellularly due to necrosis. Hence, in the local
environment, segmented virus-derived structured RNAs can
function as a TLR3 ligand. The flexible RNA-recognition mode
of TLR3 may have some advantage to protect host against wide
spectrum of virus infection.

Notably, RNA uptake is required for TLR3 signalling. Func-
tional PV-RNAs possess the essential structural elements required
for both cellular uptake and TLR3 oligomerization. We found that
raftlin, a cytoplasmic lipid raft protein, is a molecule that
participates in uptake of PV-RNAs and delivery to TLR3-positive
early endosomes (Fig. 4). The features of the TLR3-recognizing
PV-RNAs are consistent with our previous results that raftlin
mediates poly(I:C) cellular uptake through interaction with the
clathrin-AP-2 complex in human myeloid DCs and epithelial
cells®®. In addition, uptake of B/C-type CpG ODNs that share their
uptake receptor with poly(I:C) was also mediated by raftlin®>3%.
Given that PV5-induced TLR3 activation in HEK293 cells was
inhibited by pre-treatment with the B-type CpG ODN
(Supplementary Fig. S5), PV5 likely utilizes the poly(I:C)/ODN-
uptake receptor for endocytosis. Although CD14 and the scavenger
receptor class A were reported to act as a poly(L:C)-uptake receptor
in mouse macrophages and human bronchial epithelial cells,
respectively*?43, they did not participate in poly(I:C)/ODN cellular
uptake in human DCs because of their absence on the cell
surface!?. There must be an additional uptake receptor for
poly(I:C)/ODN. Identification of the uptake receptor for virus
RNAs is important for improving our understanding of the innate
immune response to viral infection and sterile inflammation.

TLRs recognize pathogen- or damage-associated molecular
patterns and promote the activation of the innate and adaptive
immune responses through ligand-induced oligomerization®>.
Structural analyses of TLR3, TLR4, TLR5, TLR2/1 and TLR2/6
ECDs, and their complexes with typical ligands, demonstrated
that each TLR possessed ligand-binding sites or pockets and a
dimerizing interface, which allowed for ligand-induced receptor
dimerization®547, Although there are multiple ligands for each
TLR, it remains unknown whether they share common structural
features. The current study is the first to characterize the RNA
structure capable of triggering TLR3 activation and demonstrate
that viral RNAs with intermittent stem structure are recognized
by an uptake receptor and by TLR3, inducing innate immune
signalling. Precise analyses of the mechanisms underlying pattern
recognition by TLRs using different ligands might be important
for engineering synthetic TLR-activating ligands.

Methods

Cell culture and reagents. HEK293 and Vero cells were maintained in DMEM
(Invitrogen) supplemented with 10% heat-inactivated FCS (Invitrogen) and anti-
biotics. HelLa cells were kindly provided by Dr T. Fujita (Kyoto University) and
maintained in Eagle’s minimal essential medium (Nissui, Tokyo, Japan) supple-
mented with 1% L-glutamine and 5% heat-inactivated FCS, Normal embryonic
lung fibroblasts, MRC5 cells, were maintained in MEM-alpha (Invitrogen) sup-
plemented with 10% heat-inactivated FCS and antibiotics. The anti-human TLR3
monoclonal antibody (mAb) (clone TLR3.7) was generated in our laboratory®. The
anti-human raftlin polyclonal Ab (pAb) and anti-mouse TLR3 mAb were kindly
provided by Dr K. Saeki (Kyushu University) and Dr D. M. Segal (National
Institutes of Health, MD), respectively.*!! Anti-EEA1 pAb (PA1-063) was
purchased from Affinity Bioreagents; anti-B-actin mAb (A2228) was purchased
from Sigma; the anti-LAMP1 mAb (328601) was purchased from Biolegend; the
anti-TICAM-1 pAb (4596) was purchased from Cell Signaling; and Alexa Fluor-
488 and -633-conjugated secondary antibodies were purchased from Invitrogen.
Poly(I:C) was purchased from Amersham Biosciences. RNase A and RNase 111
were purchased from Ambion.

