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5-DOF Control Miniaturized Self-bearing Motor for Paediatric Ventricular Assist Device
£ EF(R£B), M2 MW7 (EB), KH #Es, 2 4T
Masahiro OSA (Stu. Mem.), Toru MASUZAWA (Mem.), Naoki OMORI, Eisuke TATSUMI

A novel 5-degrees of [reedom (DOF) controlled magnetically levitated motor has been developed for paediatric
ventricular assist device (VAD). The motor has a top stator, a bottom stator and a levitated rotor which is
sandwiched by the both stators. A double self-bearing motor mechanism enhances a higher rotating torque
production and realizes a 5-DOF active control of rotor postures. This paper investigated a magnetic suspension
ability and rotation ability of two motors which are made of soft magnetic iron and powder magnetic core. The
developed motor is 28 mm in diameter and 41 mm in height. The maximum energy efficiency is sufficiently
increased from 46 % to 72 % by using the powder magnetic core motor, although the magnetic axial attractive forces
are only slightly reduced by 10 % of the soft magnetic iron motor. The powder magnetic core motor has sufficient
performance as an actuator of the paediatric VAD.

Kevwords:  5-DOF, double self-bearing motor, paediatric. ventricular assist device.
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Abstract: A novel eosin Y-releasing mold was designed to
accelerate the fabrication of in vivo tissue engineered autolo-
gous vascular prosthetic tissues, called the “biotubes.” The
mold was prepared by addition of an aqueous solution of
eosin Y (1~6 w/v%) to the agar gel (0.3%). which was
attached to the luminal surface of the microporous acrylate
tube (diameter, 5 mm; length, 28 mm; pore size, 0.5 mm¢).
The eosin Y release period was controlied by the number of
pores {3~160}. On embedding the molds into dorsal, subcuta-
neous pouches of rats for 1 week, completely encapsulated
biotubes, mainly consisting of collagen, with thick walls
(418.2 = 173.4um) and robust mechanical properties {elastic
modulus, 956.2:=196.5 kPa; burst pressure 5850+ 2383
mmHg) were formed. These values were, respectively,

more than 4.3, 3.8, and 56 times greater than the
corresponding controls (acrylate rods}. The high elastic mod-
ulus of the biotubes was obtained even with a small numbsr
of micropores (3), and a low concentration of eosin Y (1%)
within a very short embedding period (5 days), irrespective
of rat weights. This innovative method for rapid production
of vascular grafts with thick walls and robust mechanical
properties may be adaptable for the sub-emergency clinical
use of biotubes in regenerative medicine. © 2013 Wiley Periodi-
cals, Inc. J Biomed Mater Res Part 8: App! Biomater, 102B: 231-238,
2014.

Key Words: eosin Y, biotube, vascular grafts, tissue forma-
tion, in vivo tissue engineering
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INTRODUCTION

Conventional grafts, such as Dacron or expanded polytetra-
fluoroethylene (ePTFE), have shown clinically satisfactory
durability; however, they have several disadvantages, such
as thrombogenicity; late stenosis and occlusion from intimal
hyperplasia especially in small caliber grafts; susceptibility
to infection; and lack of growth potential. The ongoing
search for the ideal graft has sought to overcome these limi-
tations through the development of various tissue-
engineered vascular grafts and the reporting of their clinical
utility. In such grafts, biodegradable polymers' or decellu-
larized biomaterials®®
enable host cells to rebuild the vessel architecture; autolo-
gous cell seeding and culturing within bioreactors before in
vivo placement is usually necessary to improve their antith-
rombogenicity and performance.

In an alternative approach, autologous tubular tissues,
called biotubes, were devéloped through the application of
in-body tissue architecture technology. These structures
were evaluated for use as small-caliber vascular grafts
(diameter, 1.5~3 mm) in animal experiments, where the
biotubes were demonstrated to be able to withstand aortic
pressures (burst pressure, ~1000 mmHg).® This technology

are commonly used as scaffolds to -

is advantageous because the prostheses do not induce
immunological rejection, exhibit nontoxic biocompatibility,
and might adapt to the recipient’s growth. In addition, these
tissue prostheses can be fabricated in a wide range of
shapes and sizes to suit each individual recipient, Most
importantly, neither complex in vitro cell management nor
special aseptic laboratory facilities are required, which are
both expensive and time consuming.

