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of Hsp90 in cross-presentation is to navigate the associated Ag  DC dendritic cell
into static early endosomes within human Mo-DCs. Thus, GM-CSF  granulocyte/macrophage colony-stimulating factor
Hsp90 appears to be a promising natural immunoactivator for ~ HSP heat shock protein
use of cancer vaccine development due to its excellent ability Hsp90 heat shock protein 50
to target human DCs and to induce specific CTLs. giN interferon
interleukin
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Abstract Pancreatic tumors are chemoresistant and
malignant, and there are very few therapeutic options for
pancreatic cancer, as the disease is normally diagnosed at
an advanced stage. Although attempts have been made to
develop vaccine therapies for pancreatic cancer for a cou-
ple of decades, none of the resultant protocols or regimens
have succeeded in improving the clinical outcomes of
patients. We herein review vaccines tested within the past
few years, including peptide, biological and multiple vac-
cines, and describe the three sets of criteria used to evaluate
the therapeutic activity of vaccines in solid tumors.
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Introduction

Pancreatic cancer is the fourth leading cause of cancer-
related death in the United States [1-3] and the fifth most
common cause of such deaths in Japan [4]. Although surgi-
cal resection is considered to be the only curative therapy
for pancreatic cancer, only 20 % of patients have resectable
disease at the time of diagnosis [5, 6]. In addition, advanced
pancreatic cancer patients exhibit a median survival time
(MST) of approximately six months and a 5-year overall
survival rate of less than 5 %, despite efforts to manage the
tumors with chemotherapy, radiotherapy and other treat-
ments [3, 5-8].

In 1997, Buris et al. reported that gemcitabine mono-
therapy is superior to fluorouracil (5-FU) monotherapy for
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Table 1 Chemotherapy for advanced pancreatic cancer

Median survival Overall response Trial name References

time (months) rate (%)
Gemgitabine 5.65 5.4 J Clin Oncol 1997;15: 2403-13.
Gemcitabine + erlotinib 6.24 8.6 NCICCTG PA3 J Clin Oncol 2007;25: 1960-6.
FOLFIRINOX 1.1 31.6 ACCORD 11 N Engl J Med 2011;364: 1817-25.
Nab-paclitaxel + gemcitabine 8.7 29.2 MPACT trial N Engl J Med 2013;369: 1691-703.

NCT00844649

Gemcitabine +TS-1 10.1 29.3 GEST trial J Clin Oncol 2013; 31:640-8.

treating pancreatic ductal adenocarcinoma (PDAC) [9].
Gemcitabine monotherapy has subsequently become the
standard chemotherapy for PDAC, resulting in an MST
of 5.65 months (Table ). Currently, three protocols have
proven to be superior to gemcitabine monotherapy. Combin-
ing gemcitabine with erlotinib improved the MST of PDAC
to 6.24 months in the NCIC CTG PA3 trial [10], while
combining gemcitabine with nab-paclitaxel improved the
MST to 8.7 months in the MPACT trial [11]. FOLFIRINOX
achieved the longest MST for PDAC (11.1 months) in the
ACCORDI1 trial [12], and the GEST study obtained similar
clinical outcomes. S-1 is an oral fluoropyrimidine derivative
that has been shown to be effective against various cancers,
and a previous study found that it is at least as effective as
gemcitabine against PDAC [13]. In addition, treatment with
a combination of gemcitabine + S-1 has been demonstrated
to result in an MST of 10.1 months [14]. Although these
chemotherapies extend the survival period among PDAC
patients, they also result in serious adverse events. There-
fore, the optimal chemotherapy regimen for PDAC depends
on the patient’s performance status.

There have been numerous attempts to develop vac-
cine therapies for cancer over the past century [2, 3].
Although clinical trials of such vaccines have obtained
promising results in specific patients, none of the tested
vaccines has exhibited significant improvements in effi-
cacy compared with established therapies. In addition,
several issues must be resolved before vaccine therapies
can be used in the clinical setting. Tumor-associated anti-
gens (TAA) have been demonstrated to recognize specific
human leukocyte antigens (HLLA) [15]. Theoretically, the
tumor lysate contains all of the antigens expressed by the
tumor, and cytotoxic T lymphocytes (CTL) are capable of
recognizing some of these antigens [16]. All vaccines for
pancreatic cancer are based on the fact that CTL recognize
TAA expressed on tumor cells and subsequently attack
these cells. The question is how strongly and specifically
each TAA stimulates CTL in vivo in the clinical setting.
Immune tolerance can develop via various mechanisms,
including the downregulation of the major histocompat-
ibility complex (MHC) molecule expression, induction of

@ Springer

T cell anergy, reductions in the number of immune effec-
tors and increases in the number of regulatory T cells [17,
18], which may explain why no cancer vaccine therapy
has been established as a standard treatment for advanced
PDAC. Therefore, in this study, we comprehensively
reviewed the clinical outcomes of vaccine therapy against
advanced PDAC.

