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Figure 1. Cloning and expression of TCR genes isolated from an HLA-DRBI*04:05-restricted WT1 335-specific CD4* T-cell clone. (a) Clone K was
co-cultured with irradiated autologous peripheral blood mononuclear cells (PBMCs) pulsed with WIl33, or irrelevant peptide in the presence or
absence of HLA-DR-, HLA-DQ- or HLA-DP-blocking monoclonal antibody (mAb) and tested for proliferative responses (c.p.m., counts per minute).
(b) Clone K was co-cultured with HLA-DRBI%04:05- or HLA-DRBI1*08:03-positive PBMCs pulsed with or without WT1 33, peptide and tested for
proliferative responses (*p<0.01). (¢) Construction of a lentiviral vector encoding full-length TCR o and f genes and primer positions for cloning
of TCR (SD, splicing donor site; ¥, packaging signal; RRE, rev responsive element; SA, splicing acceptor site; EF, human elongation factor 1 a
subunit promoter; IRES, encephalomyocarditis virus internal ribosomal entry site; Venus, a variant of yellow fluorescent protein (YFP) gene; PRE,
Woodchuck hepatitis virus post-transcriptional regulatory element; del-U3’, deletion of enhancer and promoter sequences in the U3 region). (d)
CD3 expression in J76 cells after the transduction of lentiviral vector. (e) TNF-a (Upper) and IFN-y (Lower) expression in each TCR-transduced
CD4* T-cell were analyzed after WT1335-restimulation at the indicated time points Data represent mean+SEM from duplicate (b) or triplicate wells
(e). (*p<0.01 (b) or 0.05 (e); n.s., not significant; nd., not done).

vector (Figure 1c). Since the J76 cell line does not originally
express TCR o/f that is required for expression of CD3

formed on the J76 cells. To determine whether TCR o 21.2-
p2A-TCR f 19.1 or TCR o 26-1.2-p2A-TCR f 19.1

molecules on the cell surface, we transfected J76 cells with
TCR a 21.2-p2A-TCR B 19.1- or TCR a 26-1.2-p2A-TCR
B 19.1-expressing lentivirus and investigated CD3 expression
on the cell as a measure of accurate formation of TCR.
Transduction of both TCRs yielded comparable frequency of
CD3"* cells in Venus* (a marker for transduction) cells
(Figure 1d) indicating that both TCRs could be correctly

responded to WT1l,3, peptide, CD4* T-cells obtained from
an HLA-DRB1#04:05-positive healthy donor were
transfected with TCR a 21.2-p2A-TCR B 19.1-, TCR « 26-
1.2-p2A-TCR f 19.1- or mock (empty vector)-encoding
lentiviral vector. After 3 days of transfection, the Venus*
CD4* T-cells were sorted and stimulated every 10 days with
irradiated, WTl33, peptide-pulsed autologous PBMCs.
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Response of each TCR-transduced CD4* T-cells to WT143,
peptide was examined by an intracellular cytokine assay. As
shown in Figure le, TCR o 21.2-p2A-TCR [ 19.1-
transduced CD4% T cells showed TNF-a production in
response to WT153, peptide after the 1st WT153, stimulation.
Furthermore, the response of the CD4™ T cells to WT133,
peptide was enhanced after the 2nd WT1,3, stimulation,
leading to an increase in the frequencies of TNF-a, as well
as IFN-y-producing cells. On the other hand, no expression
of cytokine in response to WT1s3, was observed in TCR o
26-1.2-p2A-TCR f 19.1- or mock-transduced CD4* T-cells,
even after the 2nd WT153, peptide stimulation. Thus, the pair
of TCR & 21.2 and TCR 3 19.1 was identified as a WT133,
peptide-responsive TCR.

Functional expression of TCR a 21.2-p2A-TCR  19.] in
human CD47 T cells. Next, whether or not the pair of TCR o
21.2 and TCR P 19.1 was specific for the WT153,/HLA-
DRB1*#04:05 complex was investigated. As expected, TCR a
21.2-p2A-TCR [ 19.1-transduced CD4" T-cells showed TNF-
a production dependently upon the concentration of WT1l33,
peptide (Figure 2a). In addition, the cytokine production was
not observed when the TCR-transduced CD4* T cells were
stimulated with truncated WT1 peptides lacking one or more
amino acids at the carboxyl terminus or 4 or more amino
acids at the amino terminus (Figure 2b). These results showed
that core amino acid sequence and minimal epitope for
binding of WTls;, peptide to HLA-DRB1%¥04:05 were
RYFKLSHLOQMHSRKH (amino acids 333-347) and
FKLSHLQMHSRKH (amino acids 335-347), respectively.
Furthermore, the WT134,-specific proliferative response of
the TCR o 21.2-p2A-TCR $ 19.1-transduced CD4™ T cells
was markedly inhibited by addition of an anti-HLA-DR-