Recently, this technology was applied to the develop-
ment of heart valve tissues, with or without stents for trans-
catheter valve implantation. However, the wall thickness of
the biotubes formed within the subcutaneous space was
less than 100 pm, even after several months of embedding
using the classical preparation molds.” The wall thickness of
the biotubes was found to be somewhat controlled by the
type and surface chemistry of the materials used in the
molds. Previously, in order to accelerate the fabrication of
biotubes, novel, wing-attached rod molds were designed for
the tissue rolling process® By using such molds, wall struc-
tures with functions similar to those-of native arteries were
acquired within 4 weeks, even though a 2-step in vivo tissue
incubation process was required. In an alternative method,
a novel drug-coated mold was designed using nicotine as a
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model drug® due to its physiological angiogenic activity.'®
Nicotine was applied to the mold surface in a thin gelat-
nous matrix, using a photocurable gelatin, and tissue forma-
tion and rich angiogenesis in the biotubes were accelerated.
After having embedded the nicotine-coated biotubes for 2
weeks, burst strengths of about 2700 mmHg were obtained.

The in-body tissue architecture technology is depend on
tissue capsulation phenomenon, which is one of normal
body defense mechanisms, induced by trivial stimulation
such as very weak inflammation reaction against the mate-
rial surface. Therefore, we estimated that the release of
chemicals with little positive physiological activity also
might have potential of acceleration of biotube preparation.
According to the strategy esion Y was selected as a model
chemical. There is little report on eosin Y about the physjo-
logical activity of tissue formation or anigiogenesis. Our
urgent goal on the biotube development is shortening of
preparation period of biotubes with thick and strong tissue
walls in less than 1 week, suitable for sub-emergency cases.

MATERIALS AND METHODS

Preparation of an Eosin Y-eluting Mold

Eosin Y-eluting molds were prepared, according to the sche-
matic diagram shown in Figure 1, using 3 kinds of acrylate
parts, including a tube (outer diameter, 5 mm; wall thick-
ness, 0.5 mm; length, 24 mm) with micropores (diameter,
0.5 mm; number of pores, 3-160 per mold, 0 for control), a
rod (diameter, 2 mm; length, 24 mm), and 2 caps (diameter,
5 mm; length, 4 mm). The various acrylate parts were pre-
pared using a three-dimensional inkjet printing system (Pro-
jet HD3000, 3D Systems, SC). A cap was connected to one
end of the acrylate rod and the rod was inserted into the
center of the Jumen of the microporous acrylate tube {Fig-
ure 1, step 1). The aperture space between the tube and the
rod was filled with agar (0.3%) (Figure 1, step 2). After
room-temperature gelation of the agar, the rod was removed
(Figure 1, step 3). The cylindrical space formed at the cen-
ter of the agar gel was filled with a phosphate buffered
saline (PBS) solution containing eosin Y (Figure 2, concen-
tration, 0.5-6%, 0% for contol, Wako Pure Chemicals, Osaka,
Japan), and the other end of the tube was capped (Figure 1,
step 4). As a control, an acrylate rod, without micropores or
eosin Y was used.

Biotube preparation
The acrylate molds, with or without eosin Y, were surgically
embedded into dorsal, subcutaneous pouches of anesthe-
tized Wistar rats (n=40; weight range of 100-300 g). In
each rat, four rods from the same group were embedded (at
least n=6 for each point in Figure 5). Anesthesia was
induced by isoflurane (Nissan Chemical Industries, Tokyo,
Japan; concentration, 1.5%, in oxygen; flow, 500 mL/min).
After predetermined periods, 3 days to 2 weeks, the molds
were harvested, with the surrounding capsular tissues, to
obtain the biotubes.

All animal experiments were acute experiments per-
formed under aseptic conditions in compliance with the
Guide for the Care and Use of Laboratory Animal, published
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by the US National Institutes of Health (NIH Publication No
88-23, revised 1996). The research protocol (No. 12002)
was approved by the ethics committee of the National Car-
diovascular Center Research Institute (Osaka, Japan).

Measurement of eosin Y release

The amount of eosin Y released from the microporous
molds was determined spectrophotometrically. After
immersing the acrylate molds into a saline solution
(100 mL), absorbance of the solution was measured at pre-
determined times, using a UV/visible light spectrophotome-
ter (UV-1700, Shimadzu, Kyoto, Japan) at a wavelength of
518 nm,

Histological examination

Recovered biotube specimens were fixed in a 10% formalin
solution and embedded in paraffin. For histological evalua-
tions, the embedded tissue was thin-sectioned (3-5pm) for
routine hematoxylin and eosin staining. Some histological
sections were stained with either Masson’s trichrome stain
for collagen or with elastica-van Gieson stain for elastin,

Measurement of elastic modulus

The elastic modulus of the biotubes was examined using a
custom designed tensile tester. Tubular samples were cut
circumferentially and opened. Tissue specimens, 10 mm X
10 mm, were tested under humid conditions. The load was
recorded until the samples ruptured, with a tissue-extension
rate of 0.05 mm/s. Elastic modulus values were obtained
from the maximum slope of the deformation-force
relationships.