Peptide-based vaccines developed within the past few
years

MUC1

Mucin 1, cell surface associated, (MUC1) is a type I trans-
membrane protein containing multiple tandem repeats of
a 20-amino acid sequence. Several MUC]1 peptides have
been tested as vaccines in the clinical setting; however,
most of them have failed to activate CTL [19-21]. Ram-
anathan et al. [22]; Yamamoto et al. [23] injected pancreatic
patients with a vaccine containing a 100-mer extracellular
tandem repeat domain of MUC1 and Montanide ISA-51,
and both studies obtained similar clinical responses; i.e.,
the authors detected cytokines (interferon (IFN)-y or inter-
leukin (IL)-4) and anti-MUCI antibodies in the patients’
sera but did not observe any significant clinical effects.
Another recent study involving a vaccine based on a differ-
ent MUC epitope showed similar clinical outcomes, i.e.,
all seven patients had progressive disease (PD), although
some of the patients exhibited immunological responses,
such as IFN-y and granzyme B secretion [24].

K-RAS mutants

K-RAS mutations are frequently found in patients with PDAC.
Vaccines targeting mutations in codon 12 of the K-RAS gene
have been tested as treatments for advanced [25] or postop-
erative [26] PDAC in the clinical setting. Gjertsen et al. [[21]]
investigated the utility of a K-RAS peptide vaccine contain-
ing granulocyte—macrophage colony-stimulating factor (GM-
CSF) in 10 patients who had undergone potentially curative
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resection (CTN RAS 95002) and 38 patients with advanced
disease (CTN RAS 97004). In that study, one patient achieved
a partial response (PR), which lasted for 28 months, and the
MST of the immunological responders was 4.9 months, com-
pared to 2.0 months for the non-responders.

Human telomerase reverse transcriptase (hTERT)

Human telomerase reverse transcriptase (hTERT) is fre-
quently expressed in cancer cells [27]. hTERT maintains
functional telomeres at the end of chromosomes, which
protect against cell senescence [28]. A vaccine against pan-
creatic cancer containing the telomerase peptide GV1001:
hTERT (611-626) and GM-CSF was examined by Bemn-
hardt et al. [29], who found the MST of the immunological
responders and non-responders to be 7.2 and 2.9 months,
respectively.

Vascular endothelial growth factor receptor 2 (VEGFR2)

Vascular endothelial growth factor (VEGF) plays an impor-
tant role in the progression of PDAC. The type 2 VEGF
receptor (VEGFR?2) is expressed in PDAC and associated
with tumor neovascularization. Miyazawa et al. [[30]]
investigated the efficacy of combined treatment consisting
of PDAC with a VEGFR2-169 peptide-based vaccine and
gemcitabine chemotherapy and reported that one patient
achieved a PR, while the disease control rate was 67 %. In
addition, the MST was 7.7 months, although 15/18 patients
were chemotherapy naive.

G17DT (gastrimmune)

Gastrin is expressed in PDAC and plays a role in regulat-

ing the autocrine, paracrine and endocrine systems [31]. -

The administration of the anti-gastrin immunogen G17DT
results in increased serum antibody levels and reduced
tumor growth in patients with gastrointestinal malignancies
32]. A randomized, double-blind, placebo-controlled mul-
ticenter trial of G17DT was also recently performed [33].
Although, among the intention to treat (ITT) population,
no significant differences in MST were detected between
the PDAC patients treated with G17DT and those given the
placebo, the MST of the two groups differed significantly
after excluding major protocol violators and censoring for
chemotherapy.