Figure 2. TCR o 21.2-p2A-TCR f 19.1-transduced CD4+ T-cells
respond to WT1 33, peptide. TNF-a expression in TCR a 21.2-p2A-TCR
B 19.]-transduced CD4* T cells after the stimulation with various
concentrations of WT'l 33, peptide (a) or the indicated WT'1 peptides (b):
(a) A half maximum effective dose (EDsy) is shown. (b) Data are shown
as stimulation index (the indicated peptide stimulation/ no peptide
stimulation). (¢) Proliferative responses in the TCR-transduced CD4+
T-cells were investigated as described in Figure la. (d) Cytokine
expression in the TCR-transduced CD4+ T cells after the stimulation
with K562 or K562-DRBI1%*04:05 cells pulsed with WTI 33, peptide.
Representative dot plots from duplicate wells are shown. (e)
Proliferative responses of WT1 33, TCR-Td T cells after the stimulation
with WT1 33, peptide, PHA-induced lymphoblast, WT'l-expressing TF-1,
K562 or MEG-01 leukemia cell lysate-pulsed autologous peripheral
blood mononuclear cells (PBMCs). (f) WT'l33, TCR-Td T cells were
tested for WTljz3y-specific IFN-y (Upper) and TNF-o (Lower)
production at the indicated time points. Data represent mean+SEM from
triplicate well (a, ¢ and e), four experiments (b) or triplicate assays (f).
*p<0.05 (b and e) or 0.01 (¢); c.p.m., counts per minute.

blocking mAb but not anti-HLA-DQ- or DP-blocking mAb
(Figure 2c). In order to confirm HLA-DRB1*04:05-restriction
of the CD4* T-cells, the HLA-DRB1#04:05-transduced K562
cell line was established and used as a stimulator. Consistent
with Figure 1b, the TCR a 21.2-p2A-TCR § 19.1-transduced
CD4* T cells produced a large amount of cytokine only when
they were stimulated with WTls;, peptide-pulsed HLA-
DRB1#04:05-positive K562 cells (Figure 2d). These results
clearly demonstrated that TCR a 21.2-p2A-TCR B 19.1-
transduced CD4* T cells could specifically recognize WT153,
peptide and produce cytokines in an HLA-DRB1*04:05-
restricted manner. Thus, “WT135, TCR” was used hereafter
instead of “TCR a 21.2-p2A-TCR f 19.1”.

To confirm the response of WTI;3, TCR-transduced
CD4* T-cells (WTl33, TCR-Td T cells) to naturally
processed cognate epitope, cells were stimulated with WT1-
non-expressing or WTl-expressing cell lysate-pulsed
autologous PBMCs and then their proliferative responses
were examined. Consequently, the WT153, TCR-Td T-cells
showed proliferative responses to the PBMCs pulsed with the
lysate of WT1-expressing leukemia cell lines (TF-1, K562
and MEG-01) but not to those pulsed with the lysate of PHA
blast cells (Figure 2e). WT1;53,-specific IFN-y production
gradually increased during long-term culture (Figure 2f),
while WT133,-specific TNF-a production reached a peak at
one month and gradually decreased; nevertheless, it remained
at high levels (approximately 50 %) even after 3 months of
culture. These results demonstrated that WT 135, TCR-Td
T-cells could respond to a natural epitope of WT1 protein
and their function was kept stable for long-term culture.

Thl type-cytokine profile of WT'l 33, TCR-Td T-cells. In our
previous study, it had been demonstrated that stimulation of
PBMCs by the WT133, peptide could usually induce Thl-
type helper CD4* T-cells with an HLA-DRB1*04:05-
restriction (13). Therefore, whether or not WT1;3, TCR-Td
T cells dominantly produced Thl type-cytokines was
investigated. We established WT134, TCR-Td T cells from 3
HLA-DRB1*04:05-positive healthy donors and examined
them for cytokine expression by flow cytometry (Figure 3).
As expected, expression of Thl-type cytokines (IL-2, IFN-
v, TNF-a and GM-CSF) but not Th2-type (IL-5 and IL-10)
or Thl7-type cytokines (IL-17) was observed in all
established CD4* T-cells. Thus, it was demonstrated that
transduction of the WT133, TCR could confer Thl type-
cytokine profile on CD4* T cells.

Cytotoxicity of WI'l 33, TCR-TA T cells against leukemia cells
expressing both WI'l and HLA-DRBI1%04:05. Whether the
WTl33, TCR-Td T-cells could directly recognize and kill
WT1-expressing leukemia cells in an HLA-DRB1%¥04:05-
restriction manner was investigated. As expected, the WT133,
TCR-Td T-cells effectively lysed HLA-DRB1*¥04:05-positive,
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Figure 3. Thil type-cytokine profile of WI'l 335 TCR-Td T cells. WT1 335 TCR-Td T-cells were established from 3 different HLA-DRBI*#04:05-positive
healthy donors and analyzed cytokine profile. Columns represent mean+SEM of results from triplicate wells. *p<0.05.

WTl-expressing cells compared to HLA-DRB1%04:05-
negative, WTI-expressing or HLA-DRBI1%04:05-positive,
WT1-non-expressing cells (Figures 4a and b). The WTl33,
TCR-Td T-cells could also kill endogenously the HLA-
DRB1#04:05- and WTl-expressing leukemia cell line MEG-
01 originated from human leukemia (Figure 4¢). Cytotoxicity
of mock-transduced CD4" T-cells (mock-Td T-cells) was weak
or undetectable against these target cells (data not shown).
Since it is known that the perforin/granzyme B pathway
is associated with cytotoxic activity in not only CD8* CTLs
but also CD4* CTLs, expression of perforin and granzyme
B was examined in the WT133, TCR-Td T cells. As shown in
Figure 4d, the cells showed high expression of both perforin
and granzyme B. Furthermore, when the WT 133, TCR-Td
T-cells were stimulated with WT133, peptide-pulsed HLA-
DRB1*04:05-positive K562 cells, they produced IFN-y and
expressed CD107a, a marker of degranulation, indicating the
activation of the perforin/granzyme B pathway (Figure 4e).
Finally, we confirmed whether the cytotoxicity of the
WTls3, TCR-Td T-cells was dependent on the
perforin/granzyme B pathway. Cytotoxicity significantly
decreased against granzyme B inhibitor-treated target cells
compared to control DMSO-pretreated target cells (Figure
4f). These results clearly demonstrated that WT153, TCR-Td
T-cells exerted a cytotoxic activity against WT1-expressing
leukemia cells through a perforin/granzyme B pathway in an
HLA-DRB1*04:05-restricted manner.
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Discussion