Mice. Inbred C57BL/6 WT mice were purchased from CLEA Japan (Tokyo, Japan).
TLR3 ™/~ mice were provided by Dr S. Akira (Osaka University). Mice were
maintained under specific pathogen-free conditions in the animal facility of the
Hokkaido University Graduate School of Medicine. Female mice of 6-10 week of
age were used in all experiments that were performed according to the guidelines
established by the Hokkaido University Animal Care and Use Committee.

Plasmids. The cDNA fragments encoding the open-reading frame of human TLR3
was amplified using RT-PCR with total RNA prepared from monocyte-derived

DCs and was ligated into the cloning site of the expression vector, pEF-BOS, which
was a gift from Dr S. Nagata (Kyoto University)*®. Mahoney PV complementary
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DNA was provided by Dr S. Koike (Tokyo Metropolitan Institute of Medical
Science, Tokgo). TLR3-mutant plasmids were gifts from Dr K. Fukuda (Yamagata
University)z .

RNA extraction from PV-infected cells. Vero cells were infected with PV or not
infected. Forty-eight hours later, cells and culture supernatants were divided by
centrifugation (2,000 r.p.m., 10 min). TRIzol reagent (Invivogen) was added to cell
pellets for extraction of RNA. Obtained RNAs were purified by ethanol pre-
cipitation, and concentration was determined by measuring the absorbance at
260 nm in a spectrophotometer.

Preparation of RNA. DNA fragments containing the PV gene segment and the T7
promoter sequence were amplified using PCR with specific primers and the PV-
cDNA as a template (Supplementary Table S2). The PV sense and antisense RNAs
from the PCR products were transcribed in vitro using an AmpliScribe T7 tran-
scription kit (Epicentre Technologies, Madison, W1, USA) according to the man-
ufacturer’s protocol. The transcribed products were separated on a 1% agarose gel,
and the band corresponding to PV RNA was excised using RECOCHIP (Takara).
Then, eluted RNAs were ethanol precipitated and resuspended in RNase-free
water. To generate dsRNA, sense and antisense RNAs were annealed. PV-ss/
dsRNAs were pre-treated with polymyxin B (5 pgml ~!) for 1 h before being added
to mouse macrophages and DCs. RNA was labelled with Cy3 maleimide mono-
reactive dye (GE Healthcare) using the 5" EndTag Nucleic Acid Labeling System
(Vector Laboratories, Inc.). Cy3-PV5 showed a full activity.

Reporter gene assay. HEK293 cells (8 x 10 cells per well) were cultured in six-
well plates and transfected with the TLR3-expression vector or an empty vector
(400 ng per well), together with the reporter plasmid (400 ng per well) and an
internal control vector phRL-TK (Promega, Madison, W1, USA) (20 ng per well)
using FuGENE HD (Roche). The p-125 luc reporter containing the human IFN-§
promoter region ( — 125 to -+ 19) was provided by Dr T. Taniguchi (University of
Tokyo). After 24 h, cells were collected and resusupended with FCS-free or -con-
taining medium. Then, cells were seeded on 96-well plates and stimulated with the
indicated RNAs. Six hours later, cells were lysed using the passive lysis buffer
(Promega), and Firefly and Renilla luciferase activities were determined using a
dual-luciferase reporter assay kit (Promega). The Firefly luciferase activity was
normalized by Renilla luciferase activity and was expressed as the fold stimulation
relative to activity in non-stimulated cells.

Filter binding assay. Radioisotope labelling of PV-RNAs by in vitro transcription
with [0-32P-ATP] was carried out as previously decribed®. Labelled PV-RNAs
(2nM) were mixed with varying concentrations (none or 6.25, 12.5 25, 50, 100 or
200nM) of human TLR3 (amino acid 27-711; R&D Systems) and adjusted to a
total volume of 25 yil using binding buffer (pH 5.0-7.0) containing 100 mM NaCl
(20mM AcONa (pH 5.0-6.0) or 20 mM Tris-HCI (pH 6.5-7.0)). After 30 min
incubation, the mixtures were passed through a nitrocellulose filter and washed
twice with 500 pl reaction buffer. The amount of bound RNA was measured using
BAS 2500 (Fyjifilm), and binding activities were calculated as the percentage of
input RNA.