Heat shock protein (HSP)
Heat shock protein (HSP) itself is not an immunogen;

however, it acts as a chaperone or carrier of antigenic pep-
tides and possesses a repertoire of cellular peptides for

pancreatic cancer [34]. Furthermore, HSPPC-96 (Onco-
phage) has been tested as a vaccine in the adjuvant setting
after complete resection of PDAC [35]. In the latter study,
the MST of PDAC was reported to be 2.9 months after sur-
gery; however, this did not result in further clinical stud-
ies because only two of 10 patients exhibited increased
enzyme-linked immunospot (ELISPOT) reactivity.

Biological vaccines
Fowlpox viral vaccine

Carcinoembryonic antigen (CEA) and MUCI1 are highly
expressed in PDAC {36]. Viral vectors carrying CEA,
MUCI] and TRICOM [a triad of costimulatory molecules:
B7.1, intercellular adhesion molecule 1 (ICAM-1) and
lymphocyte function-associated antigen 3 (LFA-3)] have
been investigated as vaccines against advanced PDAC [37].
In one study, a vaccinia viral vector was used for the ini-
tial T cell priming, and a fowlpox viral vector was used
for immune boosting. Although this treatment resulted in
an MST of 6.3 months (1.5-21.1 months), the five patients
who showed T cell responses achieved a longer sur-
vival period than the five patients who did not (15.1 and
3.9 months, respectively; P = 0.002) [38]. It should be
noted that GM-CSF was used as a vaccine adjuvant in the
latter trial (Table 2).

Live-attenuated, double-deleted (LADD) Listeria
monocytogene vaccine

ANZ-100 is a live-attenuated double-deleted Listeria
monocytogene strain (LADD; Lm AactA/AinlB) found to
induce a local proinflammatory response, resulting in the
activation of innate and adaptive effector cells [39]. Mes-
othelin is expressed in PDAC and plays an important role
in tumor progression [40]. CRS-207 is a LADD Lm strain
that delivers mesothelin antigens into class I and II antigen-
processing pathways [41]. In a study examining the util-
ity of CRS-207 as a treatment for advanced cancer, three
of the seven subjects with PDAC were long-term survi-
vors, although the detection of a mesothelin-specific T cell
response was not correlated with survival [41].

Recent vaccine therapies
WT1

Kobayashi et al. reported a retrospective analysis of 255
advanced PDAC patients who were treated with dendritic
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Table 2 Peptide-based vaccines and biological vaccines for advanced pancreatic cancer

Author Journal Antigen peptide Sequences Combination Patients Qutcome/MST
Yamamoto Anticancer Res. MUC! 10-mer extracellular tandem repeat domain: Montanide ISA-51 6 1/6 SD
2005;25:3575-9 (GVTSAPDTRPAPGSTAPPAH)
Rong Clin Exp Med. MUCI PDTRPAPGSTAPPAHGVTSA DC cells 7 AllPD
2012;12:173-80
Gjertsen Int J Cancer. K-ras KLVVVGAGGVGKSALTI Asp: D Arg: R Val:  GM-CSF 38 1 PR
2001;92:441-50 V Cyc: C 10 SD (10.2 M; 3-23 M)
27PD
4.9 M responders
2.0 M non-responders
Abou-Alfa Am J Clin Oncol. ras12R TEYKLVWGARGVGKSALTIQ hGM-CSF 24 Postoperative adjuvant treatment
2011;34:321-5 rasl2 v TEYKLVWGAVGVGKSALTIQ
ras12D TEYKLVWGADGVGKSALTIQ
Wild-type ras TEYKLVWGAGGVGKSALTIQ
Bernhardt  BrJ Cancer. Telomerase hTERT ~ GV1001; EARPALLTSRLRFIPK GM-CSF 38 7.2 M (24 responders) 2.9 M (14
2006;95:1474-82 (611-626) non-responders)
Miyazawa Cancer Sci. VEGFR2-169 RFVPDGNRI Gemcitabine 18 79M
2010;101:433-9
Gilliam Pancreas. Anti-gastrin EGPWLEEEEEAYGWMDEF-DT (diphtheria G17DT vs. placebo 152 S5.0Mvs2.8M
2012;41:374-9 G17DT Gastrimmune  toxoid)
Maki Dig Dis Sci. HSP 10 Postoperative adjuvant
2007;52:1964-72 HSPPC-96 treatment
(gp%6, Oncophage) 27Y
Kaufman  J Transl Med. MUCI and CEA CEA agonist peptide CAP1-6D B7.1, ICAM-1, LFA-3 10 6.3 M
2007;5:60 (YLSGADLNL) MUC-1 agonist peptide P-93L  (TRICOM) Vaccinia virus:
(ALWGQDVTSV) PANVAC-V Fowlpox
virus: PANVAC-F GM-
CSF
Le Clin Cancer Res. Listeria vaccine ANZ- 9vs. 17 NA