We have successfully cloned an HLA-DPB1*05:01-restricted,
WTl33,-specific TCR gene. As demonstrated previously,
WT1,3, could bind to multiple HLA class Il molecules,
including HLA-DRB1%04:05, 15:01, 15:02, DPB1%09:01 and
05:01, which are frequent in Asian populations. In addition, it
has been recently reported that WT 153, also binds to HLA-
DRBI1*07:01 and DRB3%*02:02 molecules that are highly
prevalent among Caucasians. This promiscuous binding
property of WT133, has the primary advantage to overcome
the limited application, caused by HLA restriction, of TCR
gene-based  adoptive  immunotherapy.  Accordingly,
preparation and cloning of a WTl;3,-specific TCR gene
should be useful to develop broadly applicable TCR gene-
based adoptive immunotherapy approaches. In the present
study, based on this concept, we cloned a novel HLA-
DRB1%04:05-restricted, WT153,-specific TCR gene and
showed that the TCR-transduced CD4* T-cells could
proliferate and produce Thl cytokine in response to
WT133,/HLA-DRB1%04:05 complex and exert direct killing
activity against HLA-DRB1%*04:05-positive, WT1-expressing
human leukemia cells. The TCR gene cloned here broadens
the application of adoptive immunotherapy targeting WT1.
There exists accumulating evidence that adoptive T-cell
immunotherapy of human tumor associated antigen (TAA)-
specific TCR-transduced CD8* T cell is effective and feasible
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Figure 4. Direct killing of leukemia cells by WT1 33, TCR-Td T-cells in an HLA-DRBI#04:05-restricted, WT1 335-specific manner. (a-c) WT'l 33, TCR-Td
T-cells were tested for cytotoxicity against the indicated target cells. These experiments were repeated several times and similar results were obtained
(EIT ratio, ratio of effector:target cells). (d) Expression of perforin and granzyme B in WT1 335, TCR-Td T-cells. Representative histograms are shown.
(e) CD107a mobilization and IFN-y expression in WT1 33, TCR- and mock-Td T-cells were measured after the incubation with WT1 33, peptide-pulsed
or -unpulsed HLA-DRBI*04:05-positive K562. The plots are gated on Venus* CD4* T-cells. (f) Killing activity of WT1 335 TCR-Td T-cells against
granzyme B inhibitor-pretreated HLA-DRB1*04:05-positive K562 cells. These experiments were repeated several times and similar results were obtained.
Data represent mean+SEM from triplicate wells (a-c and f). *p<0.05. GZM, granzyme; DMSO, dimethyl sulfoxide; E/T ratio, ratio of effector :targer cells.

for treatment of cancer patients. However, the evidence that
CD4% T-cells can play direct cytotoxic roles in tumor
eradication is limited. Previous investigations have indicated
that perforin/granzyme B-dependent CD4* CTLs should be
effector cells for cancer immunotherapy (21, 22). However,

the direct anti-tumor effect of CD4" CTLs remained obscure
in vivo, especially in humans. Using a non-obese
diabetic/severe combined immunodeficient (NOD/SCID)
murine model, Stevanovic et al. showed that HLA class II-
mismatched CD4* T-cell infusion induced complete remission
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in NOD/SCID mice that were implanted with primary
leukemia cells from patients and that the infused CD4*
T-cells acquired the mismatched HLA class Il-restricted
cytotoxicity against leukemic cells in vivo, thus suggesting a
direct anti-tumor effect of human CD4* CTLs (23). However,
the kind of CD4™ T-cells, for example, TAA-specific CD4*
T-cells, exerted anti-tumor effect remained obscure. To solve
this issue, adoptive transfer of TCR gene-transduced CD4*
T-cell was thought to be a good experimental model. A recent
study reported that HLA-DRB 1¥04:05-transgenic NOD/Shi-
scid, IL-2Ry™! (NOG) mouse was generated and assumed to
be useful to evaluate human CD4* T-cell function in vivo.
These experimental tools, including the WT'133,-specific TCR
gene cloned here, allow us to address accurate anti-tumor
(leukemia) effect of TAA-specific CD4* CTLs.