Quantitative PCR. Total RNA was extracted using the RNeasy mini kit (Qiagen,
Valencia, CA) and reverse transcribed using the High Capacity cDNA Reverse
Transcripition kit (Applied Biosystems) and random primers according to the
manufacturer’s instructions. QPCR was performed using the indicated primers
(Supplementary Table $3) and the Step One Real-time PCR system (Applied
Biosystems).

RNA interference and immunoblotting. siRNA duplexes (Raftlin, catalogue
number $23219; negative control, catalogue number AM4635) were purchased
from Ambion-Applied Biosystems. siRNA for TICAM-1 was purchased from
Xeragon Inc. (Birmingham, AL, USA). HEK293 cells were cultured in 24-well
plates and transfected with 20 pmol each siRNA, together with the expression
vector for human TLR3 (200 ng), IFN-p promoter plasmid (100 ng) and an internal
control vector (1.5 ng) using Lipofectamine 2000. Forty-eight hours after trans-
fection, cells were stimulated with 10 pgml~! ligands for 6 h. Cells were lysed
and dual-luciferase activities were measured according to the manufacturer’s
instructions (Promega). Cell lysates were clarified by centrifugation and mixed
with denaturing buffer. Samples were analysed using 10% SDS-PAGE followed
by immunoblotting with anti-raftlin pAb (1/1,000), anti-B-actin mAb (1/1,000)
or anti-TICAM-1 pAb (1/500). In the case of HeLa cells, cells cultured in
12-well plates were transfected with 40 pmol each siRNA using Lipofectamine
2000.

Confocal microscopy. HeLa cells (1.0 x 10° cells per well) were plated onto micro-
cover glasses (Matsunami, Tokyo, Japan) in a 12-well plate. The following day, cells
were incubated with 15 pgml ™! Cy3-labelled PV5 for 30 min at 4°C. Cells were
washed twice and further incubated for 5-60 min at 37 °C. At timed intervals, cells

12

were fixed with 4% paraformaldehyde for 15min and permeabilized using PBS
containing 0.2% Triton and 1% BSA for 15 min. Fixed cells were labelled with anti-
EEA1 pAb (1/200), anti-LAMP1 mAb (1/300) or anti-human TLR3 mAb (1/50)
overnight at 4 °C. Then, Alexa Fluor-488- or -633-conjugated secondary Abs
(1/400) were used to visualize the primary Abs. Prolong Gold was used for staining
the nuclei. Cells were visualized at a X 63 magnification using an LSM510 META
microscope {Zeiss, Jena, Germany).

Purification of mouse DCs from spleen. Splenocytes from WT or TLR3 ™/~
mice were treated with 400 IU MandleU per ml collagenase D (Roche) at 37 °C for
25min in HBSS (Sigma-Aldrich). EDTA was added to the cell suspensions and
incubated for an additional 5min at 37 °C. After lysis of red blood cells using the
ACK lysis buffer, splenocytes were incubated with magnetic-activated cell sorting
anti-CD11c-conjugated microbeads, and DCs were purified using magnetic
separation columns as indicated by the manufacturer (Miltenyi Biotec, Auburn,
CA, USA). Positively selected cells were isolated and suspended in RPMI 1640
(Invitrogen) supplemented with 10% heat-inactivated FCS and antibiotics. For
isolation of CD8a* DCs, the magnetic-activated cell sorting CD8a* DC-positive
selection kit was used according to the manufacturer’s instructions. Purity was
checked routinely by FACS and was found to be >80% (CD11c ™) or >90%
(CD8u.*), respectively.

Enzyme-linked immunosorbent assay and cytometric bead array. Cells were
stimulated with the indicated RNAs in FCS-containing medium or FCS-free AIM-
V medium (Invitrogen). Twenty-four hours after stimulation, culture supernatants
were collected and analysed for cytokine levels with enzyme-linked immunosor-
bent assay (ELISA) or cytometric bead array (CBA). ELISA kits for IFN-o and IFN-
B were purchased from PBL Biomedical Laboratories and were performed
according to the manufacturer’s instructions. CBA flex sets for mouse IL-6 and
TNF-a were purchased from BD Bioscience. Experiments were performed
according to the manufacturer’s instructions, and samples were analysed using
the FacsAria (BD Bioscience).

