
### Tackling the decrease in GA

Naho Morisaki MD MPH Rintaro Mori MD PhD MSc FRCPCH

National Center for Child Health and Development, Tokyo, Japan

#### CHANGES IN GESTATIONAL LENGTH AND DEMOGRAPHIC VARIATION IN JAPAN

#### Changes in Gestational Length in Japan



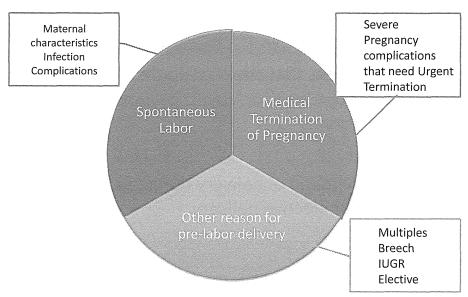
## Different reasons for shorter duration of pregnancy

- In Africa, unmet need for induction is 66-80%

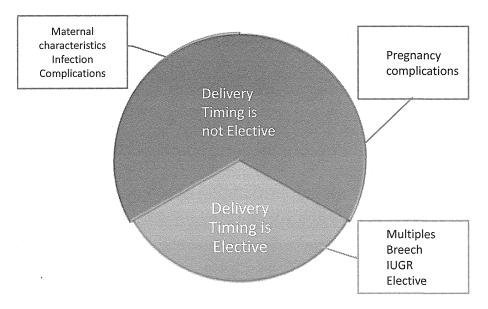
  Secondary analysis from the 2004-2005 WHO Global Maternal and Perinatal Health Survey
- In Australia and the UK, over 20% of deliveries are by pre-labor cesarean sections

Australia's mothers and babies 2007 . National Perinatal Statistics Unit, Australia Method of delivery 1990 to 2007-8. National Health Services, UK

Ideally, we would like to execute pre-labor delivery on only those who benefit from earlier delivery.


But who are they?

#### To deliver or not to deliver...




- Some life threatening conditions are clear indications for termination of pregnancy,
- Some conditions you cannot find a justified reason for earlier termination of pregnancy,
- Other conditions are still gray (research still needed)

### Factors of Duration of Pregnancy



### **Factors of Shorter Duration of Pregnancy**



### Analysis plan

- Trends in maternal characteristics and complications that could attribute to earlier spontaneous labor or medically needed urgent delivery
- Trends in timing of delivery that could reflect decision of elective delivery

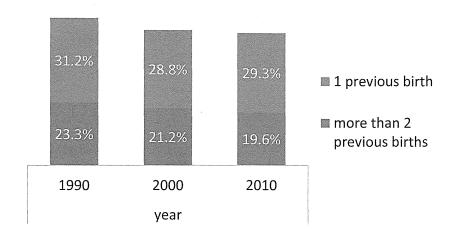
#### Analysis plan

- Trends in maternal characteristics and complications that could attribute to earlier spontaneous labor or medically needed urgent delivery
- Trends in timing of delivery that could reflect decision of elective delivery

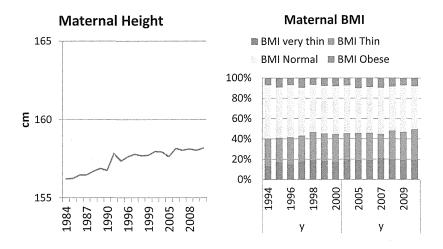
### Data of Japan

- National Survey on Infants and Toddlers
  - > 1980, 1990, 2000, 2010 (Every 10 years)
  - > Multi-level random selection of in-hospital births alive at day of study
  - ➤ 10,000-20,000 subjects per survey
  - > 44-48 items (depending on year)
- ☐ Vital Statistics Data
  - **>** 1979-2011
  - > 100% coverage
  - > Only 23 basic variables for birth certificate
  - > Data on residence
- WHO Multi-country Survey
  - ≥ 2004, 2008
  - > Random Selection of 10 hospitals capable of delivery of high risk births