Statistics
Results were expressed as the means of at least six tests
and the standard errors of the mean were also calculated.

RESULTS

Release character of eosin Y

The water solubility of Eosin Y allowed it to easily penetrate
the highly water-swelled agar gel, coloring the internal vol-
ume of the acrylate tube red (A and B in Figure 1). In the
absence of the acrylate tube, an initial burst release of eosin
Y occurred upon immersion of the colored agar into a PBS
solution (Figure 3A); the microporous tube covering the gel
restricted the release of the dye. Irrespective of the number
of micropores in the tube, eosin Y was released almost line-
arly up to about 50% of the initial dye content (Figure 3A).
The release rate, determined by the initial slope of the
release curve, increased as the number of micropores
increased (Figure 3B). The period over which the release of
the dye occurred could be controlied by the number of
micropores: the higher the number of micropores, the
shorter the length of the estimated release period
(Figure 3C).

Preparation of biotubes

When the acrylate molds, as controls, were embedded into
the subcutaneous pouches of rats for 1 week, the molds
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view (A) and the magnification view (B) of the eosin Y-releasing molds with micropores. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

were covered with a very thin and almost transparent layer
of connective tissue, similar to that observed in a previous
report in which silicone molds were used as controls*
[Figure 4(A)]. Because the developed tissues were fragile,
complete harvesting of the molds was extremely difficult
[Figure 4(B)]. On removal of the molds, the incomplete
tubular connective tissues, with thin-walled membranes, col-
lapsed [Figure 4(C)]. As indicated by the yellow arrows in
Figure 4(G), the resultant biotubes had a thin wall thickness
of 97.2 £22.8 pm (Table I), and demonstrated little vascular
ingrowth into the biotube membrane.

In contrast, when the eosin Y-containing molds were
embedded into the subcutaneous pouches of rats for 1
week, the area surrounding the molds was fully covered
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with thick connective tissue [Figure 4(D)]. The developed
tissues were easily harvested from each subcutaneous
pouch since there was little adhesion between the devel-
oped connective tissue and the surrounding original tissues
[Figure 4(E)]. Upon removing the molds, tubular biotube tis-
sues were obtained [Figure 4(F)]. Almost all of eosin Y
(over 80%) was excluded from the mold after 1 week of
embedding, irrespective of number of micropores. As indi-
cated by the yellow arrow in Figure 4(]), the biotubes
obtained were very thick-walled (418.2*173.4pum in
Table I) and intensely colored red, which was different from
the color of eosin Y [Figure 4(F)]. Since tubular shape was
maintained in the biotubes, their handling was very easy. As
indicated by the yellow arrow heads in Figure 4(K), rich
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FIGURE 2. Chemical structure of eosin Y.

angiogenesis was induced from the middle to the outside of
the biotube layer. The biotube wall was composed of
collagen-rich tissue [Figure 4(K)], without any elastic fibers
[Figure 4(L)], similar to the composition of the control bio-
tubes [Figure 4(H,])]. A large number of fibroblasts accumu-
lated at the luminal surface, but there was no abnormal
collection or infiltration of inflammatory cells observed in
the walls of the biotubes.

Mechanical properties

The control biotube tissues, derived from the acrylate rods,
burst at a luminal pressure of 1050 = 446 mmHg (Table I).
In contrast, biotubes formed from the eosin Y-releasing
molds had burst strengths more than 5-fold higher
(5850 = 2383 mmHg) than those of the controls, and were
close to the values measured for the native aortic arch or
thoracic aorta (beagle dog) (Table I). In addition, the elastic
modulus values of the biotubes were 956.2 +196.5 kPa,
which were about four times those of the controls
(254.5 - 188.0 kPa) and were within the physiological range
of values determined for aortic arches {499.4 = 88.8 kPa)
and aortas (1267.1 = 353.3 kPa).

Biotubes with high elastic modulus values were obtained
from the molds even with the smallest number of micro-
pores (number of pores: 3}, but only increased slightly as
the number of pores was increased; biotubes with 80 pores
had an elastic modulus of about 1000 kPa [Figure 5(A)].
Increasing the concentration of eosin Y in the meolds also
resulted in an insignificant difference in the elastic modulus
of the resultant biotubes [Figure 5(B)]. Biotubes removed 3
days after placement in the subcutaneous pouches were
weak and had low elastic modulus values (about 400 kPa)
[Figure 5(C)]. However, after 5 days, the elastic modulus
doubled and was maintained for up to 2 weeks. The weights
of rats involved in the study did not have an impact on the
elastic modulus of the recovered biotubes [Figure 5(D}].