Statistical analysis. Statistical significance of differences between groups was
determined by the Student’s #-test.

Prediction of RNA secondary structure. The secondary structure of RNAs was
modelled using mfold (http://mfold.rna.albany.edu/?q.mfold), RNAfold (http://
rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi) and centroidfold program (http://
www.ncrna.org/software/centroidfold/).
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The path to innovative drug development of cancer vaccine:
From discovery of tumor antigens to clinical trials
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summary

Tumor immunology has been advancing after the great discovery of tumor-specific antigen MAGE in 1991, and a number
of tumor antigens have been reported to date. We have also found novel tumor antigens through various methodologies such
as gene expression cloning, bioinformatics, reverse immunology, transcriptome analysis and peptidome analysis. Recently,
we made a success of defining cancer stem cell-specific antigens. The fruits of our basic research have been applied to clin-
ical trials of cancer vaccine. The long path and future perspectives of innovative immunotherapeutic drug development are
described.

Key words tumor antigen; cancer stem cell; peptide vaccine; CTL; immunotherapy
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#1 AMEHXRCEVTRESNERES FEXTF R

WAME WE~RTF F GERTT) MRS Yo" SOk
A) BEFEEE - CTL _7T
HhA F4.2 (A31) c98 32)
PN PBF-BS55 (B55) PBF 2)
B PINE PBF-A24 (A24) PBF 33)
kg PBF-A2 (A02) PBF 34)
B) NAFA VT 5T 4T
i % HIFPH3-8 (A24) HIFPH3 7)
il 4 CEP55-193 (A24) CEP55 (C100rf3) 3)
BIAZIRA A AMACR2 (A24) AMACR 6)
HiSERRAS A STEAP-B (A24) STEAP1 5)
s A Lengsin-A02, A24 (A02,A24)  Lengsin 4)
C) Reverse Immunology
1) 7H - A
Fli 4 SVN-2B (A24) Survivin 2B 1)
i % C58 (A24) Survivin 35)
i 4 L7 (A24) Livin 12)
2) Befufbimpg
ey A(A24) SYT-SSX1 9)
T RSP B (A24) SYT-8SX1 9)
LY iE K91 (A24) SYT-$SX1 10)
D) AAHBHIA
b SOX2-109 (A24) SOX2 36)
FKIGH A OR7C1-93 (A24) OR7CI1
B KA DNAJBS-A24 (A24) DNAJBS 25)
KIEHs A SF9 (A24) FAMS3B

(2) WBAAEFRIZBENTE Reverse Immunology

2000 4E4%, 1= DNA microarray 47 %0 815 F 5B
F =T N— ANGEL 2B T, WENLEET
BBBT Y TRE S oz, FHOITEFEHE & EE
Mlc T h e EH T s RETFZHEL, EEEE
WCIEEBMTL AL, EFHRICERERT 58
BEFHERAI )=/ TH2EI2L 0T, BHEE
OEBHERIET2RAELZ (F1B)™Y.

FTEEAREICE, SETEECY > CREeEE
TFEYW SYT-SSX1I SFH L Twhb I 6, HLA K
BEF — TR X o T HLA-A*2402 Hy 3P I2HR
ENBJERTF FERRAZ LY. A, EH
HEFEBIZFEBL$ B Inhibitor of apoptosis protein family
43F Survivin, Livin 70 5 b HLA-A*2402 3 MHHTE
~R7FFEEZELE &I1O™?. Zokdi, B
MOWAFIE S HLAFE S EF — TRERIZE o T
HMENRTF FE A7) — =3 5 FHEIX Reverse
Immunology & XiEh 5™,

(3) #HRAY HLA #B&XTF KRR
SHICIEEEE S, EEMEEKE O HLA/MR Y

F F complex # SEiLBEL, TAANRY NIVIRITIZ
Lo THLAKERTF FOT I/ BIEEY % fEH
OIS BFREREL L. XTFFOT I /BRI
FUESHDI S, BES V22 HETH I EHNT
5. #HAUXNHEETRTFOR»» S, EEHRE
CRENRBZRTHEFERENTAILICL
T, BB ADBEEETFEHBEXRTF FEEZET
A5 L2 L7 (31 SF9/FAMS3B). Reverse
Immuology 2 & o THRIE S NAPURRTF FiF,
HLA B&EF — 712X o TFHl S - KPR~
7F F (Virtual Antigenic Peptide) T&H A DIIXT L,
REFFEIZ L > CTRESNBARTF Fit, ERIEE
MR IR EN TV S FTF 2 I WMHERT T F
(Natural Antigenic Peptide, NAP) T 5 = & 255K
TH5b.