2012;18:858-68

100, CRS-207
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Table 3 Recently developed peptide-based vaccines and multiple vaccines for advanced pancreatic cancer

Author Journal Antigen peptide Sequences Restricted HLA Combination Patients Outcome/MST
Kobayashi Cancer Immunol WT1 MUC1 CYTWNQMNL A24:02 DC cells OK432 255 99M 104 M
Immunother. RMFPNAPYL A02:01/02:06 (erythema)
2014;63:797-806 TRPAPGSTAPPAHG-  AnyA
VTSAP
DTRPAPGSTAP
Nishida J Immunother. WT1 CYTWNQMNL A24:02 Weekly 1000 31 8.1 MI109M
2014;37:105-14 mg/m?> GEM (DTH)
Asahara J Translation Res. KIF20A-66 KVYLRVRPLL A2402 Montanide ISAS1VG 31 47M6.1 M
2013;11:291 (reaction)
Suzuki J Immunother. KIF20A-10-66 KVYLRVRPLL A2402 Montanide ISAS1VG 9 58M
2014;37:36-42
Geynisman J ImmunoThera Cancer. CEA CAP1-6D YLSGADLNL A2 Montanide/GM-CSF 19 1LIM
2013;1:8
Kameshima Cancer Sci. SVN2B AYACNTSTL A2402 Montanide/IFN-oc 6 9.6 M)
2013;104:124-9
Yutani Oncology Reports. 31 vaccine peptides A2, A24, A3, A26 Mono: 8 41 7.9M9.6 M
2013;30:1094-100 Chemo: 33 (chemo)
Kimura Pancreas. WTI, Her2, CEA, DC cells plus LAK 49 S:8.0M
2012;41:195-205 MUCI, CA125, plus GEM and S1 G: 12.0M
autologous tumor lysate 0OK432 GS + LAK:
169 M
Le J Clin Oncol. GVAX pancreas and Irradiated GM-CSF- Cyclophosphamide 90 6.1 Mvs.39M
2014;32(suppl CRS-207 vs. GVAX secreting allogeneic 9.7 M (3 or more

3):Abstract 177

pancreas alone

pancreatic tumor vaccine

(GVAX pancreas)

rounds of vaccine
therapy)

Kepoy, 8ing
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cell (DC) vaccines containing Wilms tumor 1 (WT1)
and MUCI after being recruited from seven institutions
that followed a unified standard operating procedure.
The MST of these patients was 9.9 months [42]. Nishida
et al. also examined the utility of chemo-vaccine therapy
in which a WTI-based vaccine was used in combina-
tion with the administration of 1,000 mg/m2 of gemcit-
abine weekly. The latter regimen resulted in an MST of
8.1 months among 31 advanced PDAC patients [43]. In
addition, the MST of the immunological responders in
these two studies was very similar (10.4 and 10.9 months,
respectively) (Table 3).

KIF20A

Kinesin family member 20A (KIF20A) plays an important
role in the trafficking of molecules and organelles [44] and
is one of the molecules targeted by vaccines against PDAC.
A KIF20A vaccine was recently tested using different regi-
mens, including vaccine monotherapy [45] and chemo-vac-
cine therapy involving gemcitabine [40], and similar MST
values were reported in both studies (4.7 and 5.8 months,
respectively).

Carcinoembryonic antigen (CEA)

CEA is a 180-kDa immunoglobulin-like molecule
expressed on the surface of 90 % of PDAC tumor cells
[47]. CAP1-6D, a modified CEA peptide, was combined
with Montanide/GM-CSF to produce a vaccine against
pancreatic cancer that was subsequently tested in advanced
PDAC patients [48]. The MST of the 19 patients was
11.1 months, and one patient, randomized into the 0.01 mg
arm, achieved a complete response (CR).