In conclusion, a novel HLA-DRBI1#04:05-restricted,
WTl33,-specific TCR gene was successfully cloned and the
transduction of the TCR gene into human CD4* T-cells
conferred killing activity against WT1-expressing leukemia
cells. Thus, this novel WT135,-specific TCR gene should be a
promising tool to develop broadly applicable TCR gene-based
adoptive immunotherapy. Whether the TCR-transduced CD4*
T-cells can exert in vivo anti-tumor activity is now under study.
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Abstract To investigate the safety of combined Wilms
tumor 1 peptide vaccination and temozolomide treatment
of glioblastoma, a phase I clinical trial was designed. Seven
patients with histological diagnosis of glioblastoma under-
went concurrent radiotherapy and temozolomide therapy.
Patients first received Wilms tumor 1 peptide vaccination
1 week after the end of combined concurrent radio/temo-
zolomide therapy, and administration was continued once
per week for 7 weeks. Temozolomide maintenance was
started and performed for up to 24 cycles, and the obser-
vation period for safety encompassed 6 weeks from the
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first administration of maintenance temozolomide. All
patients showed good tolerability during the observation
period. Skin disorders, such as grade 1/2 injection-site
reactions, were observed in all seven patients. Although
grade 3 lymphocytopenia potentially due to concurrent
radio/temozolomide therapy was observed in five patients
(71.4 %), no other grade 3/4 hematological or neurological
toxicities were observed. No autoimmune reactions were
observed. All patients are still alive, and six are on Wilms
tumor 1 peptide vaccination without progression, yielding
a progression-free survival from histological diagnosis of
5.2-49.1 months. Wilms tumor 1 peptide vaccination was
stopped in one patient after 12 injections by the patient’s
request. The safety profile of the combined Wilms tumor
1 peptide vaccination and temozolomide therapy approach
for treating glioblastoma was confirmed.
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Introduction

The standard treatment for glioma is surgery, followed by
extended local irradiation and chemotherapy. In patients with
newly diagnosed glioblastoma (GBM), however, combined
radiotherapy (RT) and temozolomide (TMZ) treatment fol-
lowed by adjuvant TMZ for at least 6 months offers a mod-
est benefit, with a median survival of 14.6 months, a 2-year
survival rate of 27.2 %, and a 5-year survival rate of 9.8 %
[1]. Currently, therapeutic options with evidence confirming
their efficacy in glioma patients are limited, although some
new approaches, such as carmustine wafers and bevacizumab,
are available for clinical use in many countries. Thus, surgical
maximal resection followed by combined RT and TMZ is still
recognized as the standard therapy for newly diagnosed GBM.

Recently, other novel immunological approaches for
treating many cancers, as well as gliomas, have been

@ Springer

developed, including dendritic cell-based immunotherapy,
antibody-mediated immunotherapy [2], and cancer vac-
cination [3, 4]. A large number of tumor-associated anti-
gens that could be used for vaccination against cancers
have been identified, one of which is the product of the
Wilms tumor 1 gene (WT1) [5]. Although WT1 was first
recognized as a tumor suppressor gene, wild-type W7 is
now believed to function as an oncogene. Wild-type WT'/
is overexpressed in myelogenous and solid tumors [6, 7].
The WTI protein is an attractive target antigen for immu-
notherapy, and in 2009, a pilot prioritization by research-
ers at the National Cancer Institute produced a list, rank-
ing cancer antigens that can be used by the immunotherapy
community. Of 75 antigens on the list, WT'1 was indicated
as the most promising [8]. In addition, we found that most
high-grade glioma samples show overexpression of W71
both at the mRNA level and by immunohistochemistry
analysis [9]. Furthermore, we found that the treatment with
WT! antisense oligomer specifically inhibits the growth of
several GBM cell lines and hypothesized that W71 may be
a new molecular target for glioma therapy.

In 2008, we reported the results of a phase II clinical
trial of WT1 peptide vaccination in patients with recurrent
GBM. We showed that WT1 vaccination in patients with
WTI1/HLA-A*2402-positive recurrent GBM is safe and
produces a clinical response comparable to that of previ-
ously reported new approaches for patients with recurrent
GBM [10]. Although the appropriate dose and usage of
TMZ alone in treating recurrent GBM remain controversial,
several phase II studies reported an objective response rate
(ORR) of 5~15 %, 6-month progression-free survival (PFS-
6) of 19-44 %, and overall survival (OS) of 7-10 months
[11-17]. Because our phase II study of WT1 vaccination
alone yielded an ORR of 9.5 %, a PFS-6 of 33.3 %, and
8.4-month OS, we hypothesized that WT1 vaccination is
comparable to TMZ in terms of response and survival, and
particularly in its lack of severe adverse events.

Having obtained favorable results from the phase I
study of TMZ for treating recurrent GBM, we began to
consider a combination with TMZ targeting newly diag-
nosed GBM. Conventional thinking, however, has been
that chemotherapy may suppress the immune system,
and indeed, TMZ is myelosuppressive and does cause
lymphocytopenia in a large proportion of patients [1]. In
2010, we conducted a preliminary study and found that
the frequency of WT1-specific T cells in peripheral blood
is maintained during the initial therapy with RT/TMZ in
newly diagnosed GBM patients [18], although the num-
ber of those cells declines due to total lymphocytopenia,
indicating that homeostatic proliferation of effector T cells
could be expected during chemotherapy. As no published
clinical studies were available at the time concerning the
safe combination of chemotherapy (especially TMZ) and
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immunotherapy, we conducted a phase I study of combined
TMZ and WT1 immunotherapy and describe the results
here.

Materials and methods

The protocol for this phase I clinical trial was designed to
investigate the safety of combined WT1 peptide vaccina-
tion and TMZ in a small number of cases prior to a large-
scale phase II efficacy study. WT1 peptide vaccination was
simply added to the standard combined radiotherapy (RT)/
TMZ regimen [1, 19]. After the surgical diagnosis was
defined, fractionated conformal three-dimensional RT to a
total dose of 60 gray (Gy) in 30 daily fractions of two Gy
each was delivered. Concomitant chemotherapy consisted
of oral TMZ at a daily dose of 75 mg/m?, given 7 days per
week from the first to the last day of RT, for a maximum
of 49 days. After a 4-week break, patients received adju-
vant oral TMZ (150-200 mg/m?) for 5 days every 28 days
as one cycle. In the original reports of Stupp et al. [1, 19],
maintenance TMZ continued for up to six cycles, but in
Japan, where there is a national health insurance system for
all people and a lack of other effective therapeutic modali-
ties, we usually continue up to 24 or 36 cycles in a standard
neuro-oncological practice if no severe adverse events are
observed. At our institution, we ordinarily set the maxi-
mum number of cycles at 24 due to the potential increased
risk of secondary hematological malignancies associated
with TMZ [20]. Prophylaxis against Prneumocystis jirovecii
with either pentamidine or trimethoprim-sulfamethoxazole
was mandatory during concomitant RT and TMZ, irrespec-
tive of lymphocyte count.

