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Toxicity Tolerability Problem

Kentaro Takeda, MS'2, and Satoshi Morita, PhD'?

Abstract

Following phase | dose-finding oncology trials completed in Western countries, Asian investigators often conduct further phase |
trials to determine the maximum tolerated dose for Asian patients. This may be due to concerns about possible differences in
treatment tolerability between Caucasian and Asian patient groups. Our proposed approach aims to appropriately borrow
strength from a previous Caucasian trial to improve the maximum tolerated dose determination in an Asian population of
patients. We design an Asian phase | trial using the Bayesian continual reassessment method. First we analyze toxicity data from
a Caucasian trial to derive the prior distributions for a subsequent Asian trial. Then, we calibrate the informativeness of the prior
distributions according to prior effective sample size defined by Morita et al. Extensive simulation studies demonstrate favourable
operating characteristics of the proposed method, compared with two methods based on power and noninformative priors,
respectively.
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Introduction Our proposed approach aims to appropriately borrow
strength from a previous Caucasian trial to improve the MTD
determination in an Asian population of patients. We design
an Asian phase I dose-finding trial using the Bayesian continual
reassessment method,®” even if other Bayesian designs can be
used. The continual reassessment method is a model-based

method that enables us to utilize all available prior information

In this paper, we propose an approach to incorporating his-
torical data to establish prior distributions for a dose-finding
clinical trial to develop an anticancer agent. Following
phase I dose-finding trials completed in Western countries,
Asian investigators often conduct further phase I trials to
determine the maximum tolerated dose (MTD) for Asian
patients. This may be due to concerns about possible differ-

ences in treatment tolerability between Caucasian and Asian
patient groups. In several cases, different treatment MTDs
were estimated for Asians and Caucasians.'” For example,
phase I studies of capecitabine (Xeloda) monotherapy
undertaken in Caucasians identified 1657 mg/m® as the
MTD.>* After these studies were completed, a phase I trial
in Japanese patients determined a higher dose level, 2510
mg/m’, as the MTD for Japanese patients.” Taking into
account the recent trend of the globalization of new drug
development, it may be worth considering the relevant use
of historical data from a previous trial to design and conduct
a subsequent trial in a new region. It should, however, be
noted that an overly use of prior information may rather
degrade the study design of a subsequent trial.
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through prior distributions of the model parameters. First, we
analyze toxicity data from a Caucasian trial to derive the priors
for a subsequent Asian trial. We suppose that the Caucasian
trial is conducted using a traditional “3 + 3 cohort design®
and that the same dose levels are tested commonly in Caucasian
and Asian trials. Second, we calibrate the informativeness of
the priors according to a prior effective sample size (ESS).”'°
Morita et al' wrote that the prior ESS provides a useful tool for
understanding the impact of prior assumptions in Bayesian
study design and data analysis. We call these priors based on
the prior ESS “ESS priors.” Finally, we conduct the Asian
phase I trial using the continual reassessment method with the
ESS priors.

In our study, we compare our proposed method with two
methods based on power and noninformative priors, respec-
tively, in terms of their performance in estimating MTD in a
subsequent Asian dose-finding study. The power prior was pro-
posed by Ibrahim and Chen'" to allow investigators to incorpo-
rate and downweight historical data. The power prior raises the
likelihood of historical data to a power parameter, ag € [0, 1],
that controls how much strength to borrow from the historical
data: “no borrowing (ap = 0)” to “full borrowing (ap = 1).”

This paper is organized as follows. In the next section, we

~outline the Bayesian study designs of an Asian phase I trial
incorporating historical data from a previously conducted Cau-
casian phase I trial. We conduct extensive simulation studies to
examine the operating characteristics of our proposed method
in the subsequent section. We close with a brief discussion.

Probability Model and Study Designs

We compare the methods embedded with the 3 types of priors:
the ESS, power, and noninformative priors. Note that the dif-
ference among the 3 methods is only in establishing the priors
that are to be assumed in the Asian trial.

Preliminary Notation and Probability Model for Toxicity

Let D¢ and D, denote data from the Caucasian and Asian
trials, respectively. That is, D¢ and D4 correspond to the his-
torical data and the current study data, respectively. Suppose
that both Caucasian and Asian phase I trials are conducted to
investigate a single anticancer agent with the same dose levels.
Each patient receives one of J doses denoted by di,...,d),
with standardized doses x; = d;/s.d.(d\,---,d;), where, s.d.
abbreviates standard deviation. As described in the introduc-
tion, we suppose that, for simplicity, the same dose levels are
tested commonly in Caucasian and Asian trials. However, it
is not difficult to extend our proposed method to cases where
different dose levels are examined between two populations
of patients.

We use a two-parameter logistic model to derive the priors
based on the previous Caucasian data, as well as to design and
conduct a subsequent Asian phase I trial. The outcome variable
is the indicator ¥; = 1 if a patient i suffers toxicity, 0 if not.
Denoting the probability of toxicity under dose x; by
n(x;, o, B), we assume the following two-parameter logistic
model,

m(xi, o, B) = Pr(¥; = 1jx;, 0, B) = % M)

with the intercept and slope parameters o and . We assume a
normal prior for o as

o~ N(u‘d? YQ) (2)
To constrain B to be positive, we assume a gamma prior for

B as

B ~ Galgi (1g, vp)> 82(kp, Vp)), €)
where g and yg are the prior mean and variance of B, respec-
tively, and g (s, ) = s/t and g, (s, ¢) = s/t. We assume that o
and § are a priori independent. We use Markov chain Monte
Carlo to compute the posteriors,'? because the joint posterior
distribution of regression coefficient parameters is not readily
available in closed form.

Establishing ESS Prior

By analyzing the historical data D¢ using the two-parameter
logistic model (1), we compute the posterior means and var-
iances of o and B that are denoted by (fi,c,fipc) and
(Yu,cr 7p,c)» respectively. For the priors of the model para-
meters in the Asian phase I trial, we propose to assume

o~ N(}la,Ca w- 7a,C)a

B~ Ga(gi(figc,w- V) &2 (g w - Tpc)),
where w is a constant for the prior calibration. Then we cali-
brate the prior distributions by tuning w so that the priors have
a prior ESS, m.>'® That is, we use the prior ESS as a guide to
calibrate the priors. A prior ESS quantifies the prior informa-
tion in terms of an equivalent number of hypothetical patients.
As described in the next section, in the simulation study we will
vary the values of m (e.g, m = 1,2,...,10) to examine the
impact of the prior informativeness on the operating character-
istics of the study design. The algorithm to derive the prior dis-
tributions is summarized as follows:

Q)

Step 1: Retrospectively analyze Dc to estimate i, ¢, fig ¢,
Yo,c> and ¥ ¢ using the model ,

Step 2: Calibrate the informativeness of the priors (4) by tun-
ing w according to the prior ESS.