2. DANREDERED I F &

(1) HBARBEOER

CDEHZLTEL DHFARBEETF - *TFF
RRELTALE, PATUBEIEAE S 3EHEICHE
TELHIENHBELAESY. 121X SYT-SSX1 @4
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BIETEDICREEINS L) LEEMBSRG:E
ZFER - SOl REICHRTIHETHS. A
BEMEE V) STIHRO CTEEN TR TH 55°
£ o MNEWEE TIEIRMNDEETHL. 2200
HEEMBICBVTERERL TVWBHIET, A
MR OEMTY & BLE L7285 o5 F9°% <,
TR M= A% [AET 5 IAP family HUER, 77
MzEsn+, Mk - MlEREEsTFIaEEh
5. INRLOFBEIEL VTS 5 HIEEARC
BEBRLTEBY, REEFOLDCHEEMEN
EWVWIHIRENRH B, 320HDD T V— 7L, Cancer-
Testis (CT) antigens ¢, 1991 4|2 Thierry Boon & {2
Y o THRE S/ MAGE-Al 20/ ETH L.
EFABTIIBEICLIAERL TWERWHRET,
BAE T TIZCTLI~CTI36 ¥ TI1S0FEHE L Eod CT
antigens D3ESE XN T 5 (GeneCards V3).
WAEEE 5L, CT antigens D— A5 k EHE
BEOVPABRMBICERIALTBY, PABRMBED
PURE LTSRERRICERATH 5 E0 ) T, #
BRI AR EREHICER 2 EHE R
LTWAZEZRAMLTYS (R1D)™Y. &L
X, PARHBSEENER %KY CT antigens %,
A - FBE - B E (Cancer-Testis-Stem, CTS
antigens) & MUY, BEFABHMBENT 7 F 0%
AT TH 5.

(2) BADYF U EEOREIELN

MABMIAE, BHMBEEEE LB EEEREY b
DDA ERT, PAOEFEFESLHE
- BBOIIMBETHLEEZLSNTEBY, A
B 2 AZR & LR OB RSB Tl
BDHENTVS'Y . PRAHE % A SR8 &5
LAY HE, BARM - JEbifERE 7
NZNBENEPARE, EESMBRICIRERT
BHBLIZAEShE (H1)™?. Yok it
BE2BHRE LT F U RIDENTHS )0 ?
EELIIEFWEFTNERWTHEATFHEFIVEERE
MWAEFEECTIVERL #1707, ZOKE, wih
DETNMIZBNWTHDPARHBISEEREZERL T
BEIEEE T L) BV ESIRESE O (B
2)® HHAAFICE L D ONABRME S, Wik
BEEMTHIM (CTL) XX CTHIEE 2 R4
EDHERENTE Y, ETHFADOHREBLY
BETFHI7F 2 LTCOBRGEIZFEINS.

IEE A0 - ATERMIEL

K1 DARHBROBRSD,SSBELESARBOES

HABME, St AMIES X CIEESERIC BT 5%
BNy —rht, BRARERASZIEHIISESIRS.
IDIBLT YT —TFTA v EDFLHESFIZ, HA - KE
BET 5.

3. BADIF U BHGERAR

(1) BERFBROBELHER

EELE, IhTEFCOEBMERELAIEICOL
A7, 2008 ENSRTF VI 7 F 2V OERKR
REZ MG L (B3). Survivin B %O HLA-A*
2402 # M CTL T ¥ b — S SVN2B R T F F %
2HEMEBICAEETENT AT 75 VRABRTII,
RECIST HJ5E 12 & » THEEHHRIZIE 2 #IE L, HLA/
~RFF FF b5 —fEHT & ELISPOT fEMTIC L » T
RIENBELRIL L2, REHBPAICE, FEe7
04 F7J a3 F& Interferon-a (IFN) % L
7:27—30).