Three cases were registered as an initial cohort, starting
WT1 peptide vaccination 1 week after the end of combined

Fig. 1 Combined TMZ and
WT1 peptide vaccination
protocol. We started at level 2,
in which the patients received
weekly vaccination four times

Surgical diagnosis

Extended local RT (60 Gy)
Oral TMZ daily 75 mg/m?

RT/TMZ, with continuing administration once per week for
7 weeks (Fig. 1). TMZ maintenance was started 4 weeks after
the end of RT/TMZ, and the observation period for safety
encompassed 6 weeks from the first administration of main-
tenance TMZ, for a total observation period of 9 weeks. The
study was designed to recruit three more cases as the second
cohort, after confirming the safety of the therapy over the
observation period in the three patients of the initial cohort.
In case there were severe adverse events in the initial cohort,
we prepared a level 1 protocol with a prolonged vaccina-
tion interval of once per 2 weeks (Fig. 1). Patients received
intradermal injections of 3.0 mg of the modified 9-mer WT1
peptide emulsified with Montanide ISAS51 adjuvant. For this
WT1 peptide vaccination, we previously reported the results
of a phase I study of dose escalation from 0.3 to 3.0 mg in
treating other solid and hematological cancers [21]. In that
study, we defined an appropriate dose of 3.0 mg for treat-
ing solid cancers and used that dose in many clinical trials,
including a phase II study examining treatment of recurrent
GBM [10]. Thus, this was not a typical dose-escalation study.

The vaccination was the same as that used in the previ-
ous phase II clinical trial for recurrent GBM and consisted
of an HLA-A*2402-restricted, modified 9-mer WT1 pep-
tide (amino acids 235-243 CYTWNQMNL), in which the
Y residue was substituted for a M residue at position 2 (the
anchor position) of the natural WT1 peptide. This substitu-
tion was shown to induce much stronger cytotoxic T lym-
phocyte activity against WT1-expressing tumor cells than
the natural peptide [22]. Lyophilized GMP-grade WT1
peptide was purchased from Multiple Peptide Systems (San
Diego, CA). We chose the HLA-A*2402 allele because
around 60 % of Japanese people are believed to have the
HLA-A*2402 allele [23].

Patients who had newly diagnosed GBM (grade 4) were
eligible for inclusion in the study. Additional inclusion

WwT1

Observation period of 9 weeks

.

before TMZ maintenance. If Level 2
safety was confirmed after
seven vaccinations, the patient
continued to receive WT1
vaccination biweekly (dotted
arrows). We also prepared a
level 1 protocol, which was not
used in this study. See text for
further explanation

Surgical diagnosis

6 wks

Extended local RT (60 Gy)
Oral TMZ daily 75 mg/m?

awks [l ]

T™MZ 5 days

WT1

S T NS

Observation period of 9 weeks

Level 1

6 wks

TMZ 5 days

4 wks

_@_ Springer



Cancer Immunol Immunother

criteria were: (1) age between 16 and 80 years, (2) expres-
sion of WT1 in glioma cells as determined by immunohis-
tochemical analysis, (3) HLA-A*2402 positivity, (4) East-
ern Cooperative Oncology Group (ECOG) performance
status grade 0-2, (5) no severe organ function impairment,
and (6) written informed consent of the patient. The Data
Safety Monitoring Committee (DSMC) independently
reviewed the eligibility of each enrolled patient. Protocol
compliance, safety, and on-schedule study progress were
also monitored by the DSMC. Blood samples were evalu-
ated every week during the observation period, and tox-
icities were evaluated according to Common Terminology
Criteria for Adverse Events (CTCAE), version 4.0.