In step 1, we use the priors (2) and (3) to stabilize the retro-
spective analysis of Dc. We obtain the two estimates of the
probabilities of toxicity at two doses, the second lowest (d;)
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Table I. True dose-toxicity relationships (true toxicity probability at 6 doses) under 2 scenarios in Caucasian patients and 6 scenarios in Asian

patients.
Dose Level
Scenario d| d7_ d3 d4 d5 de,
Caucasian
| 0.01 0.05 0.10 0.30 0.50 0.60
2 0.01 0.02 0.03 0.05 0.10 0.30
Asian
| 0.0! 0.05 0.10 0.30 0.50 0.60
2 0.05 0.14 0.36 0.65 0.86 0.95
3 0.10 0.30 0.50 0.60 0.70 0.80
4 0.41 0.58 0.82 0.94 0.98 0.99
5 0.0l 0.02 0.03 0.05 0.10 0.30
6 0.03 0.06 0.12 0.21 0.36 0.53

Maximum tolerated doses are shown in boldface.

and second highest (d;_1), from preclinical study data. These
two probabilities give the prior means p, and “3‘7 Then, we
assume the common prior variance for o and P (ie, v, = vp)
that is specified as having an appropriate amount of prior infor-
mation (prior ESS = 3) so that the priors never dominate the
posterior inference.”'°

Power and Noninformative Priors

In this study, we use the most basic version of power prior, that
is, the power prior with a fixed ay € [0, 1], rather than expres-
sing uncertainty about ay by using an additional prior distribu-
tion.!> With D¢ as historical data, we denote the historical
likelihood by L(a, B|Dc). This likelihood is specified by the
two-parameter logistic model (1). We use the following condi-
tional power prior for the parameters o and f in the Asian trial,

p(o, B|Dc, a0) o< L(e, B|Dc)“p(at, B). ()
In this paper we define ag as ag = nc/Nc, where N¢ is the
total number of patients treated in the previous Caucasian trial
and nc is an integer € [1, N¢]. Note that n¢ in this power prior
plays the same role of m in the ESS prior.” In the simulation
study, we similarly vary the values of n¢ from 1 to an appropri-
ate number < N as with m. With respect to p(«, B), we assume
a noninformative normal prior N (0, 10000) for o and a nonin-
formative gamma prior Ga(0.0001,0.0001) with mean 1 and
variance 10,000 for B. We also use the same noninformative
priors of o and B in the third method that is based on noninfor-
mative priors.

Trial Conduct

Recall that we suppose that the Caucasian phase I trial was con-
ducted with the traditional “3 + 3” cohort design. The Cauca-
sian trial started the dose escalation at the lowest dose d;. After

the MTD in the Caucasian patients was determined according
to the “3 4+ 3” design, 12 patients were added on the MTD
level as an expansion cohort.

We carry out an Asian phase I dose-finding trial using the
continual reassessment method. That is, we have a continual
reassessment method—type goal of finding the “optimal” dose
x*. Optimal is defined as the posterior mean of 7t(x*) being clo-
sest to some fixed target ©*. The maximum sample size is 30,
with the cohort size of 3, starting at the lowest dose d; and not
skipping a dose level when escalating, with target toxicity
probability n* = 0.33. Dose assignment is based on the poster-
ior distribution conditional on all data available at the time of
the decision. This allows for a precise estimation of the dose
level with expected toxicity closest to the desired target
toxicity.

Simulation Studies
Simulation Study Design

We studied the performance of the proposed study design
embedded with the ESS prior (ESS design) by comparing it
to the two other designs with the power and noninformative
priors (power design and noninformative design) in the setting
of a new phase I trial in Asian patients. As summarized in
Table 1, we constructed 2 and 6 different toxicity scenarios
specifying dose-toxicity relations in the Caucasian and Asian
patient groups, respectively. Under all 12 combinations of the
2 and 6 scenarios, we simulated the Caucasian and Asian trials
3000 times. That is, in each of the 3000 simulations, we first
generated one set of Caucasian data, analyzed the data for the
prior derivation, and then simulated one subsequent Asian trial.
The same basic setup for the Asian trial simulations was used in
all 3 designs for a fair comparison with respect to the dose lev-
els (=6 levels; 100, 200, 300, 400, 500, 600 mg), the
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maximum number of patients per trial (= 30), cohort size
(= 3), starting dose (= d,), and target n* = .33. We investi-
gated the operating characteristics of the ESS design under
m = 1,3, and 10, and those of the power design similarly under
nc = 1,3, and 10, as described above. As reference, in the
simulations of Caucasian trials, the average number of patients
per trial was around 30. Thus, for example, nc = 3 on average
corresponds to ¢ = 0.1 in the simulations. We carried out the
simulation study using the integer values m = 1 to 10.
Although we drew the figures using all the values of m from
1 to 10, we described the simulation results limited to the val-
ues of m = 1, 3, and 10 in the tables.

Simulation Results

The operating characteristics for the 3 designs are summarized
in Table 2, which is organized into scenario sections. The
results are summarized in terms of the percentage of times that
each design selected each dose level as the final MTD and the
percentages of patients who were treated at each dose level.
Correct selection percentages are given in boldface. We also
report the average number of patients experiencing toxicity
in the trial. The simulation results with the 6 Asian scenarios
under Caucasian scenario I are shown in Table 2. For each sce-
nario section, the first rows represent the true toxicity probabil-
ities at the 6 dose levels in Asian population of patients.

Under Caucasian scenario 1 and Asian scenario 1, both
patient groups have the same MTD (= ds). The ESS and power
designs more correctly selected d4 as the MTD than the nonin-
formative design, obviously due to the prior information
derived from the preceding phase I trial. With increasing m and
ne (incorporating more prior information), the percentage of
correct final recommendations gradually increased in both the
ESS and power designs.

Under Asian scenario 2, the ESS and power designs more
correctly selected the MTD than the noninformative design.
The correct selection percentages were higher than those
obtained under Asian scenario 1, even for the noninformative
design. These high percentages may be in part due to the setup
of the relatively high true toxicity probability ds (= .65), which
may lead to decreasing the selection of d4 and increasing the
selection of d3. . ‘

Under Asian scenario 3, the ESS design appeared to perform
better than the power design in terms of selecting ¢, as the
MTD for Asian patients. The difference in the performance
between those two designs may be partly due to the formula-
tions of the embedded priors. The power prior (5) in a sense
directly incorporated toxicity data observed at each of the 6
doses. Thus, it seemed that the power design more intensely
reflected the Caucasian data, especially that observed at upper
dose levels (ie, dy and ds) than the ESS design. In the

simulations of the Caucasian trial, 28.9% and 9.3% of patients
were treated at dy4 and ds, respectively. In contrast, the ESS
design, in this paper, constructed the two separate priors for the
intercept and slope parameters by analyzing the preceding trial
data. This formulation might lead to more desirable perfor-
mance of the ESS design. In addition, and more interesting,
it seemed that the ESS design might have an optimal range
of prior informativeness (ie, prior ESS, m) that provides the
best performance under several conditions of the study design.
Figure 1 shows the percentages of final MTD recommendation
at each dose level with respect to prior ESS values (m = 0 to
10) under Asian scenario 3. The correct MTD selection
(= dy) percentages got the highest mark in between m = 1 and
3, perhaps because the ESS priors with such prior informative-
ness played an important role as a useful guide for dose escala-
tion/de-escalation decisions early in the trial, and after
enrolling 3 patients, the information from the likelihood started
to dominate the prior, as desired. The results under the other
scenarios are shown in Appendix Figure S1.

Under Asian scenarios 4 and 5, even the noninformative
design worked sufficiently well. As expected, the frequency
of correct MTD selection gradually decreased in both the ESS
and power designs as m and n¢ went up. Under Asian scenario
6, the ESS design seemed to perform somewhat better than the
power design.

Under Caucasian scenario 2, results and findings were sim-
ilar to those under Caucasian scenario 1 (Appendix Table S1).

Discussion

We have proposed an approach to quantifying prior informa-
tion from a previous dose-finding trial to design a subsequent
trial in a different population of patients via specified prior dis-
tributions. Our proposal is to calibrate the derived priors
according to a prior ESS. It is motivated by the idea that one
may avoid the use of an overly informative prior in the sense
that inference is dominated by the prior rather than the data.
Our simulations show that our proposed method has more
advantages over the other two methods based on the power and
noninformative priors in terms of their performance at estimat-
ing MTD in a subsequent Asian dose-finding study.

Several limitations to our proposed approach should be kept
in mind. Our approach heavily depends on the model assump-
tion—that is, the two-parameter logistic model for the dose-
toxicity relationship. As always, the robustness of our approach
to the model assumption should be evaluated before being rec-
ommended for practical use. Furthermore, the essential disad-
vantage of our approach may be in using the information
obtained from one single previous study to derive priors for a
subsequent trial in a different patient population. To deal with
this issue, an extension of our method to combine multiple
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Table 2. Simulation results using designs based on the effective sample size prior, power prior, and noninformative prior for a subsequent phase
| trial in Asian patients under Caucasian scenario |.