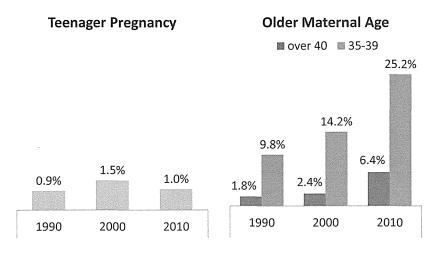
### Data of Japan


- ☐ National Survey on Infants and Toddlers
  - > 1980, 1990, 2000, 2010 (Every 10 years)
  - > Multi-level random selection of all births
  - > 10,000-20,000 subjects per survey
  - > 44-48 items (depending on year)
- ☐ Vital Statistics Data
  - > 1979-2011
  - > 100% coverage
  - > Only 23 basic variables for birth certificate
  - >> Data on residence
- ☐ WHO Multi-country Survey
  - > 2004, 2008
  - > Random Selection of 10 hospitals capable of delivery of high risk births

## ANALYSIS OF NATIONAL SURVEY DATA (1990, 2000, 2010)

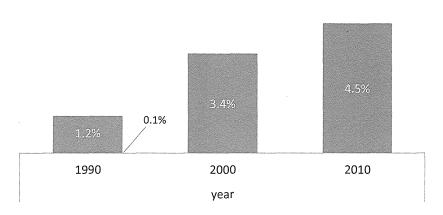

### Demographic Trends in Japan from National Survey on Infants and Toddlers

- Maternal
  Characteristics
  - Maternal age
  - Parity
  - Height, BMI
  - Smoking, drinking habits
- PregnancyCharacteristics
  - Multiplicity
  - Maternal complications
  - Number of antenatal visits
  - Mode of delivery

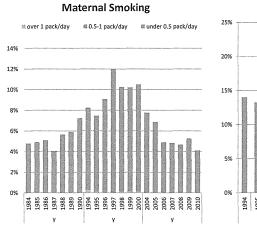

### Demographic Trends in Japan: Less Previous Births

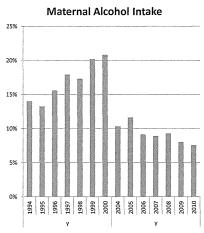


### Demographic Trends in Japan: Taller and Thinner



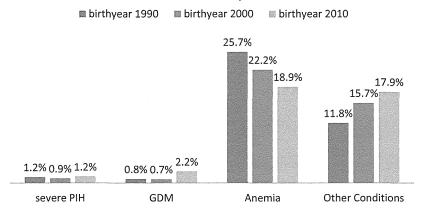

### Demographic Trends in Japan: Older maternal age





## Demographic Trends in Japan: more twins

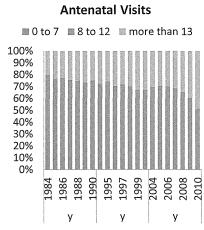




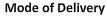

#### Demographic Trends in Japan: Recent decrease in smoking and alcohol intake

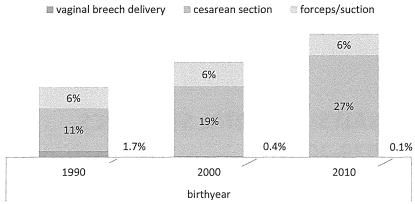





## Demographic Trends in Japan: less anemia, more GDM

#### **Maternal Complications**





### Demographic Trends in Japan: more antenatal visits, possible increase in PIH





### Demographic Trends in Japan: more cesarean delivery, less vaginal breech





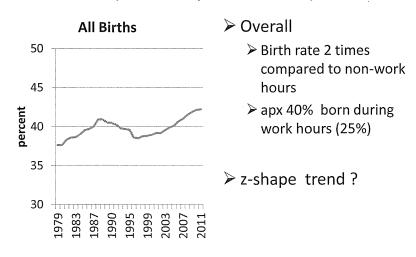
### Summary Trends in Maternal Characteristics (1990-2010)

- Taller and thinner mothers
- Older maternal age, less previous births
- More twins
- Less smoking and drinking during pregnancy
- Less anemia, more GDM, possibly more PIH
- More antenatal visits
- More cesarean sections

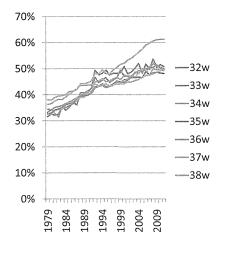
## ANALYSIS OF VITAL STATISTICS (1979-2011)

### Data of Japan

- □ National Survey on Infants and Toddlers
  - > 1980, 1990, 2000, 2010 (Every 10 years)
  - Multi-level random selection of all births.
  - → 10,000-20,000 subjects per survey.
  - Data on method of delivery, maternal complications, maternal smoking and drinking
- Vital Statistics data
  - > 1979-2011 (30 years)
  - ➤ 100% coverage
  - > Only 23 basic variables for birth certificate
  - > Data of residence
- **U** WHO Multi-country Survey
  - ≥ 2004, 2008
  - Random Selection of 10 hospitals capable of delivery of high risk births