For immunological monitoring, testing for delayed-type
hypersensitivity (DTH) to WT1 peptide was performed
using standard intradermal injection (200 pg/mL) in a vol-
ume of 0.05 mL. A positive test was defined as the presence
of an area of induration >5 mm at 48 h. The WT1 peptide/
HLA-A*2402 tetramer assay of WTl-specific T cells was
performed to calculate the frequency of WT1-specific T
cells in peripheral blood mononuclear cells (PBMCs), as
described elsewhere [10]. Briefly, frozen PBMCs from
patients were thawed and incubated for 1 h at 37 °C in
X-VIVO 15 medium (Lonza, Walkersville, MD) supple-
mented with 10 % AB serum (Gemini Bio-Products, Wood-
land, CA). The cells were passed through a 40-mm nylon
mesh to remove debris and were then incubated with Clear
Back (MBL, Aichi, Japan) in phosphate-buffered saline
containing 5 % fetal bovine serum and 0.02 % sodium azide
(FACS buffer) at room temperature for 5 min. The cells
were stained with phycoerythrin-labeled HLA-A*2402/
WT1,;5s wild-type and modified tetramer (MBL, Aichi,
Japan) for 1 h at 4 °C. The cells were then stained with
anti-CD3, anti-CD8, and anti-CD4 antibodies for 25 min at
4 °C in the dark, washed 3 times, resuspended in appropri-
ate quantities of fluorescence-activated cell sorting (FACS)
buffer, and incubated with 7-AAD (eBioscience, San Diego,
CA) for 5 min before analysis. The cells were analyzed
with FACSAria (BD Biosciences, San Jose, CA), and the
resulting data were analyzed with FlowJo software (TreeS-
tar, San Carlos, CA). The following monoclonal antibodies
(mAbs) were used: anti-CD3-Pacific Blue, anti-CD3-V500,
anti-CD4-V500, anti-CD4-APC-H7, anti-CD8-V450 (Life
Technologies, Carlsbad, CA), and anti-CD8-FITC (Beck-
man Coulter, Brea, CA). The frequency of WT1-specific
T cells was calculated as (CD8*WTl1-tetramert T cells)/
(CD8* T cells). In addition, using anti-CD45RA-allophy-
cocyanin (APC) (BioLegend, San Diego, USA) and anti-
CCR7-PE-Cy7 (BD Pharmingen, San Diego, USA) mAbs,
CD8*WT1-tetramer™ T cells were phenotypically classified
into four differentiation stages: naive (CD45RA+CCR7+),
central memory (CD45RA—CCR7+), effector memory
(CD45RA—CCR7-), and effector (CD45RA+CCR7-).
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If safety was confirmed after seven vaccinations in
each patient, further WT1 vaccination at 2-week inter-
vals was given only with the patient’s informed consent.
The progression-free survival (PFS) period was calcu-
lated from the day of diagnosis (surgery) (PFS_d) and
from the start of WT1 vaccination (PFS_v), based on
Response Evaluation Criteria in Solid Tumors (RECIST)
criteria, version 1.1. Predefined subgroups according to
clinical prognostic factors were explored, and data were
scored and regrouped with nomograms from the Euro-
pean Organization for Research and Treatment of Can-
cer/National Cancer Institute of Canada (EORTC/NCIC)
trial [24] and a modification of the Radiation Therapy
Oncology Group recursive partitioning analysis (RPA)
classes [25].

Results

Although the number of patients to be enrolled was ini-
tially set at six, three patients of the initial cohort and
four patients of the second cohort were registered to
confirm the safety of the treatment regimen and to col-
lect as much information as possible. The characteris-
tics of the seven patients enrolled (four males and three
females) are summarized in Table 1. The average age
was 49 years (range 41-60 years), and all patients were
thought to have primary GBM according to clinical and
pathological review, as no isocitrate dehydrogenase 1
(IDHI) mutation was detected in any of the seven patient
samples examined by immunohistochemistry [26]. The
extent of surgery for diagnosis consisted of four gross
total resections (GTRs), two partial resections (PRs),
and one biopsy. The extent of resection was based on the
surgeons’ judgment, with no formal assessment required.
Six of the seven patients showed a performance status
(PS) of 0 at study entry, and only one patient had a PS
of 1; this patient required steroid use during the clinical
trial. Past history or complications were noted in only
one patient (no. 3), who had been on oral anti-hyperten-
sive agents. The total prognostic score (TPS), as defined
by Gorlia et al. [24], ranged from 0 to 220; a total of
three patients (nos. 1, 4, 5) had a TPS of 0. A total of four
patients were in RPA class III, two were in class IV, and
one was in class V [25].

All patients tolerated the treatment relatively well dur-
ing the observation period. Adverse events are summarized
in Table 2 according to CTCAE grade. Skin disorders,
such as grade 1/2 injection-site reactions, were observed
in all seven patients. Although grade 3 lymphocytopenia
was observed in five patients (71.4 %), no other grade
3/4 hematological or neurological toxicity was observed.
Grade 3 lymphocytopenia appeared early, at 3.6 weeks
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Table 1 Patient characteristics

No. Age Sex Dx. Surg. PS STR Sys. TP RPA
1 42 M GBM GTR 0 No - 0 m

2 55 F GBM GTR 0 No - 31 v

3 48 M GBM B 0 No HT 100 it

4 4] M GBM GTR 0 No - 0 1L

5 45 F GBM GTR 0 No - 0 i1

6 60 M GBM PR 0 No - 81 v

7 52 F GBM PR 1 Yes - 220 v

No. patient number, M male, F female, Dx. histological diagnosis, GBM glioblastoma, Surg. extent of surgery, GTR gross total resection, B
biopsy, PR partial resection, PS performance status, STR use of steroids, Sys. systemic complication or past history, HT hypertension, TP total

points of prognostic score, RPA recursive partitioning analysis class

Table 2 Summary of adverse

CTCAE category and symptom CTCAE grade Total
events
1 2 3
n % n % n % n %
Blood/bone marrow
Anemia 4 57.1 4 57.1
Leukocytopenia 2 28.6 2 28.6 4 57.1
Lymphopenia 2 28.6 5 71.4 7 100
Hyponatremia 3 42.9 3 429
Hypokalemia 429 3 42.9
Skin
Injected site reaction 5 71.4 2 28.6 7 100
Neurology
Seizure 1 14.3 1 14.3

CTCAE Common Terminology Criteria for Adverse Events

on average (range 0-7 weeks) from the start of vaccina-
tion and recovered to grade 2 or above by 5.8 weeks on
average (range 4-9 weeks) in all five patients. The grade
2 and grade 3 lymphocytopenia observed in all seven
patients also recovered to normal by 14.1 weeks (range
5-40 weeks) during the TMZ maintenance phase. All
patients underwent the level 2 protocol without a step
down to level 1 with a prolonged vaccination interval
(Fig. 1). No symptomatic or asymptomatic autoimmune
reactions were observed.