Dose Level Allocation %
Method d, d> d3 (A ds dg MTD >MTD Average Toxicity
Caucasian scenario | True toxicity prob. 0.0l 005 010 030 050 060
Asian scenario | True toxicity prob. 0.0l 0.05 0.10 030 050 0.0
Noninformative prior 0.1 0.5 96 544 276 79 342 252 78
Effective sample size prior
m=1 0.0 0.0 63 63.0 273 34 366 267 8.1
m=3 0.0 0.0 59 635 282 2.5 380 256 8.0
m =10 % Recommendation 0.0 0.0 50 673 264 1.4 428 225 79
Power prior
ne= |1 0.2 0.5 79 581 274 58 365 263 8.1
ne=3 0.2 0.2 73  61.2 258 5.3 377 262 82
n.= 10 0.1 03 80 645 225 46 400 236 8.0
Asian scenario 2 True toxicity prob. 005 0.14 036 065 086 095
Noninformative prior 07 208 685 88 1.2 0.0 45.9 13.6 9.1
Effective sample size prior
m=1 0.2 184 76.9 44 0.1 0.0 50.6  13.1 9.3
m=3 0.0 158 79.2 5.0 0.0 0.0 538 132 9.6
m=10 % Recommendation 0.0 87 852 6.0 0.0 0.0 58.3 16.9 10.4
Power prior
ne=1I 1.0 185 72.0 7.9 0.6 0.1 470 172 9.8
ne=3 1.8 127 75.9 9.0 0.5 00 492 197 10.3
n.= 10 1.8 84 77.6 120 0.2 00 482 252 11.2
Asian scenario 3 True toxicity prob. - 0.100 030 050 0.60 070 080
Noninformative prior 123 56.8 253 4.4 09 0.3 464 290 9.5
Effective sample size prior
m=1 51 68.9 24| 1.7 0.1 0.0 514 316 10.0
m=3 22 684 279 1.5 0.0 0.0 51.6 350 10.5
m=10 % Recommendation 02 534 442 22 0.0 0.0 365 533 1.9
Power prior
ne=1 99 545 305 4.2 0.7 02  40.1 37.8 10.4
n.=3 100 48.1 359 53 0.5 0.2 340  45.1 10.9
n.= 10 97 339 478 8.0 0.5 0.1 254 574 12.2
Asian scenario 4 True toxicity prob.  0.41 058 082 094 098 099
Noninformative prior 96.0 39 0.1 0.0 0.0 0.0 88.2 1.8 13.1
Effective sample size prior
m=1 96.1 39 0.0 0.0 0.0 00 831 16.9 133
m=3 92.7 7.3 0.0 0.0 0.0 0.0 73.6 265 13.8
m=10 % Recommendation  67.1 329 0.0 0.0 0.0 0.0 367 633 16.2
Power prior
ne=1 92.6 6.8 0.6 0.0 0.0 00 824 176 13.5
ne=3 92.1 7.2 0.6 0.0 0.0 00 789 211 13.8
n.= 10 88.6 0. 1.1 0.2 0.0 00  67.1 329 14.9
Asian scenario 5 True toxicity prob. 0.0l 002 003 005 0.0 0.30
Noninformative prior 0.0 0.0 0.0 0.4 9.1 90.4 406 — 45
Effective sample size prior
m= 0.0 0.0 0.0 0.1 76 924 451 — 48
m=3 0.0 0.0 0.0 0.0 83 91.6 444 —_— 48
m=10 % Recommendation 0.0 0.0 0.0 0.2 112 88.6 393 — 44
Power prior
ne=1 0.0 0.1 0.1 0.3 96 89.9 433 — 4.7
ne=3 0.1 0.0 0.1 0.4 106 887 430 — 4.7
n.= 10 0.0 0.2 1.7 42 120 81.9 382 — 43
(continued)
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Table 2. (continued)

Dose Level Allocation %

ds d4 ds de MTD >MTD Average Toxicity

Method d dz
Asian scenario 6 True toxicity prob.  0.03  0.06
Noninformative prior 0.0 0.5
Effective sample size prior
m= 0.0 0.0
m=3 0.0 0.0
m=10 % Recommendation 0.0 0.0
Power prior
ne=| 0.4 0.5
n.=3 0.4 0.5
ne= 10 0.2 0.4

0.12 021 036 053

45 279 415 256 23.6 13.7 7.0
20 313 49.1 17.7 26.6 13.6 74
.6 324 503 15.7 27.1 1.8 72
1.0 359 522 10.9 28.8 7.6 6.9
38 290 435 228 234 16.6 7.5
32 312  43.1 21.6 23.6 16.7 7.5
39 355 415 18.6 22.6 14.8 7.3

Correct selection percentages are given in boldface. MTD, maximum tolerated dose.

100

80

T

20

% of final recommendation in MTD

Prior ESS (m)

Figure I. Percentages of final recommended MTDs at each dose level
(d,: blue, dy: red, d3: green, ds: brown, ds: purple, dg: pale green) with
respect to prior ESS values (m = 0 to 10) under Caucasian scenario |
and Asian scenario 3. ESS, effective sample size; MTD, maximum
tolerated dose.

previous trials would be useful. It may be possible to improve
the robustness of our method by evaluating the interstudy varia-
bility of parameters of interest. We could use Bayesian hier-
archical models for these purposes.'® The prior ESS extended
to determine the prior informativeness in a conditionally inde-
pendent hierarchical model'® may be useful in this setting.

So far, several Bayesian methods have been proposed for
evaluating the similarity of treatment effects among patient
subgroups in a randomized clinical trial setting.'®!” Schoenfeld
et al'® proposed a Bayesian approach to pediatric trial design,
which allows borrowing strength from previous or simulta-
neous adult trials. Taking into consideration that pediatric clin-
icians often rely on evidence from clinical trials in adults, our
proposed method can be applied to a dose-finding study for
pediatric cancer by regarding adult patients as in the previous

trial. In addition, our proposed method can be extended to all
phases of a dose-finding study to incorporate historical
data—for example, Asian to Caucasian, preclinical to clinical,
monotherapy to combination therapy, and previous regimen to
current regimen.
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Biomarker-based Bayesian randomized
phase II clinical trial design to identify a
sensitive patient subpopulation

Satoshi Morita,**" Hideharu Yamamoto® and Yasuo Sugitani®

The benefits and challenges of incorporating biomarkers into the development of anticancer agents have been
increasingly discussed. In many cases, a sensitive subpopulation of patients is determined based on preclinical
data and/or by retrospectively analyzing clinical trial data. Prospective exploration of sensitive subpopulations
of patients may enable us to efficiently develop definitively effective treatments, resulting in accelerated drug
development and a reduction in development costs. We consider the development of a new molecular-targeted
treatment in cancer patients. Given preliminary but promising efficacy data observed in a phase I study, it may
be worth designing a phase II clinical trial that aims to identify a sensitive subpopulation. In order to achieve
this goal, we propose a Bayesian randomized phase II clinical trial design incorporating a biomarker that is
measured on a graded scale. We compare two Bayesian methods, one based on subgroup analysis and the other
on a regression model, to analyze a time-to-event endpoint such as progression-free survival (PFS) time. The
two methods basically estimate Bayesian posterior probabilities of PFS hazard ratios in biomarker subgroups.
Extensive simulation studies evaluate these methods’ operating characteristics, including the correct identifica-
tion probabilities of the desired subpopulation under a wide range of clinical scenarios. We also examine the
impact of subgroup population proportions on the methods’ operating characteristics. Although both methods’
performance depends on the distribution of treatment effect and the population proportions across patient
subgroups, the regression-based method shows more favorable operating characteristics. Copyright © 2014 John
Wiley & Sons, Ltd.