EITRBEDA (FIEDFA) EETORNA (£
WRFELEENA) OnTFheaie L-REKRIZBW
TH, INZHHLZZHEIIBVWT, FEICEVE
HHRIEIR L RESE (7 T~ —E) MEoh
BT ENHBALL (R2). IINRHY 7 F %%
7B BRETERSAORET 8 FHEE L.
BELDHBREHEFTH S, 02F X VEHFEH
&% & CRMFERERE EM. [HR 2 ERE
D WETHLEE A TR & L7z SVN-2B By
BEo% 1 BERAR] OKE, "o bo—uFE
i353% (1560) C, 209 LETERIA 108%
BHRAELLER S4AFHBPRET8Sy AL
EEMNTD NI, 20134F LY, [HRLEGEED
BWETHEEBFA TS E L7277 R, SVN-2B
Hh#% 5, SVN-2B/IFN %50 _EERER L
AR 2 ERPTH 5.
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DNA vaccine: v Cancer cell: RenCa
1, Survivin ~3 (kidney cancer)
2, DNAJBS DNA Tumor
vaccination  Challenge
Days I l i
~14 -7 0
7000
- &~ PBS
% 800 T em peDNA1/Mock
E 5000 A =& pcDNA3.1/Survivin
2 ~& poDNA3.1/ONAJBS PBS
3 4000 / W pcDNAS.1/Mock
4 .
> 3000
g
B 2000 PeONA3.1/Survivin
1000 P<0.05
PcONAS.1/DNAJBS

o 7 14 21 28 35
Days

2 BADIFODBAFRETIVEER
Survivin ¥ 7-i% DNAJBS % = — F9" 5 5B Plasmid DNA % BALB/c =7 A 2 I L%, FIRTH AL RenCa % 4
L7z, AR BEEUE DNAJBS 608 LB T, ABICHVIEENHEIRESEZD 5 hi®.

RIFEGYF

SrRteTRS
(cry

7 ﬁixlmﬁﬂﬁéhfﬂﬂﬁ@ﬁ‘
ﬁ?ﬁbﬁi%ﬂ:/,/

HABRERE

B3 BATIFDESHIGIRNRA =X
RPFFIIFYEETERT S L, BHBLIUBEY Y SHOBRKIEOH £12 X o TR7F FIFRE CTL FFE S, 4
ACTHAES 5. CTLRBURNR 7T FERHL TR BEMIa 2 B L, MEREEELRETS. 1 & —7 o0 Y 3B
OIEMAL & BEAIEO HLA dlass 1 BH 2 {25 5.

(2) DBATOFUEEDINA A~ —H— NRTF VI F BB HBEOT P T —
CTL ¥ b — 7 RF7F FERWIET 7 F 0% TR R L EERIh R A B L2 A, U
Bop—ok LT, ELISPOT 7 b T < —#HT 7*“ 7?’“5%@7‘ b7 < — B T Ml 2SRV HERE
Ko T/ FVBENCILIRERE=Y YV , BB WREDR L ESIHHSEIZO LN
TELEV)IFHMIEHITOND. FEEIZ, SYN-2B haﬂuw L7z,
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F2 SVN2BEBEEKABROER (BXHREMAR)

BEIDHISHR Fb5T—]
momEFara—L | Bem  EE L L nta) iy a8

KEBNA

SVN-2BD& = 15 27% (4/15) 13% (2/15)

SVN-2B + IFA 3 5 20% (1/5) 0% (0/5)

SVN-2B + [FA+ IFNa | 684 8 50% (4/8) 75% (6/8)

IFNaD & 58 3 0% (0/3) 0% (0/3)
BEREAA

SYN-2B + IFA+ IENa | &8 [ 66% (416} 66% (416)
[m} 3.0

SVN-2B O& 3 8 12% (1/8) 75% (6/8)

SVN-28 + IFA + IFNo 28 6 50% (316} 100% (616)
BAA

SVN-2B +IFA 3 9 22% (29) 56% (5/9)

EENH R CT Eg % RECIST ZRHSWTEMLA. 7 Fo<—
AT, 72 FUHERB LTI F v HB07 P —BHECILE
AELSEELLEM U /EM % CTLEMER & L. IFA: FEe v o
A7 asF.