Notably, all seven patients were negative for DTH
before vaccination, but six of the seven patients became
positive during the observation period (Table 3). Represent-
ative FACS results for patient no. 3 are shown in Fig. 2a. A
marked induction of CD8TWT1-tetramer™ T cells occurred
7 weeks after the start of vaccination. The threshold for
positive or negative tetramer staining was determined as
follows: PBMC samples were stained with appropriate sets
of mAbs with or without tetramer, followed by the com-
parison of the two staining profiles. Further analysis was

made in each patient by setting an arbitrary threshold seven
times higher (Fig. 2b, red line) than an original threshold
(Fig. 2b, red arrow) to define WT'1-modified tetramer high 4
CD8 T cells (Fig. 2a, b). Figure 2c shows the frequency of
WT1-specific T cells in PBMCs for each patient according
to the wild-type and modified tetramers. In most patients,
PBMCs were obtained before WT1 administration (Fig. 2,
pre) in the early phase close to the start of WT1 vaccina-
tion (within 11 weeks) (Fig. 2, early), and in the late phase
(beyond 1 year and 6 months) (Fig. 2, late), although
some samples were missing. There is a tendency that the
frequency increased in the early phase and decreased in
the late phase, as shown in Fig. 2c. The analysis of WT1-
modified tetramer ™"+ CD8 T cells showed that in five of
six patients, the frequency increased in the early phase and
decreased in the late phase as depicted in Fig. 2d. In the late
phase, all patients were on maintenance TMZ therapy. One
patient (no. 7) was excluded in the analysis because the
sample of early phase is missing. The actual data of those
graphs are indicated in supplementary Table 1. Further
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Table 3 Treatment, response, and survival summary

No. n_vac n_TMZ DTH Response PFS_v PFS_d (0N

1 89 24 + NR 46.3 49.1

2 60 20 + NR 40.8 43.7

3 81 24 + CR 41.0 43.5

4 65 24 + NR 422 44.1

5 65 20 - NR 353 37.8

6 12 23 + PD 2.8 52 28.0
7 30 11 + PR 23.8 26.0

All survival data are indicated in months

No. patient number, n_vac number of vaccination, n_TMZ number of maintenance temozolomide cycle, DTH delayed-type hypersensitivity,+
became positive, — remained negative, NR no recurrence after gross total removal, CR complete response, PD progressive disease, PR partial

response, PFS_v progression-free survival from the start of vaccination, PFS_d PFS from histological diagnosis, OS overall survival
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Fig. 2 Immunological responses of the seven patients enrolled in the
study. a Actual fluorescence-activated cell sorting results for patient
no. 3. Upper Raw data obtained using the HLA-A*2402/WTl,;5-
modified tetramer for peripheral blood mononuclear cells (PBMCs)
obtained before vaccination (upper) and 7 weeks after the start of
vaccination (lower). b A representative data for patient no. 6 show-
ing WT1-modified tetramer "€+ at 9 weeks, showing the seven times
higher threshold (red line) than original threshold (red arrow). See
text also. ¢ Graphs showing the sequential frequency of WT1-specific
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T cells in PBMCs in each patient when using the wild-type (upper)
and modified (lower) tetramers. PBMCs were obtained before WT1
vaccination (pre), in the early phase after the start of WT1 vaccina-
tion (within 11 weeks) (early), and in the late phase (beyond 1 year,
6 months) (late). The numbers next to the different colored line refer
to patient nos. 1-6. d A graph showing the sequential frequency of
WT1-modified tetramer &+ T cells in PBMCs in each patient when
using seven times higher threshold
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Fig. 3 Representative long-
term treatment case. This
42-year-old male (no. 1)
underwent gross total resec-
tion of the glioblastoma as

well as combined radiotherapy/
temozolomide treatment (RT/
TMZ). The patient received a
total of 89 WT1 vaccinations
and 24 cycles of maintenance
TMZ over 4 years. WT1 immu-
nostaining at lower right shows
high expression of WT'1 protein
in almost all cells, which is
representative of most cases of
glioblastoma

12.0 sionths:

analysis to determine the phenotype including WT1-spe-
cific memory T cells was performed in three cases (nos.
2, 3, and 5), in whom we could obtain an enough amount
of WT1-specific T cells. In all three cases, WT'l-specific T
cells in effector memory and effector subsets accounted for
the dominant CTL populations both before and after vac-
cination (supplementary Fig. 1), as compared to peripheral
blood of healthy donors, in whom the majority of subsets
belonged to naive phenotype (data not shown).

A representative long-term treatment case is shown in
Fig. 3. This 42-year-old male (no. 1) underwent GTR for
GBM and was also treated with RT/TMZ. He was then
enrolled in this clinical trial, resulting in a total of 89 vac-
cinations and 24 cycles of maintenance TMZ over the past
4 years. As in most GBM cases, immunostaining revealed
high expression of WT1 protein in almost all cells (Fig. 3,
right lower).