Keywords: biomarker; molecular-targeted agent; Bayesian statistics; randomized phase II trial; time-
to-event data

1. Introduction

Recently, the benefits and challenges of incorporating biomarkers into the development of anticancer
agents have been increasingly discussed [1]. Many clinical trials are conducted to develop new molecular-
targeted anticancer agents that are likely to benefit only a subset of patients. If a clinical trial is performed
in a broad population of patients, which includes insensitive as well as sensitive patients, any effect of a
new agent on the sensitive subset of patients may be missed. Therefore, drug development should aim to
optimize the target population of patients for treatment by appropriately focusing on patients who could
obtain a sufficient benefit from a molecular-targeted agent. In addition, identifying the sensitive subset
of patients may be a vital process in clinical development in terms of speeding up the drug development
process and reducing development costs [2-5].

The following two examples of clinical development represent two different extremes in the approach
to this problem. First, trastuzumab, which is a humanized monoclonal antibody with high specificity for
the human epidermal growth factor receptor 2 (HER2) protein, demonstrated high antitumor activity in
patients with HER2-overexpressing metastatic breast cancer [6—8]. Based on preclinical and clinical data
that strongly supported the existence of a sensitive subpopulation of patients, the clinical development of
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trastuzumab prospectively focused on studying the agent in HER2-overexpressing breast cancer patients.
Secondly, during the development of monoclonal antibodies targeting epidermal growth factor receptor
(EGFR), such as panitumumab, and EGFR tyrosine kinase inhibitors, such as gefitinib, patients were
enrolled in clinical trials without preselection based on EGFR status or other biomarkers [6,7]. For exam-
ple, Amado et al. [9] retrospectively analyzed whether the effect of panitumumab on progression-free
survival (PES) in patients with metastatic colorectal cancer differed by KRAS status and showed a signif-
icant treatment effect in the wild-type KRAS subgroup. That is, in the first case, solid prior data enabled
clinical investigators to prospectively design subsequent clinical trials to develop a molecular-targeted
agent in a patient subpopulation identifiable with a biomarker assay. In the other case, retrospective sub-
group analysis of a phase III trial conducted in unselected patients was able to successfully identify a
sensitive patient subpopulation. In many cases, however, the reality may lie in between these two cases.

If a study population of patients contains nonsensitive subpopulations, a much larger sample size would
be required to establish statistically significant results in a final confirmatory phase III trial [10]. When
considering the entire course of a new agent’s clinical development, therefore, conducting a properly
designed phase II trial may be key to raising the ‘success probability’ of a subsequent phase III trial. In
particular, pharmacogenetically developed drugs often rely on assays to measure target expression levels
(e.g., HER2 or EGFR) on a graded scale; these levels are then dichotomized to define two subsets of
patients with positive or negative status. We call the subset of patients with positive status the sensitive
subpopulation. In this paper, we consider identifying the sensitive subpopulation using a graded-scale
biomarker in a randomized phase II clinical trial to develop a new molecular-targeted agent. In order
to design the phase II trial, we adopt a Bayesian approach for the decision-making flexibility it affords
during the exploratory phase of clinical development. We compare two Bayesian methods, one based
on subgroup analysis and the other on a regression model, in terms of their performance in identifying
a sensitive subpopulation. In addition, we consider interim analyses to prematurely terminate the trial
because of futility. ' .

As reviewed by Yin [11], there is a substantial literature on study designs that are used to identify
sensitive patient subpopulations, including Jiang et al. [10], Wang et al. [12], Brannath et al. [13], and
Eickhoff et al. [14], and Jenkins et al. [15] proposed adaptive two-stage designs in which the patient
subset(s) specified in the first stage is used to evaluate the treatment effect in the second stage. Their
proposed study designs presume that two mutually exclusive patient subgroups are determined in advance
on the basis of preclinical research or a separate exploratory study. Our focus is simply on identifying a
sensitive patient subpopulation in the phase II stage, although the preceding study designs consider phase
II/III or phase III trial settings.

This paper is organized as follows. In Section 2, we provide a motivating example. Section 3 outlines
the study design of a Bayesian randomized phase II clinical trial to identify a sensitive patient subpopu-
lation. We conduct extensive simulation studies to examine the operating characteristics of our proposed
study design in Section 4. We close with a brief discussion in Section 5.

2. A motivating example

In this section, we present a case study based on the actual clinical development of a new molecular-
targeted monoclonal antibody. Preclinical and clinical works suggested that antitumor activity of the new
antibody should depend significantly on the target protein amounts. In this study, the intensity of the
biomarker expression is defined using a graded scale (e.g., 0, 1+, 2+, and 3+), with higher values indicat-
ing higher expression. Results from a phase I dose-finding clinical trial suggested a possible association
between biomarker expression and the efficacy of the antibody, that is, a longer PES time tended to be
observed in patients with a higher expression (e.g., 2+ and 3+). In this study, we assume monotonicity
in the efficacy of the new agent with respect to the biomarker grade.

While effective first-line therapies exist for patients with advanced stages of cancer and poor prog-
noses, in particular hepatocellular carcinoma (HCC) and pancreatic carcinoma, no standard second-line
treatments have yet been established. In randomized phase II clinical trials to develop second-line oncol-
ogy treatments, the experimental and control arms (arms E and C) should be the ‘best supportive case
(BSC) + new agent’ and ‘BSC + placebo’, and a time-to-event outcome such as PFS time is often used
as the primary endpoint [16]. In some cases, a biomarker may not only be a predictive factor for a new
agent but also a prognostic factor for patients with a specific cancer type. In this study, we assume that
the biomarker predicts the efficacy of the new agent but does not predict patient prognosis. That is, we
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consider the situation where the efficacy in the control (placebo) arm is not modified by the biomarker.
However, it is not difficult to extend our proposed study design to cases where prognosis differs between
subgroups.

Under these settings, we consider designing a randomized phase II trial to assess whether the addition
of a new monoclonal antibody therapy to BSC sufficiently benefits the patients in terms of prolongation
of PFS time. The biomarker grade is used as a stratification factor when randomization is carried out. In
order to summarize the PFES data, we basically use a hazard ratio comparing arm E with arm C, which
is denoted by A. In this study, we consider evaluating the hazard ratios in G biomarker subgroups, which
are denoted by 4,, ¢ = 1, ..., G. Our specific goal is to find the upper subset consisting of subgroups
g 2 Ky, which meets the definition of the sensitive subpopulation, by evaluating these hazard ratios.
Then, a subsequent phase III trial is to be conducted in the identified subpopulation. The value of cutoff
Ko € {1,...,G+1} is unknown and will be determined based on data observed in the trial. As one of the
two extreme cases, k = 1 suggests that arm E should be beneficial for the entire population of patients,
and one can make a decision to proceed to a subsequent phase III trial that enrolls the entire population
of patients. On the other hand, the cutoff x; = G + 1 indicates that arm E will not be beneficial for any
subgroup and that the ‘no-go’ decision to a subsequent phase III trial should be taken.

3. Biomarker-based Bayesian randomized phase II study design

We use the two Bayesian methods that are both based on a common probability model for PES time.
One method is based on a subgroup analysis (S-A method), and the other on a regression model
(R-M method).

3.1. Notation, probability model for progression-free survival time, and Bayesian posterior computation

For patient i, let x; denote the treatment indicator, with x; = 1 if patient i receives the experimental arm
and x; = 0 if he or she receives the control arm. Let 7; denote PES time for patient i. For subgroups 1 to G
defined by the biomarker grade, z; , = 1 if patient i is in subgroup g and 0 if not. Thus, z; =(z;;, ..., 2;) 18
the subgroup indicator vector for patient i. Let ¢, ..., ¢ denote the proportions of patients in subgroups
1,...,G, who would be enrolled into the phase II trial. These proportions reflect the true biomarker
subgroup prevalence in the entire population of patients. Although @ = (¢, ..., @) is actually unknown,
in the simulation study, we will handle the proportions @ as fixed values and vary the values to examine
the sensitivity of simulation results to the subgroup prevalence. That is, although the proportions @ could
be handled as additional parameters to be estimated in a Bayesian study design, we will not consider
them in this study.