#### Analysis plan

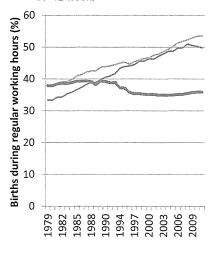
- Trends in maternal characteristics and complications that could attribute to earlier spontaneous labor or medically needed urgent delivery
- Trends in timing of delivery that could reflect decision of elective delivery


#### Analysis plan

- Trends in maternal characteristics and complications that could attribute to earlier spontaneous labor or medically needed urgent delivery
- Trends in timing of delivery that could reflect decision of elective delivery
  - ➤ Percentage of births during regular working hours (defined by births during 9AM-5PM on weekdays)
  - ➤ Difference in timing of birth by access to care (residence)

### Trend of Births during Regular Work Hours (Weekdays 9° -17°)




### Trend of Births during regular work hours by gestational length



- Scheduled deliveries have increased at every week under 39 weeks
- > Largest increase for births at 37 weeks.
- ➤ Largest percentage of births at work hours is also at 37 weeks.

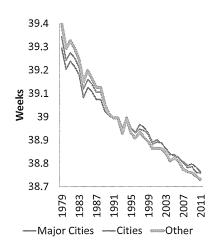
#### Trend of Births during regular work hours

—Preterm Births—37-38 weeks —39-41 weeks by gestational length



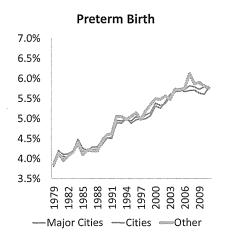
- Scheduled deliveries at full term declined during 1992-1997 and has kept stable at 35% (1.5 times more birth during work hours)
- Increase in scheduled deliveries mostly attributable to increase at preterm and early term

## Summary Deliveries during working hours


Overall, twice more deliveries during work hours compared to off-duty hours.

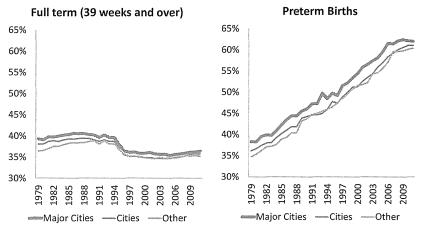
- · Full term births
  - Birth during work hours declined between 1992-1997
  - Since, stably 1.5 times more deliveries during work hours
- · Early term and preterm births
  - Birth rate during work hours continues to increase
  - Currently 3 times more deliveries during work hours
  - Deliveries at 37 weeks are most likely to be scheduled, with 4.5 times more deliveries during work hours
- Possible interpretation: High risk pregnancies are being scheduled for delivery, low risk pregnancies are becoming more preferred to wait until spontaneous labor.
- > Waiting until term to terminate pregnancies with non-urgent medical conditions, leading to most scheduled deliveries at 37 weeks.

### Difference in Trends of Average Gestational length by mother's residence


#### **Definition and categorization**

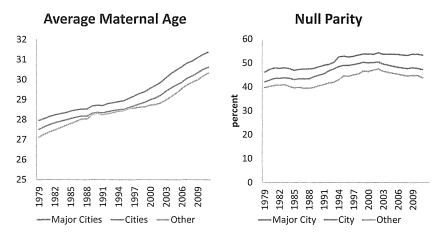
- ◆ Major City (19 cities)
  - over 1,000,000 residents
- City
  - over 50,000 residents
  - over 60% live in the urban district
  - over 60% work in the industry
- **♦**Other




Gestational length dropped more in smaller towns and cities(4.5days), compared to major cities (3.5 days).

### Difference in Trends of Gestational length by mother's residence



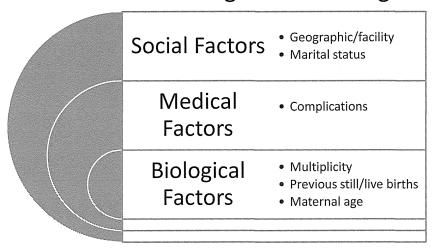

Preterm birth rate increased more in smaller towns and cities, compared to major cities.