DISCUSSION
In previous studies, biotubes have been used as vascular
grafts in rabbits or dogs with reconstructed vascular tissues
forming within several months after implantation, showing
great promise as vascular grafts.***? In these previous stud-
ies, the preparation of biotubes from the traditional, silicone
molds required an embedding period of at least 1 month in
the subcutaneous pouches of the animals. However, the
resultant biotubes had extremely thin (less than 100 pm)
and fragile connective tissue walls. The walls did demon-
strate adequate mechanical properties, including high burst
strength (ca, 1000 mmHg), for use as small caliber vascular
grafts, These early biotubes also demonstrated compliance
that was equivalent to that of native arteries.” The fragile
nature of these biotubes meant that anastomosis to native
arteries, particularly in an end-to-end manner, was
extremely difficult. The connective tissues formed by the
end of the 1-week embedding period were incomplete, as
also demonstrated by the control biotubes in this study
(Figure 4). Therefore, this study examined the possibility of
preparing better biotube vascular grafts using the controlled
release of eosin Y.

Eosin is a fluorescent red dye that is used to stain cyto-

-plasm, collagen, and muscle fiber, facilitating their visualiza-

tion under a microscope.’* As a result, eosin is most often
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FIGURE 3. A: Release curves of eosin Y from the molds into PBS {100 mL). B: Estimated release rate (%/h) determined from the initial slopes in

(A). C: Calculated period of release {days) from the data in (B).
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mold in the subcutaneous space and an external wew of the b:otuba with (E} or without (F) the acrylate mold. Clrcumferarmal sections of bio-

tubes prepared fro

 the acrylate molds (G, H, 1) and from the eosin Y-releasing molds (J, K, L). Hematoxylin and eosin stained biotube sections

(G, J). Masson trichrome stained biotuba sections (H, K). Elastucn-van Gieson stained biotube sections (I, L). The yellow arrows in G and J shows
the layers of the biotubes, which were connected with very fragile mucous membrane-like connective tissues at their outer surfaces. The yellow
arrow heads in K indwate caplllanes In all hlstological photos (G-L), the luminal side is on the left. Bar = 200 pm.

used as a counterstain to hematoxylin, and together, they
constitute one of the most commonly used staining techni-
ques in histology. Eosin can also be used as a photo-
crosslinkable compound for the preparation of hydrogels
because it can generate radicals that form covalent bonds
by a proton transfer reaction upon photoirradiaton.*® There-
fore, photo-crosslinkable gelatin, prepared by partial deriva-

tization of eosin Y into gelatin, has been investigated for use
in a number of biomedical applications, e.g, as a matrix for
drug delivery,'® a tissue adhesive,'®” a post-operative
wound dressing, a coating material for implantable medical
devices,'® and as a scaffold material in regenerative medi-
cine.'® Recently, eosin Y-derivatized gelatins have also been
used as coating materials for drug immobilization on molds
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TABLE 1. Mechanical Properties of Biotubes Prepared From
Eosin Y-Releasing Molds and Control Acrylate Rods, as well
as Observed in Native Arteries Obtained From Beagle Dogs

Sample

Elastic Burst
Thickness Modulus Pressure
(pm} (kPa) {mmHg)

Eosin Y-releasing 41822 173.4 956.2:196.5 5850 2383

Mold
Acrylate Rod
Aortic Arch
Thoracic Aorta
Abdominal Aorta
Carotid Artery
Pulmonary Artery

97.2% 228

254.5 % 188.0 1050+ 446
499.4 =888 4550346
652.2+178.9 5200+751
1267.1+£335.3 7350+ 1820
787.8+246.1 4013+ 1297
709.4+ 93.6 23001051

to accelerate the fabrication of biotubes.” However, there
was little benefit achieved by coating only with eosin-
derivatized gelatin; the eosin provided little physiological

activity for connective tissue formation. To our knowledge,
there have not been any reports documenting the effects of
eosin on the enbancement of tissue ingrowth or on its
toxicity.

In this study, biotubes with thick walls were successfully
prepared following a short, 5-day embedding period by
using a novel eosin Y-releasing mold. The agar tubes acted
as storage reservoirs of eosin Y and the microporous acry-
late tubes acted as barriers for its controlled release,
although most of the eosin was released from the mold
upon subcutaneous embedding.