The two Bayesian methods explained in the next subsection commonly use the following proportional
hazards model. Under the proportional hazards assumption in each subgroup, the hazard at time ¢ for
patient { with x; can be modeled as

G
h(t]x;2;) = ho(t) exp (Z ﬁgxizi,g> ) (1)
g=1

where h(t) denotes the baseline hazard function and f, denotes the regression coefficient for x; in sub-
group g. According to Sinha et al. [17] and Ibrahim et al. [18], we use the partial likelihood of the
Cox proportional hazards model as the likelihood to compute the posterior distributions of the parame-
ters in the two Bayesian methods. We used Markov chain Monte Carlo to compute the posteriors [19],
because the joint posterior distribution of regression coefficient parameters is not readily available in
closed form.

As the criteria to identify the sensitive subpopulation, we basically use the following Bayesian posterior
probability given the observed data D from the trial,

p(A<n*|D)> =z, @)

where #* is the upper limit and z* is the upper probability cutoff. These design parameters, #* and z*,
need to be calibrated on the basis of operating characteristics of the study design, which are examined in
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simulation studies. More specifically, let D, denote the data observed in subgroup g and D, denote the
data observed in all G subgroups.

3.2. Two Bayesian methods to analyze progression-free survival time

The objective of the phase II trial is to prove the concept of a targeted therapy, that is, to evaluate
whether higher efficacy of the new antibody is observed in patients with higher biomarker expression.
Therefore, we assume the monotonicity in the efficacy of the new antibody in both methods but in
different ways.

The S-A method separately evaluates the hazard ratio in each subgroup using the data observed in
that subgroup. Assuming the monotonic increase in p(4, < n* | D,) for g = 1,...,G, this method
sequentially assesses whether p(4, < #* | D,) > =* from subgroups 1 to G. That is, if p(4; < 75" | D))
is higher than z*, we determine x, = 1. If not, we proceed to subgroup 2. If p(4, < #* | D,) > =¥,
we determine x, = 2 and decide to identify subgroups 2 to G as the sensitive subpopulations. Similar
computations and decision making are then repeated up to subgroup G. If all of the posterior probabilities,
p(A; < y* | Dy), ..., p(Ag < n* | D) are lower than z*, we determine x, = G + 1. We assume a
noninformative normal prior N(0, 1000) for each of the regression coefficient parameters, f;, ..., fg, to
perform these posterior computations.

The R-M method assumes a monotonic decrease in hazard ratio for the biomarker subgroups with the
parameter constraint f; > f, > -+ - > f. In addition, this method uses the data observed in all G sub-
groups, D, to evaluate the posterior distribution of 4, for g = 1, ..., G. For computational convenience,
we reparameterize (f;, ..., fg) with (B, 71, ..., 7D as By =B Bo=0y— 715 s Bg = Po1 — Vg1 =
b=y —%— - —7Ys_1» Where y; > 0,7, > 0,...,y5_; > 0. Assuming a noninformative normal
prior N(0, 1000) for f, and a noninformative gamma prior Ga(0.001,0.001) with mean 1 and variance
1000 for yy, ..., yg—1» We compute the marginal posterior distribution of the hazard ratios. Based on the
computations, we find the cutoff x;, to satisfy the following equation:

Ko = (infG){g|p(,1g<n*|Da,,) >}, 3)

ge(l,...,

That is, the cutoff k;, is specified as the minimum of the integers g € {1, ..., G} that meet p(4, < 7" |
D) > =*.

Although we suppose the S-A method has more flexibility, it may perform more poorly at identifying
a sensitive subpopulation because of its S-A approach. In contrast, although we expect the R-M method
to show a higher performance owing to the parameter constraint and the use of D, this method may
be vulnerable to departures from the monotonicity assumption. We will evaluate the advantages and
disadvantages of the two methods in the simulation study.

3.3. Interim study monitoring rules

It may be important to terminate a clinical trial early from ethical and practical points of view. In the
randomized phase II trial, we consider early termination of the entire trial due to futility by planning
interim analyses.

Although it may also be useful to consider partly terminating insensitive patient subgroups or reducing
the size of those subgroups, we did not take these measures in this study. This is because it may be
generally desirable to obtain sufficient data on patients in the nonselected subpopulation in order to more
precisely evaluate their response to and the safety of the new treatment [20].

The number and timing of interim analyses should be determined by taking into account the practical-
ities of patient enrollment rates and collecting and processing of study data. In the randomized phase II
trial, we consider two interim analyses with the first and second analyses occurring after 60% and 80% of
patients are recruited, respectively. When using the S-A method, given the lower probability cutoff z*

stop?

we consider the experimental arm to have disappointingly insufficient efficacy if p(4, < #* | D) < n:mp

for all g. Similarly, we stop the trial early if p(4, < 7% | D,y < ”:mp for all g when using the R-M

method. The lower cutoff z7 ~needs to be calibrated on the basis of the study design operating charac-

teristics in the same way as tﬁe upper cutoff z*. As another interim monitoring rule, it may be useful
to include early stopping for efficacy by using an efficacy stopping criterion, such as p(4, < n* | D) >
”:mp - Owing to the same reasons mentioned earlier, however, we will not apply this rule to the phase
I trial,
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4. Evaluation of operating characteristics

4.1. Parameter calibration and simulation plan

To evaluate and compare the two Bayesian methods in the case study with four subgroups, we simulated
the trial 5000 times using extensively varying situations. We used Markov chain Monte Carlo methods to
obtain samples from the posterior distributions of the parameters. In order to complete the study design,
we needed to calibrate the design parameters (y*, z*, n;‘;op, N) on the basis of the desired type I error rate
under a null hypothesis and power under an alternative hypothesis in the trial with the projected total
sample size N. The detailed definitions of type I error and power are given in the following.

‘We first performed a series of simulation studies with all 12 combinations of the three fixed upper
limits (#* = 0.70,0.80, 0.85), the two upper probability cutoffs (z* = 0.70, 0.80), and the two lower
probability cutoffs (z};, == 0.10,0.20) under N = 500. Although the total sample size of 500 may be too
large for a phase II trin, we used N = 500 to reliably evaluate the performances of the two methods in
the simulation study. The simulation results are summarized in supplemental tables (see the supporting
information). After determining the best combination of #*, #*, and z},_, we evaluated the operating
characteristics using six sample size values (N = 250, 300, 350, 400, 457), and 500) to determine the
appropriate sample size for the randomized phase II trial. Furthermore, we assumed the five patterns
of subpopulation proportions ® = (¢, ¢, ¢35, P,), as shown in Table I, to evaluate the sensitivity of
simulation results to the subgroup prevalence. We predicted that patterns 1 and 3 were more likely to be
observed in the phase II trial according to the historical data.

‘We assumed the five clinical scenarios for the simulation study based on hazard ratios as shown in
Table I. Each scenario is characterized by the true (fixed) hazard ratios (HR,, HR,, HR;, HR,) for the
four subgroups. Scenario (1) is a null case, with all hazard ratios equal to 1.0. The sensitive subpopulation,
found under each scenario, is indicated in boldface. In order to define the sensitive subpopulation, we first
specify the efficacy threshold so that subgroup g is contained in the sensitive subpopulation if HR,, < the
threshold. One possible way to specify the efficacy threshold may be to hold discussions with physicians
regarding the published results of clinical trials, because such a specification needs to take into account
the current medical environment, such as state-of-the-art therapy and medical costs. For example, in
advanced HCC, Llovet et al. [21] explored the ability of several biomarkers to predict the efficacy of a
new small molecule, sorafenib, using the data from the phase III sorafenib HCC assessment randomized
protocol trial [22]. Based on this report as well as other previous data, we solicited the opinions of the
two hepatologists in the study group regarding the efficacy threshold. They suggested that an efficacy
threshold of 0.6 should be clinically acceptable. We will use a power value to designate the probability
of correctly identifying the target subgroup(s) as the sensitive subpopulation under alternative scenarios
and a type I error to designate the probability of identifying any subgroup(s) under the null scenario.