### Difference in Trends of Delivery during working hours by mother's residence



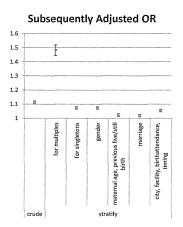
Major cities tend to have more scheduled deliveries. For full term births, the difference by residence has narrowed.

### Difference in Trends of Maternal Characteristics by mother's residence




Major cities tend to have older, nullparous mothers. Trend is similar between categories of residence.

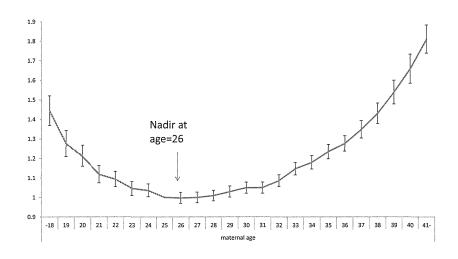
## Summary Differences by mother's residence


- Gestational Length
  - Dropped more in smaller cities and towns
  - Shorter in smaller cities and towns since 1990
  - Preterm birth higher in smaller cities and towns since 1990
- Scheduled Delivery
  - More frequent in major cities
  - For full term births, the difference has narrowed
- Maternal Characteristics
  - Older, more nulliparous mothers in major cities
  - Trend is similar between categories of residence

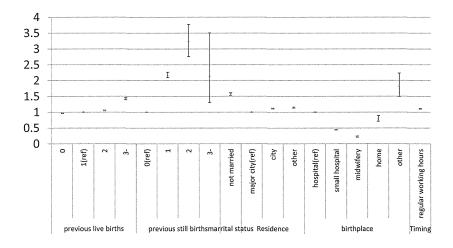
## Using multiple regression models to evaluate effects on gestational length



# Multivariate logistic model for Preterm with subsequent adjustment (1995-2010)


|                |                                                  |       | 95%CI |       |  |  |  |
|----------------|--------------------------------------------------|-------|-------|-------|--|--|--|
| crude          |                                                  | 1.114 | 1.106 | 1.122 |  |  |  |
|                | for multiples                                    | 1.482 | 1.446 | 1.519 |  |  |  |
| stratify       | for singletons                                   | 1.073 | 1.065 | 1.082 |  |  |  |
| For Singletons |                                                  |       |       |       |  |  |  |
|                | Adj for gender                                   | 1.073 | 1.065 | 1.082 |  |  |  |
| Biological     | + maternal age,<br>previous live/still<br>births | 1.023 | 1.015 | 1.032 |  |  |  |
| Social         | marriage                                         | 1.019 | 1.011 | 1.028 |  |  |  |
| Other          | City, Facility,<br>timing, birthplace            | 1.054 | 1.048 | 1.063 |  |  |  |




### Multivariate logistic model for Preterm with subsequent adjustment (1995-2010)

| Confounder s Adjusted for to calculate effect of time on Preterm birth rate Crude |                                          | Vital Statistics |             | Infant Survey |       |       |
|-----------------------------------------------------------------------------------|------------------------------------------|------------------|-------------|---------------|-------|-------|
|                                                                                   |                                          | OR               | 95%CI       | OR            | 95%(  |       |
|                                                                                   |                                          | 1.114            | 1.106 1.122 | 1.042         | 1.009 | 1.077 |
| stratify                                                                          | for multiples                            | 1.482            | 1.446 1.519 |               |       |       |
|                                                                                   | for singletons                           | 1.073            | 1.065 1.082 | 0.969         | 0.934 | 1.005 |
| For Singleto                                                                      | ns                                       |                  |             |               |       |       |
| Biological                                                                        | Infant gender                            | 1.073            | 1.065 1.082 | 0.972         | 0.937 | 1.008 |
|                                                                                   | maternal age, previous live/still births | 1.023            | 1.015 1.032 | 0.89          | 0.857 | 0.924 |
|                                                                                   | BMI category                             |                  |             | 0.888         | 0.855 | 0.922 |
| Social                                                                            | marriage                                 | 1.019            | 1.011 1.028 | 3             |       |       |
|                                                                                   | Smoking, alcohol                         |                  |             | 0.897         | 0.863 | 0.932 |
| medical                                                                           | maternal complications                   |                  |             | 0.991         | 0.953 | 1.031 |
|                                                                                   | City, Facility, timing, birthplace       | 1.054            | 1.048 1.063 | 3             |       |       |

### Estimated Effects of maternal age



### Estimated Effects of other confounders