Treatments, clinical responses, and survival data are
summarized in Table 3. No patient received salvage or
second-line therapies. Six of the seven patients remain
on WT1 vaccination without progression at the end of
2013. PFS_v ranged from 2.8 to 46.3 months, whereas
PFS_d ranged from 5.2 to 49.1 months. WT1 vacci-
nation was stopped in one patient (no. 6) with progres-
sive disease (PD) after 12 injections, as requested by the
patient, although he was eligible to continue the vaccina-
tion according to the trial protocol. The patient is alive as
of the end of 2013, yielding an OS of 28.0 months with
continuing TMZ maintenance only. In terms of clini-
cal response, four patients remained in a no recurrence
(NR) status after GTR, two showed complete response

(CR) according to RECIST, one showed partial response,
and one showed PD, with the result that five of the seven
patients remain with no measurable lesions.

Discussion

We report here the safety of combined chemo-immuno-
therapy featuring TMZ in patients with intractable newly
diagnosed GBM. Although we encountered CTCAE grade
3 lymphocytopenia in 71.4 % of patients, this observation
could be regarded as a consequence of the preceding RT/
TMZ therapy, as some trials have demonstrated that this
regimen results in a high frequency of grade 3/4 lympho-
cytopenia (79 % of patients) [19, 27]. In addition, lym-
phocyte counts recovered quickly in all patients during the
TMZ maintenance phase of this study. As summarized in
Table 2, aside from lymphopenia, we did not see any grade
3/4 adverse events, including autoimmune reactions, in any
patient during the observation period through the date of
the last magnetic resonance imaging evaluation. Because
WT1 is expressed in certain cells in the kidney (podocytes),
pleura, testis, and ovary, we carefully screened for autoim-
mune reactions such as nephritis and inflammation in these
or other major organs [10, 21]. However, in this study, nei-
ther autoimmune reactions nor instances of severe toxicity
were observed, indicating that combination therapy with
TMZ is safe.

In addition to safety concerns, a central dogma
regarding efficacy holds that chemotherapy and immu-
notherapy should not be combined because of possible
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immunosuppressive effects of chemotherapeutic agents.
As discussed above, TMZ may cause various myelosup-
pressive events as well as lymphocytopenia in a large
proportion of patients, resulting in various opportunistic
infections [28, 29]. To resolve the offsetting effects of
combined TMZ/WT1 peptide vaccination, we conducted
a preliminary study of 22 patients with newly diagnosed
GBM, in which the frequency of WTl1-specific T cells
in peripheral blood was shown to be maintained during
RT/TMZ therapy, as was the phenotype of the effector
T cells [18]. Importantly, the total lymphocytic popula-
tion showed a relatively quick increase after concomi-
tant RT/TMZ therapy while maintaining the frequency
of WT1-specific T cells, possibly indicative of recovery
from myelosuppression. Thus, the protocol of this trial
involved starting WT1 peptide vaccination just after the
end of combined RT/TMZ therapy. We were also encour-
aged by the concept of homeostatic proliferation of
immunocompetent or effector cells [30, 31].

Despite being addressed by some basic and clinical
research studies, the question as to whether TMZ has an
effect on the immune system remains controversial. Some
studies have reported that experimental data indicate that
TMZ enhances antitumor immunity [32-36] by inhibiting
regulatory T cell (Treg) trafficking to the glioma microen-
vironment [34] or augmenting immunological responses
nonspecifically with lymphodepletion, effects that have
been described in both animal models [37] and human can-
cer patients [38]. In addition, a phase II clinical trial of an
epidermal growth factor receptor variant III (EGFRvVIID-
targeted vaccine against gliomas revealed that greater
chemotherapy-induced lymphocytopenia enhances the
tumor-specific immune response [39]. However, our clini-
cal observations show that TMZ increases the frequency of
circulatory Tregs, which may weaken antitumor immunity
[18, 40]. Findings on this issue should be verified through
further investigation.

This study also showed that WT1-specific immune
responses are induced in a majority of patients soon after
vaccination, as evidenced by calculation of the frequency
of WT1-specific T cells in PBMCs (Fig. 2). It is still
unclear whether WT1 peptide vaccination was capable of
inducing those cells, because it is possible that WT1 anti-
gens from the resolving tumor after RT/TMZ might have
led to the conversion of T cells to WT1-specific T cells
[18]. A decrease in the frequency of WT1-specific T cells
in the late phase was seen in a majority of patients in whom
WT1-specific T cells were induced in the early phase. The
reason for the decrease in those cells is not known, and fur-
ther studies are needed.

In terms of immunotherapy against gliomas, in a
famous study from the USA, the EGFRvIII-targeted vac-
cine was successfully administered to 18 GBM patients
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[41]. The vaccine was used alone after standard concur-
rent RT/TMZ therapy and yielded a median PES_d of
14.2 months and median OS from histological diagnosis
(OS_d) of 26.0 months, giving quite good survival ben-
efits. The same research group then performed a phase
II trial of the same vaccination concurrent with mainte-
nance TMZ therapy [39]. In the 12 patients who received
a standard dose of maintenance TMZ as well as the vac-
cine, the median PFS_d and OS_d were reportedly 15.9
and 21 months, respectively. Although the present study
involved an extremely small sample size, five of the
seven patients given the WT1 peptide vaccine showed
a PFS_d of over 36 months. PFS and OS treated with
maintenance TMZ therapy of up to 24 cycles without
WT1 vaccine are 10.7 and 21.0 months, respectively, in
52 newly diagnosed GBM in our institution. At this time,
we cannot accurately compare previous reported results
of immunotherapy and our institutional control, but we
plan to proceed with advanced clinical trial phases with
concurrent TMZ therapy and WT1 vaccination.
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