Subgroup

1 2 3 4
Subpopulation proportion patterns b, ¢, 0N b,
1 Equal 0.25 0.25 0.25 0.25
2 Higher in subgroups 1 and 4 035 0.15 0.15 0.35
3 Higher in subgroups 2 and 3 0.15 0.35 0.35 0.15
4 Increasing 0.05 0.15 0.30 0.50
5 Decreasing 0.50 0.30 0.15 0.05
Clinical scenarios HR, HR, HR, HR,
n Null case 1.0 1.0 1.0 1.0
(2) Linear 1.0 0.8 0.6 0.4
3) Step-down 1.0 0.6 0.6 0.35
@ High efficacy in subgroups 3 and 4 1.0 1.0 0.5 0.3
%) High efficacy only in subgroup 4 1.0 1.0 1.0 0.5

The hazard ratio values in the sensitive subpopulation under each scenario are indicated in boldface.
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Taking historical data on second-line therapies for HCC into account, for the simulations, we assumed
that the median PFS time was 2.8 months for all four subgroups in the control arm of the trial, with
12.0 months of patient recruitment and 15.0 months of maximum follow-up (i.e., 3.0 months of mini-
mum follow-up). In addition, we assumed that patients arrived uniformly during the recruitment period.
Assuming that the patient PES times are independent and identically distributed exp(v), exponential with
parameter v, which has a PDF of f(¢ | v) = v exp(—vt), we generated PFS times using the fixed param-
eter v, = 0.33 for the control arm. For the experimental arm, we used the parameter v, HR, to generate
PFS times in subgroups g for g = 1, ..., 4. The SAS programs to carry out simulations using the S-A and
R-M methods are provided in the supporting information (SAS for Windows release 9.3, SAS Institute
Inc., Cary, NC, USA).

4.2. Simulation results

In presenting the results of the simulation studies comparing the S-A and R-M methods, we summarize
the probabilities of identifying the following: (i) none of the four subgroups; (ii) subgroup 4 only; (iii)
subgroups 3 and 4; (iv) subgroups 2—4; and (v) all four subgroups, as being in the sensitive subpopulation;
these categories are denoted by P,,... Py, Ps_4, P,_4, and P, respectively. We chose the combination
of #* = 0.80, z* = 0.70, and «}, = = 0.2, which were judged to provide the best operating characteristics
for the two methods, based on tﬁe extensive simulations (as shown in the supplementary tables in the
~ supporting information). Table II shows the simulation results with N = 500 under the five clinical
scenarios with the five patterns of patient subpopulation proportions.

Under scenario 1 (null), the R-M method yielded extremely high probabilities of identifying none of
the four groups (P,,,, = 0.98-1.00), while the values of P,,,, with the S-A method were 0.70-0.80. That
is, the R-M method sufficiently controlled type I error, holding it to less than 0.05 regardless of the pattern
of subpopulation proportions under N = 500, while the S-A method did not. In addition, the R-M method
resulted in early trial termination due to considerably high probabilities of identifying none of the four
groups, especially at the first interim analysis. The likelihood of early termination differed significantly
between the R-M and S-A methods. This may be because the R-A method analyzed the data observed in
all four subgroups, resulting in much sharper posterior distributions of 4, than those obtained by the S-A
method, which used the data observed in each subgroup.

Under scenario 2 (linear), neither of the two methods worked sufficiently well; that is, P;_, were
at most 0.50 for both methods. In cases where an obvious sensitive subpopulation may not seem to
exist, such as in a scenario that assumes that the hazard ratios change steadily over subgroups, it may
be hard to definitively identify the target subpopulation using either of the methods. Under scenario 3
(step-down), although both the S-A and R-M methods performed well overall, the performance of the
R-M method may depend significantly on subpopulation proportions. In pattern 4 in particular, where
the number of patients enrolled in subgroup 1 (nonsensitive subpopulation) was very slight, the R-M
method was more likely to select all the subgroups, resulting in poorer performance. Under scenario
4 (very high efficacy in subgroups 3 and 4), the R-M method selected subgroups 3 and 4 at suffi-
ciently high probabilities across all patterns of subpopulation proportions, and these probabilities were
higher than or almost equal to those obtained by the S-A method. Under scenario 5 (very high efficacy
only in subgroup 4), the two methods were almost comparable in terms of the probability of identify-
ing subgroup 4 under pattern 1. In cases where the subpopulation proportion of subgroup 4 (sensitive
subpopulation) was relatively high, such as in patterns 2 and 4, the R-M method performed much bet-
ter than the S-A method, as expected. However, under patterns 3 and 5, in which the subpopulation
proportion of subgroup 4 was small, the performance of the R-M method was lower than that of the
S-A method.

Figure 1 indicates the type I error rates (lower circles) and power values (upper circles) provided by
the R-M method for the six sample sizes (N = 250, 300, 350, 400,450, and 500) under the five patterns
of subpopulation proportions. In this simulation study, we focused only on the R-M method because the
S-A method could not sufficiently control the type I error rate even under N = 500. The R-M method
held the type I error to less than 0.05 even under N = 250. In terms of providing 80% of the power,
N = 300 may be sufficient for the projected total sample size of the phase II trial, considering that we
actually expect the subpopulation proportions to be like pattern 1 or 3.

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014
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‘Table II. Probabilities of a sensiti
and k¢ bil
Early stopping
Scenario Pattern Method First Second Pone P, Py_y Py P
¢)) 1 S-A 0.04 0.05 0.80 0.04 0.05 0.05 0.05
R-M 0.62 0.18 0.99 0.00 0.00 0.00 0.00
2 S-A 0.04 0.04 0.78 0.03 0.08 0.09 0.03
R-M 0.64 0.17 0.99 0.00 0.00 0.00 0.00
3 S-A 0.04 0.04 0.77 0.08 0.03 0.03 0.09
R-M 0.60 0.19 0.99 0.00 0.00 0.00 0.00
4 S-A 0.03 0.03 0.72 0.01 0.04 0.07 0.17
R-M - 0.66 0.16 1.00 0.00 0.00 0.00 0.00
5 S-A 0.03 0.03 0.70 0.15 0.09 0.04 0.02
R-M 0.54 0.21 0.98 0.01 0.00 0.00 0.00
@) 1 S-A 0.00 0.00 0.00 0.13 0.54 0.28 0.05
R-M 0.00 0.00 0.01 0.15 0.51 0.23 0.10
2 S-A 0.00 0.00 0.00 0.19 0.48 0.30 0.03
R-M 0.00 0.00 0.00 0.24 0.49 0.23 0.04
3 S-A 0.00 0.00 0.00 0.08 0.55 0.28 0.09
R-M 0.01 0.00 0.02 0.09 0.49 0.22 0.18
4 S-A 0.00 0.00 0.00 0.09 0.50 0.25 0.17
R-M 0.00 0.00 0.00 0.11 0.38 0.16 0.34
S S-A 0.00 0.00 0.04 0.15 0.49 0.30 0.02
R-M 0.06 0.02 0.17 0.16 0.41 0.23 0.03
3 1 S-A 0.00 0.00 0.00 0.04 0.15 0.76 0.05
R-M 0.00 0.00 0.00 0.06 0.09 0.71 0.15
2 S-A 0.00 0.00 0.00 0.09 0.21 0.68 0.03
R-M 0.00 0.00 0.00 0.13 0.16 0.64 0.07
3 S-A 0.00 0.00 0.00 0.01 0.11 0.79 0.09
R-M 0.00 0.00 0.00 0.03 0.05 0.62 0.31
4 S-A 0.00 0.00 0.00 0.04 0.20 0.59 0.17
R-M 0.00 0.00 0.00 0.05 0.07 0.33 0.55
5 S-A 0.00 0.00 0.00 0.04 0.11 0.83 0.02
R-M 0.02 0.00 0.04 0.05 0.07 0.80 0.04
)] 1 S-A 0.00 0.00 0.00 0.04 0.86 0.06 0.05
R-M 0.00 0.00 0.00 0.04 0.92 0.02 0.02
2 S-A 0.00 0.00 0.00 0.11 0.78 0.09 0.03
R-M 0.00 0.00 0.00 0.13 0.82 0.03 0.02
3 S-A 0.00 0.00 0.00 0.01 0.87 0.03 0.09
R-M 0.00 0.00 0.00 0.01 0.96 0.01 0.02
4 S-A 0.00 0.00 0.00 0.02 0.74 0.07 0.17
R-M 0.00 0.00 0.00 0.03 0.81 0.05 0.12
5 S-A 0.00 0.00 0.01 0.10 0.83 0.04 0.02
R-M 0.04 0.01 0.07 0.09 0.82 0.02 0.01
) 1 S-A 0.00 0.00 0.04 0.80 0.05 0.05 0.05
R-M 0.07 0.02 0.14 0.82 0.03 0.00 0.01
2 S-A 0.00 0.00 0.01 0.79 0.08 0.09 0.03
R-M 0.03 0.01 0.05 0.87 0.06 0.01 0.01
3 S-A 0.00 0.00 0.10 0.75 0.03 0.03 0.09
R-M 0.16 0.05 0.32 0.66 0.01 0.00 0.01
4 S-A 0.00 0.00 0.00 0.72 0.04 0.07 0.17
R-M 0.01 0.00 0.02 0.94 0.02 0.00 0.02
5 S-A 0.01 0.01 0.29 0.57 0.09 0.04 0.01
R-M 0.29 0.14 0.67 0.31 0.01 0.00 0.00