IFNa: Interferon-a

F7:, kv rEEHABIZEAD HLA class I 5
Br Bl THRIETELAHE y u— Uik
EMRS-5 28 7 L, EREEHEGORIL VL
JEEMEISIRE 2B L /& 25, HLAcclass I &t
EHE SN HEERE X, BEICHI b ST EFITHE
EEBIRESAD SN o2, BATZF UE
BEOSEFH~<—H— LT, 7 hIv—fETEL
HLA class | EMRGRERIIBOTERTH S LE
Py (WAl

4. SEORZE

FERRERDEAT L TV A DS AHLE Survivin 1XA5A
B - SERMAEIERETH ), —HTHARM
R REPTE (CTS antigens) @ 12 OR7C1 28y &
577 F v ORKABREBEERFRTHS. b
DOEFRFERIC BT HEWE T IVERER L RO R
BREDHOENDLONED) B, KREEKEEW, CTLT
¥ =T ThE, AUS—RTF FOEAES
BEEd ARARDEETH L. /2, FEeyu
A RF7 Y2y FRIFN L) b EHEOE VRS
RPHEHART A LOSBROEELRFETH 5.

£ 1Rl AT 7 Froiett b FihikE IREBRIC
Lo CTIEMELDERBICEIET S Z EARDHNT
WBHA, DX RPERENELT, EES
VU7 LehL, LX) k5 FE k5 EET,
ED L) BEEORTF FERETHEREVOD,
BENLELBRINTVES, BRRBROKE R+ 200
FTAZT A= FNy 7 Lahs, REKPAT7F >
ORRERE /W,

1)

2)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)
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ILRERARES

HREEE—HE

RTFRIVFVEER, BREBEEORTD, 8 HEZATTOWSREED 1D
THB, BRBIRE, ETEEICHT S, YNTEVI I NRIZENEVEERTFR
DI FUBEDE N BHERE, EMEBRIRTITI>TWS, AR T, FREOBEMN

YA EVBEFE, REROEBICEVWTRVE
ReHdH, BR, HEER REMUATEIERLEVNT
EHHISND, —7, YN EVREFISHELEEP
HERERLABEBEILBWIEEEIRERLTHED,
YNA EVBEFEYNERRE B 1086, EBE
BICH I BEMERMELS, BRICKRENGREREA

| AL RBORE, B SUREROMER L RLEHBT 5, J
MBI TEZTHEENAEZIShEY, 22 TRIC, X
' E$%§§mﬁ$%§§% ] IBE, 3B AR BRLXoR#mERWT, Y
NAEVBEFEYZRHT AT V/ISROBEER &
UCTLOMRGEEEEBRT Ui YNAEYOT S
e JBENELD, BAACESSVHLA-AZAL EEH

M D & WSVYN-2B (Ala-Tyr-Ala-Cys-Asn-Thr-Ser-
Thr-Leu ; AYACNTSTLY R Z7F R &2 &AL, HLA-
A24GHEDEEBHE KRB ZIN vitroTRIBL I B R,

225 7HI(78%) L H W THLA-A24/SVYN-2BIS R
MCTLABE SN (®1). £/, Th50DCTL
N EVERBL TWSERRICK UBREESE
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MERBUI, &5ICHLA-A24/SYN-2BF h 57—
EVERLL, SBEBEEMMICE T BHLA-A24/SVN-2B
BRECTLOMERE UER, SHEEICBENCTL
RHTEENTELY, T530LT, YNAEVE
BAEIRATORS N, b ~AmERFIEHLA class |
AF & & B ICMEREICIRET SN TSYN-2BREEN A
CTLIC &K D®BH#EInB T EMNEFHE Nk,

—RIES~T1 7 I /B S RBBRABERTF RER
AEBETIES5T 32T, BIRERYS V7L
I\ ZMRRE OHLA class 19 FICTF RHERE

HLA-class I ¥
heavy chain
(gi8)

HLA-A*2402

Hpag

Survivin-2B X7F F (SVN-2B) D&
Aa: 75z, Ty FEY Y, Cys: YAF, Asn: PR
IRSGF L, Thr: ALd=, Ser: U, Leu: 090

b5

NTFETTF AL SEHIBOBE A =X L

KTiEs

e BT @
(CcTL)

