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FIGURE LEGENDS

Figure 1. Induction of constitutive, ligand-independent CAR T-cell proliferation.

A) In vitro proliferation of human CD4" T cells following 5 days of aCD3/CD28-coated magnetic bead
stimulation and lentiviral transduction with the indicated CAR constructs (left panel). No cytokines were
added to culture media at any point during expansion. The CAR T cells with constitutive proliferation
also maintain a larger mean cell volume (right panel). Results are representative of n>10 normal human
donors. B and C) CD4" and CDS8" T cells were stimulated as in (A), with or without exogenous IL2. In
vitro proliferation of human CD4" (D) T cells following lentiviral transduction with the indicated CAR
constructs. No cytokines were added to culture media at any point during expansion for CD4" T cells.
Results are representative of n>4 normal human donors. E) CD4" T cells from 3 healthy donors were
isolated, stimulated and transduced with lentivirus encoding the c-Met IgG4, CD19 CD8-a, and CART19
CAR constructs or mock transduced, and cultured with addition of fresh media and no exogenous
cytokines. Error bars denote standard deviation. The design of the various CAR constructs is shown in

Supplemental Figure S1.

Figure 2. CAR T cells with continuous T-cell proliferation have constitutive cytokine secretion.
Serial measurements of cytokine production by various CAR constructs following aCD3/CD28
stimulation and expansion. At each noted time point c-Met 1gG4, CD19 IgG4 CAR transduced, and
untransduced CD4" T cells were collected from culture, washed and re-plated at 1x10%/mL. Cells were
kept in culture for 24 hrs at which time supernatant from each culture was collected. Supernatants were
analyzed via luminex assay and values plotted as log(10) fold-change from the pre-stimulated cells
(baseline). Baseline values (pg/ml) for each analyte were: IFNy: 5 pg/mL; TNFa: 2 pg/mL; IL2: 1 pg/mL;
GM-CSF: 15.25 pg/mL; IL13: 1 pg/mL; IL10: 1 pg/mL. The design of the CAR constructs is shown in
Supplemental Figure S1.

Figure 3. CARs with a constitutive growth phenotype display a unique gene signature. Cytokines,
perforin and granzyme expression. Microarray analysis comparing cytokine expression of c-Met IgG4
(green), CD19 CD8-a (red), CART19 (blue) CARs and untransduced (orange) T cells at baseline and on
days 6, 22 and 24 of culture; only the c-Met IgG4 culture was analyzed on day 24 because the other
cultures were terminated due to cell death. No exogenous cytokines were added to the culture media.

Normalized absolute log, gene expression intensities are plotted for [FNy, TNFa, IL17A, IL2, IL3, IL4,
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GM-CSF, IL10, IL13, Granzyme B and Perforin, The design of the CAR constructs is shown in
Supplemental Figure S1.

Figure 4. Constitutive activation of AKT, NF-kB and MAPK signaling pathways is associated with
the CAR T-cell proliferative phenotype. A) Representative FACS histograms displaying enrichment of
c-Met IgG4 CAR" T cells during culture from day 10 to day 30 of culture. B) PhosFlow plots of CD4" T
cells stimulated and transduced with the c-Met IgG4 constitutive or CD19 CD8a non-constitutive CARs
as previously described. On days 6, 10 and 25 cells were fixed, permeabilized and stained using PE anti-
Erk1/2 (pT202/pY204), PE anti-Akt (pS473), PE anti-NF-kB p65 (pS529) and PE anti-S6
(pS235/pS236); the CD19 CD8a CAR culture did not continue to proliferate to day 25, and therefore is
only analyzed on days 6 and 10. Positive controls were samples from each condition stimulated for 10
min using PMA/Ionomycin prior to fixation, while negative controls cells were fully stimulated T cells
stained using PE-conjugated IgG2b « isotype control. The design of the CAR constructs is shown in

Supplemental Figure S1.

Figure 5. Heat map showing relative intensities of the differentially expressed genes in CD4" T cells
expressing continuous CARs or non-continuous CARs. The differentially expressed genes with a 5-
fold cutoff in CD4" cells from 3 healthy donors are shown for c-Met IgG4 CAR and CD19 CD8o. CAR on
day 11. The expression level of each gene is represented by the number of standard deviations above (red)
or below (blue) the average value for that gene across all samples. The list of the differentially expressed
genes is shown in Supplemental Tables S2 and S3. The design of the CAR constructs is shown in

Supplemental Figure S1.

Figure 6 A,B and C. Transgene expression levels are sufficient to convey the constitutive CAR
growth phenotype. /n vitro proliferation of human CD4" T cells following 5 days of anti-CD3 plus anti-
CD28 stimulation and lentiviral transduction with c-MET-expressing CARs under the control of the
indicated promoter. CMV(1) and CMV (2) represent replications of lentiviral vector production in the
same human donor. A) Population doublings were determined for both CMV and EF-1a driven c-MET
CAR cells. After ~12 days in culture, CMV-c-MET CAR cells were unable to sustain proliferation and
died, while EF-1a ¢c-MET CAR T cells continue to proliferate. B) Mean cell volume (MCV) was also
determined. The CMV-c-MET CAR T cells decreased in cell size after 10 days, indicative of the cells
resting down. C) Comparison of the level of expression between CARs expressed with the CMV and EF-
lo promoters is shown at day 6 post-transduction. The mean fluorescence intensity is indicated. The

design of the CAR constructs is shown in Supplemental Figure S1.
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Figure 7A-C. In vivo efficacy of c-Met IgG4 28 CAR T cells. CD4" and CD8" T cells transduced to
express CD19 IgG4 28 or c-Met IgG4 28C CAR under the influence of either EF-1a promoter or
PGK100 prombter were infused (two administrations, 16 x 10° cells in total) into mice (for no T cells
n=2; for the rest n=8 per group) bearing intraperitoneal SKOV3 tumors pre-established for 16 days. (A)
Bioluminescence signal was acquired every week as a surrogate for tumor growth. p <0.01 EF-1a vs
PGK100 group. (B) Kaplan-Meier analysis. * indicates p < 0.05, EF-1a vs PGK100, log-rank (Mantel-
Cox) test was used for statistical analysis. (C) The absolute number of human CD45" T cells was
determined in the blood on days 37 (left panel) and 73 (right panel), respectively. Only 2 mice survived in
the EF-1a c-Met 1gG4 28 CAR group on d73. * indicates p < 0.05. Two-tailed student T-test was used

for statistical analysis. The design of the CAR constructs is shown in Supplemental Figure S1.
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