The probabilities of identifying (i) none of the four subgroups, (ii) subgroup 4 only, (iii) subgroups 3 and 4, (iv) subgroups
2-4, and (v) all the four subgroups are shownin P,,,.., Py, P3_4. P,_4, and P, respectively. The probabilities of early
stopping at the first and second interim analyses, which are included in P, ., are also separately shown. The probability
values of correct identification are indicated in boldface.

R-M, regression model; S-A, subgroup analysis.

one’
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Figure 1. Type I error rates (lower circles) and power values (upper circles) provided by regression model method

for the six sample sizes (N = 250, 300, 350, 400,450, and 500) under the five patterns of subpopulation pro-

portions; patterns 1: black, 2: blue, 3: red, 4: green, and 5: yellow. In this investigation, the power is evaluated

by the probability of correctly identifying subgroups 3 and 4 under scenario 4. The fixed design parameters
7n* = 0.80, #* = 0.70, and n;‘mp = 0.20 are used.

5. Discussion

We have proposed a Bayesian approach with two alternative methods to identify a sensitive subpopulation
in the setting of a randomized phase II clinical trial. Taking the simulation results into account, the R-M
method may be recommended as the primary choice. The limitations of our proposed approach include
the following:

(a) the requirement of a large sample size for a phase 11 trial,

(b) the inadequate study monitoring,

(c) the monotonicity assumption for hazard ratios of PFS for biomarker subgroups,

(d) the requirement that a specific quantitative biomarker for sensitivity be established in advance, and
(e) lack of experience using our proposed method in an actual clinical trial.

Considering the feasibility of patient enrollment, the projected sample size N = 300 may be the upper
limit in a clinical trial of second-line therapies for HCC. N = 300 may be achievable by enrolling, for
instance, 25 patients per month for one year in a multinational trial setting. In some cases, however, it
may be unrealistic to enroll such a large number of patients into a phase II trial because of the associ-
ated development costs. If we can successfully identify a sensitive subpopulation, however, the required
sample size might be minimized in a subsequent phase III trial of an enriched patient population, thereby
optimizing the total sample size for the entire clinical development of a new agent. In the phase II trial
design, we considered early termination of the entire trial only. Because the trial is still in phase II, it
may be highly recommended to monitor the safety of the new treatment. For example, a safety criterion
to monitor the probability of toxicity in each subgroup, such as p(prob(Tox), > nz, | D) > z;‘top’m,
where 77, represents an acceptable toxicity level, may be useful. In addition, the efficacy and futility
rules for stopping subgroups that we mentioned in Section 3.3 may help reduce the expected sample size
of the phase II trial. This should be evaluated in future works. Our study design was based completely
on a monotonic change in treatment efficacy for biomarker subgroups. However, such a monotonicity
assumption does not necessarily work in all cases. If data observed in the phase II trial indicates a non-
monotonic change, such as “V-shape’, the S-A method modified to select the subgroup with the highest
value of p(4, < n* | D,) may work better than the R-M method. Otherwise, we may need to develop an
alternative method based on an isotonic regression model with the pool-adjacent-violator algorithm [23].

In this paper, we focused on identifying a sensitive subpopulation of patients in a randomized phase II
trial to develop a new molecular-targeted anticancer agent. It may be useful to incorporate our proposed
approach into a seamless phase II/III study design in order to maximize the probability of its successful
development, an issue that will be examined in future works.

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014
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Abstract

During oncology drug development, it is important that ethnic differences are evaluated to determine the optimal dose and
administration schedule in a new region based on the clinical data from other regions. The objective of this study was to explore
the possibility of detecting ethnic differences in toxicity during early-phase clinical trials. Data were reviewed from phase | clinical
trials for new drug applications conducted in Japan and Western countries. The maximum tolerated doses (MTDs), recom-
mended phase Il doses (RP2Ds), and approved doses in Japan were compared with those in Western countries. There were 4
of 28 drugs eligible for analysis that showed differences in MTDs or RP2Ds between Japanese and Western patients. Differences
in MTDs or RP2Ds in 2 phase | trials were associated with ethnic differences in toxicity. It may be worthwhile to evaluate ethnic
differences in toxicity during early-phase clinical trials for oncology drugs.

Keywords

ethnic differences, maximum tolerated dose, oncology drugs, phase | trials

Introduction

Differences in the dosage and dose regimen of some drugs
among regions have been pointed out, although they cannot
definitely be attributed to ethnic differences."? Examination
of ethnic differences is important while planning and conduct-
ing global clinical trials and determining whether clinical data
from other countries or regions are applicable for clinical
development in new countries or regions.

In the evaluation of ethnic differences during drug develop-
ment, endogenous factors such as race, sex, and genetic poly-
morphisms and exogenous factors including socioeconomic
factors and health care environments should be considered.®
Examples of ethnic differences with known causes include those
due to genetic polymorphisms in enzymes involved in drug meta-
bolism and the ethnic differences in the distribution of these poly-
morphisms. In the development of S-1, differences in the
distribution of the CYP2A6 polymorphism between Japanese and
Western individuals caused different toxicity profiles, leading
to differences in the maximum tolerated dose (MTD) and the rec-
ommended dose for subsequent clinical trials.* For irinotecan,
variations in the distribution of the UGT1A1*6 and *28 poly-
morphisms by ethnicity resulted in different metabolism profiles,
which resulted in different levels of toxicity.® An example of

ethnic differences of unknown cause is the difference in the inci-
dence of interstitial lung disease (ILD) with the use of gefitinib
and bortezomib. The incidence of ILD is higher in Japanese
patients than in Western counterparts.*® Ethnic differences in
safety often pose a serious problem in the development of oncol-
ogy drugs with narrow therapeutic windows.

If ethnic differences in the incidence of serious adverse
events can be predicted early in drug development in a new
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region or country, it could be determined early on whether clin-
ical data in other regions or countries can be used or whether
additional data are necessary, and then clinical development
would proceed more appropriately. For example, the develop-
ment of erlotinib, which targets EGFR in the same manner as
gefitinib, was based on information of an ethnic difference with
a similar drug—that is, a higher incidence of ILD in Japanese
patients with the use of gefitinib. Since this higher incidence
was recognized in Japan, studies evaluating safety in Japanese
persons were conducted during the development of erloti-
nib.*1% In addition, postmarketing data collection for erlotinib
focused on the occurrence of ILD."" The clinical development
of drugs in new countries or regions will proceed more appro-
priately if the extent of ethnic differences can be evaluated in
an exploratory manner during phase I clinical trials that are first
conducted in the residents of the new country or region, in addi-
tion to referring to the data on similar drugs.