Survivin2B

Survivin is a member of the inhibitors of apoptosis (IAP)
family of proteins that protect apoptotic signals by inhib-
iting the caspase activity [49, 50]. Hence, survivin-
expressing cancer cells escape from apoptosis and do not
die. Using a peptide-binding assay, we found that the sur-
vivin2B 80-88 peptide induces a strong CTL response
[51]. We also examined the effects of a survivin2B 80-88
peptide-based vaccine on various cancers in the clinical
setting and obtained promising outcomes. In particular,
the anti-tumor effect of the survivin2B 8088 peptide was
enhanced by combining it with incomplete Freud’s adju-
vant and IFN-a injection. Our preliminary clinical study
demonstrated a 66.6 % disease control rate in advanced
PDAC patients (four of six patients) [52]. Moreover, the
PDAC patients in our recent clinical phase I study exhib-
ited an MST of 9.6 months.
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Table 4 Evaluation of therapeutic activity in solid tumors
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IrRC

RECIST

WHO

Method

Sum of the products of the two longest perpendicular
dimensions (SPD) of all index lesions. (bidimensional)

Sum of the products of the two longest perpendicular  Sum of the longest dimensions (unidimensional)

dimensions (bidimensional)

Five per organ, 10 in total, and five cutaneous index

Five per organ, 10 in total

No. of measured lesions  All lesions

lesions

Disappearance of all known disease, confirmed at Disappearance of all known disease, confirmed at

Disappearance of all known disease, confirmed at

CR

4 weeks apart

4 weeks

4 weeks

>50 % decrease in total tumor size, confirmed at

>50 % decrease in tumor burden
compared with baseline in two

>30 % decrease in total tumor size, confirmed at

PR

4 weeks

4 weeks

observations at least 4 weeks apart
CR, PR, and PD criteria not met

>20 % increase in total tumor size; no CR, PR, or SD >25 % increase in tumor burden compared with nadir

CR, PR, and PD criteria not met

CR, PR, and PD criteria not met

SD
PD

>25 % increase in total tumor size; no CR, PR, or

(at any single time point) in two consecutive observa-

tions at least 4 weeks apart

documented before increase in tumor burden; new

lesion (s)

SD documented before increase in tumor size; new

lesion (s); > 25 % increase in size of one lesion

Tumor burden = SPD; 4., iesions +SPD new, measurable lesions
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Multiple vaccines
Personalized peptides

In a previous study, a set of 31 peptides was used to cre-
ate personalized vaccines for advanced PDAC [53]. A
maximum of four peptides were selected from among the
31-peptide set based on the results of HLA typing and the
patients’ peptide-specific IgG titers. Eight patients received
vaccine monotherapy, and 31 patients received chemo-
vaccine therapy. In the chemo-vaccine therapy group,
gemcitabine was administered in eight patients, S-1 was
administered in six patients and gemcitabine + S-1 was
given in eight patients. The overall MST was 9.6 months,
although that of the patients who underwent monotherapy
was 7.9 months. Yanagimoto et al. reported similar clinical
outcomes for chemo-vaccine therapy involving personal-
ized vaccines and gemcitabine based on the same regi-
men [54]. The MST of the patients in the latter study was
9.0 months, although that of the immunological respond-
ers was 15.5 months. None of the patients in either study
achieved CR (Table 3).

Autologous tumor lysate combined
with lymphokine-activated killer cell therapy

Kimura et al. treated 49 PDAC patients with vaccines
based on five different peptides and autologous tumor
lysate, although the vaccine preparation regimens and
anti-tumor therapies varied in each case [16]. Two patients
achieved CR after treatment with a combination of DC
cell and lymphokine-activated killer cell (LAK) therapy.
The MST of the patients treated with LAK + gemcitabine
and S-1 was 16.9 months, whereas that of all patients was
12.0 months. It should be noted that the survival time was
calculated from the day after the first vaccination, which
may have resulted in a shorter survival time (by a couple
of months) than would have been obtained using the meth-
ods employed in other studies. It is very difficult to evalu-
ate the clinical results of this study due to the effects of the
different therapeutic strategies used in each case. However,
the fact that multiple patients achieved CR will encourage
researchers to pursue this approach further.

GVAX pancreas with CRS-207

GVAX is a series of irradiated GM-CSF-secreting allo-
geneic pancreatic cell lines that elicit broad antigenic
responses. CRS-207 is a LADD Lm strain (Lm AactA/
AinlB) that expresses mesothelin and stimulates the innate
and adaptive immune systems. A phase II randomized
control trial of GVAX pancreas combined with CRS-207
versus GVAX pancreas alone was presented at the 2014

American Society of Clinical Oncology (ASCO) Gastroin-
testinal Cancers Symposium [55]. Interestingly, the clinical
results demonstrated that both treatments had dose-depend-
ent survival benefits. The MST of the patients who received
three or more rounds of vaccine therapy was 9.7 months,
and the MST of the GVAX with CRS-207 arm was longer
than that of the GVAX-alone arm (6.1 vs. 3.9 months;
P =0.01) [56].