Capsule formation, the primary principle involved in in
vivo tissue architecture technology, is based on one of the
main body defense reactions against artificial implants, If a
strong defense reaction occurs, excess inflammatory cells
accumulate, resulting in inhibition of capsule formation, due
to a delay in fibroblast ingrowth. Acrylate, an inert and bio-
compatible material used in the control molds, is an inert
and biocompatible material, is widely -used in medical
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236 NAKAYAMA AND TSUJINAKA

ACCELERATION OF ROBUST “BIOTUBE" VASCULAR GRAFT FABRICATION

161



devices and does not allow sufficient capsule formation
with a 1-week embedding period. The release of eosin Y,
however, significantly enhanced capsule formation. Even
though there is a little report about physiological activity of
eosin Y, an appropriate host defense reaction was stimu-
lated by the release of eosin Y, resulting in enhanced bio-
tube formation. Interestingly, neither the number of pores
in the acrylate nor the concentration of eosin Y had signifi-
cant effects on the robust formation of biotubes. This sug-
gested that a little stimulation by eosin Y would control
connective tissue formation and further suggested that the
releasing molds reported in this study might be used in
other applications without toxicity.

One of the most effective methods to activate angiogene-
sis is the introduction of bioactive substances, such as cyto-
kines, vascular endothelial growth factor (VEGF),2>?! and
basic fibroblast growth factor (bFGF).***® The slow release
of VEGF has been reported to promote angiogenesis and is
effective in neovascularization therapy for peripheral, arte-
rial, and cardiac ischemia. In a preliminary study, the slow
release of VEGF from the mold surface promoted neovascu-
larization in biotube tissue (data not shown). Furthermore,
impregnation of VEGF into polyurethane grafts enhanced
the ingrowth of transanastomatic tissues and transluminal
t:apillaries.24 Therefore, other compounds, such as VEGF,
bFGF, or nicotine, are expected to function in a similar phys-
iological manner when released from these microporous
molds and may allow further enhancement of biotube
formation.

Capillary formation is one of the meost important
requirements for the construction of three-dimensional,
thick, and functional tissues in tissue engineering, as the dif-
fusional supply of oxygen can only support a tissue thick-
ness of less than 200 pm. Eosin Y stimulation also induced
the significant formation of matured capillaries, composed
of both endothelial cells and smooth muscle cells. These
neovessels also supported the increased thickness of the
biotube tissues. Natural, strong antithrombogenic activity is
provided by the complete endothelialization of the luminal
surface and is highly desirable. However, the preparation of
an endothelialized-biotube surface in an in vivo reactor is
extremely difficult and the preparation of such a surface
in vitro requires complex cell management and processing,
Therefore, wall structures that attain complete endotheliali-
zation at an early stage of the implantation are desirable,
Furthermore, rich angiogenesis, including the recruitment of
large numbers of endothelial cells, in the biotube walls was
hypothesized to promote endothelialization of the luminal
surface. In other words, upon contact with the blood flow
after implantation, capillary migration from the wall to the
luminal surface could be induced in order to supply the
endothelial cells.

In this study, significant cellular migration to the surface
of the acrylate rods with concomitant angiogenesis was pro-
moted by eosin Y release. The tissue that formed on the sur-
face of the structure was primarily colonized by fibroblasts.
To our knowledge, this is the first report describing the
acceleration of tissue formation triggered by eosin Y, How-
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ever, it was considered that eosin Y itself had a very litile
activity for tissue formation or anigiogenesis. In encapsula-
tion process of this study, continuous weak stimulation by
eosin Y was effective. Degree of stimulation might be impor-
tant in enhancement of the process. Too much stimulation
would induce inflammation reaction. Therefore, other inert
chemicals even with a little physiological activity for tissue
formation or anigiogenesis could enhance the encapsulation.
Biotubes with remarkably thick walls and an appropriate
rigidity were formed within the short, 5-day embedding
period. Since efficient nutrition was maintained as a results
of the rich angiogenesis throughout the wall, the newly
developed tissue could survive even within the thick sur-
rounding tissues. We are currently devising animal experi-
ments to evaluate the in vivo performance of these newly
developed biotubes.

CONCLUSIONS

The application of the newly developed eosin Y-releasing
mold brought about accelerated fabrication of thick-walled
biotubes with robust angiogenesis that may be used as
large-caliber vascular grafts. The biotubes exhibited
mechanical properties, including sufficient rigidity to main-
tain patency for easy anastomosis and a high elastic modu-
lus for withstanding blood pressure changes, which were
suitable for such applications.
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