ST & E AL

| BUIVFUOERAHZXL

VN-2B+IFA+IFN- a fit

SVN-2BR 7 F FO B EBREMARE

6

FEELY, B U BRTF ROEIRIMIE A E OFER
TR ICERENHLA class I FEEBERERRL
THREEICBERENDZETY, FAIBY Vs
WTZNSEEERICTLERESIN260EERS
nTWd, R7F R/HLAESREZRBLELOY Y
FILIC & DIEHEL U TR, RERTF REEN
CTLE UTHEFEREKE L, BEICEWTHIERE
KE—DRTF R/MHLAESERE S DEMB £ 2 -
KR, VESERERET 3 LRI N (F
2)e —7, BHRMER®S V7Y ZMMBEO & S 4
FRRRHIE(APC) DM IURZ IR L, CTLICRHES
N3eHiclE, APCOEMEENEETH D Z DA
5NTHH"Y, IFN-a& L TIFN-8 (Type |15 —
ZxOv)iEk MEREICEEBELTWSZEMAEF-
NAR1/2% U TAPCHE BT 2EEER D, U
feh->T, MERTIFREELICIFN-BERET B
L& T, BWHENRTF REENCTLRENES
HEFETE D,
2)iRERETR AR
+AREBEERABICLDZLERALILEI,
HLA-A2402 B FEBHETHNAEVERBRLTWS
ETEEEENRE LT, FRI4FENSFERI9F
BElCMT T, SUN-2BEIRRER LU, IFN-aftBE~”
O~ LD B EBRFARETY, SYN-2BOGRENE
EEHBHICBIFNZHET 2 & OBEHALZHER
ULTE e, KIBRENRICAFREME & OFAZIFA
IRILYaryEUTERES URLES TR, N20%EE
DREGICRESIEIRRIER S N, IFN-aftRli
KO50%&ETER U, BERICH U TIFN-aftHE
BEUREMTE, BEIMEIHRIZE7%TH -,
Ffo, IFN-affEIC & DSYN-2BRT7F REFEMCTL
BOEENTBHENIET),
ERARBROBEOE | HERKRRE T, HLA-

SVN-2B+IFA °
VN-2B-+IFA-+HIFN- o fFH

8

4(67%) 6 3(50%)
S 1(20%) 5. 0(0%)
4(50%) 8 ' 2(25%)

1 BB IHERIE © RECISTICE D  FHE TSDLLEDERIK
*2 1 CTLEUEIMERIE : 7 b5 —XEESH1.00 &8 & 1FEFIE
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ERICE B0 1 U SRR OWHE

AZ402BIEFBUETHNA EVERB L TWSET
HibsRREE (KR BEE BB ZEXRELT,
FER24FEEN S FER25FEICMNIT T, SYN-2BE
(0.3mg#Et, 1.0mg#t, 3.0mgE) O TRE#ET o T,
ZOHE, SYN-2BEERBEFHENG D ¥ hial
YERRIZ451614 (0.3mgEE: 26134, 1.0mgEE: 14114,
3.0mgEt . 1HI2ME) BB 5 hic, RERIE, SYN-2BD
TE TS REBEE(Grade 1), SFEARES RIG
(Grade 1), ESHEMIOMESNEH (Grade 2) D,
2 (Grade 1) THH, WThEBETH T, £z,
BEELAEEERIEI0M12¢4(0.3mgEE : 36134,
1.0mggt: 47054, 3.0mgEE: 3F44E) BB 5Shichs,
WM HSVN-2BE DERBRIEETES Nico B
& UTSYN-2BRERCTLE(T b 5 ¥ —##47) O FF
ET-> R, 1.OmgENEEICEEZ KU, £k,
SEEFRRT S 4RI BIR TR OBERZETIC L 2BEDET
i ZRECISTHA RS A VICER U TT > B R,
50%MSDTH oo

HEDBKRHABEOFEREM S, SVN-2BICIFNZ #H
Licis®d, BREE S KBRE cRLESIFIMEN B
TEZEEZ SN, BICETERREE REEME
TN TWBRE XD Best Supportive Carelc LN,
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