Evaluation of therapeutic activity in solid tumors

The response of solid tumors is evaluated using either the
WHO [57] or RECIST criteria [58]. The RECIST criteria
were developed because the WHO criteria are quite com-
plex and measuring all visible lesions in two dimensions is
both time consuming and subject to measuring bias [59].
However, the use of immunotherapeutic agents in cancer
patients is associated with the following problems: (a) The
measurable anti-tumor activity can take longer to appear
during immunotherapy than during cytotoxic therapy; (b)
Responses to immunotherapy can occur after the stand-
ard criteria for progressive disease (PD) have been met;
(c) Discontinuing immunotherapy may not be appropriate
in some cases, unless PD is confirmed; (d) Allowing for
“clinically insignificant” PD (e.g., small new lesions devel-
oping in the presence of other responsive lesions) is recom-
mended; and (e) Durable stable disease (SD) may represent
the anti-tumor activity [60]. Therefore, the immune-related
response criteria (irRC) were developed to evaluate the
immunotherapeutic activity in solid tumors [61]. The most
important aspects of the irRC criteria are that (a) new
lesions are not classified as PD and (b) two consecutive
observations obtained at least four weeks apart are required
to diagnose PD. However, the clinical utility of the irRC
remains unclear and these criteria may require further opti-
mization [61] (Table 4).

Future research topics
Initial time point for survival assessments

The initial time point for survival assessments should be
unified to allow clinical outcomes to be compared between
studies. Most PDAC patients already have advanced dis-
ease at the time of diagnosis [0]. In addition, the adverse
effects of chemotherapies differ markedly among the vari-
ous regimens [8]. Therefore, the status of PDAC patients
at the time point at which they are registered can differ
both within and between clinical studies. Kobayashi et al.
reported that the MST from the date of diagnosis and the
MST from the first vaccination are very different (16.5 vs.
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9.9 months) [42]. Therefore, MST data must be interpreted
carefully.

Vaccine therapy and chemotherapy

The goal of vaccine therapy for cancer is to increase the
native immunity of cancer patients. However, chemother-
apy causes irreversible damage to proliferating cancer cells
as well as immune cells, including T and B cells. There-
fore, there is a conflict between the fundamental principles
of these two treatments. Chemotherapy is currently the
gold standard treatment for advanced PDAC. Although the
biological mechanisms of vaccine therapy and chemother-
apy conflict with each other, the anti-cancer activity of vac-
cine monotherapy or chemo-vaccine combination therapy
should be greater than that of chemotherapy alone.

Slow clinical response to vaccine therapy

It is very hard to achieve a complete response (CR) with
vaccine therapy alone. We reviewed 19 studies involving
a total of 860 patients and found that CR responses were
obtained in only three cases. Although none of these stud-
ies involved a large number of patients, the poor reported
response rates are a concern. One of the patients who
achieved a CR was administered CEA CAP1-6D + Mon-
tanide/GM-CSF therapy, while the other two were treated
with WT1, Her2, CEA, MUCI, cancer antigen 125 and
autologous tumor lysate vaccines combined with DC cell-
based LAK therapy and chemotherapy. Immunological
responses require a long time to control tumor growth and
achieve remission. The primary goal of vaccine therapy is
to achieve long-term SD [62]. Most previous clinical stud-
ies of PDAC involved patients with advanced disease for
whom no other therapies were available. Therefore, vaccine
therapy may be suitable for patients in other clinical stages
or possibly a useful postoperative adjuvant therapy. The
main advantage of vaccine therapy is that it has few adverse
effects, although it has also demonstrated minimal clinical
effects in previous trials. We are currently conducting a
phase II study of the survivin2B 80-88 peptide + Monta-
nide + IFN-f as a treatment for PDAC (SUCCESS, Study
of Unresectable CanCEr with Survivin-2B peptide vac-
cine in Sapporo: UMIN000012146), in which half of the
required patients have been recruited. The clinical results
of the SUCCESS phase II study will be reported by the end
of next year.
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