In the present study, we examined the MTD in phase I clin-
ical trials and the recommended phase II doses (RP2D) and
approved doses of new oncology drugs to evaluate whether
or not ethnic differences in toxicity can be detected in early-
phase clinical trials in new countries or regions.

Methods

We reviewed the data from phase I clinical trials for new drug
applications conducted in Japan and Western countries that had
been reviewed by the Pharmaceutical and Medical Devices
Agency (PMDA) and approved by the Japanese Ministry of
Health, Labour, and Welfare between September 1999 and
March 2011. Specifically, we examined the PMDA review
reports—the documents submitted by the application sponsors,
which have been publicly released on the websites of the
PMDA'?—and the published study reports to compare the
MTD (or the maximum administered dose, if MTD was not
reached) and the RP2D for the Japanese population and that
in the US and Europe. The definitions of the terms in this study
were as follows: MTD was the lowest dose level at which more
than 33% of patients experience dose-limiting toxicity (DLT).
RP2D was one dose level below the MTD.

To evaluate ethnic differences between Japanese and West-
ern populations, we compared the approved doses of all drugs
according to the prescribe information shown on the website of
the regulatory agencies in each region,”>™"* and we retrospec-
tively analyzed the safety profile and frequency of adverse
events of all drugs based on the published study reports when
differences in MTD or RP2D were identified.

To assess the adequacy of phase I clinical trial design for
detecting any differences in toxicity, we compared the dose
escalation methods and reasons for stopping dose escalation

in the Japanese trials with those conducted in the US and
Europe.

No statistical comparisons were made because of the retro-
spective nature of this analysis.

Results

Between 1999 and 2011, a total of 97 oncology drugs were
approved in Japan. Among them, 39 drugs with novel active
ingredients were approved. The following drugs were excluded
from this study: 4 drugs that had not been approved in the US
and Europe (miriplatin, tamibarotene, talaporfin, amrubicin); 3
hormonal drugs (letrozole, exemestane, anastrozole); 2 drugs
for which phase I clinical trials were not conducted in Japan
(thalidomide, nelarabine); 1 drug for which dose escalation
studies were not conducted in the US and Europe (azacitidine);
and | drug used with different supportive therapies between
Japan and the US and Europe (pemetrexed). Thus, 28 drugs
were examined in this study.

Drugs With Differences in MTD, RP2D, and Approved
Doses Between Japanese and Western Populations

Differences in MTD or RP2D between Japanese and Western
populations were observed for 4 of 28 drugs: temsirolimus (with
differences only in MTD) and capecitabine, fludarabine, and
topotecan (with differences in both MTD and RP2D). Among
the drugs with differences in MTD or RP2D, fludarabine and
topotecan had different approved dosages and dose regimens.
These differences and details of DLT are shown in Table 1. For
the drugs without differences in MTD or RP2D, there was also
no differences in the approved dosage and dose regimen.

Safety Profiles of the Drugs With Differences in MTD,
RP2D, and Approved Doses

The incidence of adverse events with capecitabine—including
pigmentation, diarrhea, increased aspartate aminotransferase
level, and elevated bilirubin level-—was different between
Japanese and non-Japanese patients (Table 2). For temsiroli-
mus, a higher incidence of stomatitis and ILD was observed
in Japanese persons than in non-Japanese persons (Table 3).
The safety profile of topotecan and fludarabine could not be
compared owing to the lack of studies conducted using the
same dose regimens in Japan as in the US or Europe. However,
the occurrence rate of hematologic toxicity with topotecan in
Japanese patients is the same as in European patients despite
using their different doses, suggesting that there are differences
in the occurrence rate of hematologic toxicity between Japa-
nese and European patients (Table 4). Besides, a higher inci-
dence of hematologic toxicity was observed with fludarabine
at lower doses in Japanese people than in US people. The
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Table 1. MTD, RP2D, approved dose, and DLT of drugs with different toxicity profiles between Japanese and Western populations found in

phase | trials.
Drug: Region MTD or MAD? RP2D Approved Dose DLT
Capecitabine
us 1657 mg/m?/d; daily 1331 mg/m?/d; daily 2500 mg/m?/d; days 1-14 Hand-foot syndrome, diarrhea, nausea,

Europe (UK, NLD)

1657 mg/m?/d; days
1-14 every 3 wk

2510 mg/m%/d; days |-14
every 3 wk

every 3 wk vomiting, vertigo, dehydration,
abdominal pain, dyspnea, venous
thrombosis, thrombocytopenia

Hand-foot syndrome, diarrhea, nausea,
vomiting, stomatitis, abdominal pain,
neutropenia, leucopenia, thrombo-
cytopenia, neutropenia with sepsis

2500 mg/m?/d; days 1-14
every 3 wk

Japan 2510 mg/m?/d; daily 1657 mg/m?/d; days 1-21 2500 mg/m?/d; days 1-14 Hemorrhagic gastric ulcer, skin toxicity
every 4 wk every 3 wk®
Fludarabine ,
us 40 mg/m?/d; days |- 25 mg/m?/d; days 1-5 every 25 mg/m?/d; days I-5 Granulocytopenia, thrombocytopenia
5 every 4 wk 4 wk for patients with- every 4 wk
out prior therapy®
Japan 25 mg/m?/d 20 mg/m*/d 20 mg/m?/d; days -5 Neutropenia, thrombocytopenia
every 4 wk
Topotecan
us 2.5 mg/m%d; days  Initial dose: 1.5 mg/m*d; 1.5 mg/m*/d; days 1-5  Neutropenia, febrile neutropenia

Europe (NLD,

1-5 every 3 wk

1.5 mg/m?/d; days

days |-5 every 3 wk
2nd dose: 2.0 mg/m?/d;
days -5 every 3 wk

1.5 mg/m%/d; days 1-5 every

every 3 wk

1.5 mg/m%/d; days -5 Neutropenia, leukopenia

DNK) 1-5 every 3 wk 3wk every 3 wk
Japan I.5 mg/m%d; days 1.2 mg/m?/d; days 1-5 every 1.0 mg/m%/d; days 1-5 Neutropenia, leukopenia
1-5 every 3 wk 3 wk every 3 wk (maximum

Temsirolimus

dose: 1.5 mg/m?/d)

Europe Not reached (220 Not determined 25 mg Stomatitis, asthenia
mg/m?)
Japan 45 mg/m? 15 mg/m? 25 mg Diarrhea, stomatitis

DLT, dose-limiting toxicity; DNK; Denmark; MAD, maximum administered dose; MTD, maximum tolerated dose; NLD, Netherlands; RP2D, recommended phase

2 dose.
f MTD was not reached, MAD was given.

®There was a difference in dosage and dose regimen at the time of the first approval application in Japan (2 wk of administration followed by | wk without
administration in the US and Europe and 3 wk of administration followed by | wk without administration in Japan). However, additional clinical studies were
conducted in Japan, resulting in the approval of the same dosage and dose regimens as those approved in the US and Europe.

“The RP2D was 18 mg/m?/d for patients with prior chemotherapy or radiotherapy.

incidence of neutropenia was 69% in Japanese people and 18%
in US people (Table 5).

Dose Escalation Methods and Reasons for Stopping Dose
Escalation

According to the PMDA review reports, for the 28 drugs exam-
ined, 78 dose escalation studies were conducted, which con-
sisted of 32 studies in Japanese patients and 46 in European
and American patients.

The dose was increased ina 3 + 3 design in 31 of 32 studies
in Japanese patients and another design in the remaining

study. In the 46 studies in Western persons, the dose was
increased in a 3 + 3 design in 37 studies, with a continual
reassessment method in 2 studies and other designs in 7 stud-
ies (Table 6).

In the 32 studies with Japanese participants, the reason for
discontinuation of dose escalation was toxicity in 8 studies,
confirmation of the tolerability of the overseas recommended
dose in 20 studies, and other in 4 studies. In the 46 studies with
Western participants, the reason was toxicity in 24 studies, con-
sideration of pharmacokinetics in 3 studies, achievement of the
dose expected to block the target in 3 studies, and other in 16
studies (Table 7).
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