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Figure 3. DNA methylation status of the /L2 locus in different CD4* T-cell subsets. A, Representative bisulfite sequencing DNA methylation analysis of
the /L2 locus in naive, central memory {CM), early effector memary {E-EM), intermediate effector memory {I-EM), and late effector memory (L-EM) CD4*
T-cell subsets, classified according to CD45RA, CCR7, CD27, and CD28 expression. B, Summary graph of DNA methylation status of the /L2 locus in T-cell
subsets in 4 individuals without HIV-1 infection. The paired t test was performed for statistical analysis. **P=.001-.01, ***P<.001.

Phenotypically Senescent Memory CD4* T Cells Have a
Methylated /L2 Promater

Although the DNA methylation status of the IL2 promoter/en-
hancer region in different CD4™ T cells in mice has been well
characterized [17, 29, 30], the detailed profile of IL2 promoter
methylation in human CD4" T cells has not been elucidated.
Therefore, we sorted different CD4" T-cell subsets in HIV-1-
uninfected individuals on the basis of CD45RA, CCR7, CD27,
and CD28 expression [31-33] and assessed the methylation status
of the IL2 promoter in each fraction (Figure 3). CpG sites 2-6
were fully methylated, and CpG site 1 was 60% methylated in

naive CD4" T cells (Figure 3A and 3B). In contrast, CpG sites
2-6 were >50% demethylated in all memory subsets (Figure 3B).
Moreover, CpG site 1 was fully demethylated in central memory,
early effector memory, and intermediate effector memory cell
compartments (Figure 3B). Interestingly, all CpG sites, including
site 1, were remethylated in late effector memory cells. Since sig-
naling through CD28 has been shown to modify the epigenetic
program of the IL2 promoter in mice [30], we postulated
that the IL2 promoter may have an altered DNA methylation
program in late effector memory subsets without CD28
expression.
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It has also been reported that expression of CD57 is highly cor-
related with loss of CD28 expression in CD4" T cells [34-36] and
is associated with replicative senescent T cells [34, 37, 38]. On the
basis of these observations, we evaluated the association between
CD57 expression and DNA methylation of the IL2 promoter. We
first analyzed CD57 expression in each CD4" T-cell subset.
Naive, central memory, and early effector memory CD4"
T cells from healthy individuals did not express CD57, while a
significantly increased frequency of CD4" T-cell subsets with a
more differentiated phenotype expressed CD57, with the highest
level of expression observed on the late effector memory subset.
‘We next assessed the DNA methylation status of the IL2 promot-
er in CD57" and CD57" subsets of memory (CD45RA™) CD4*
T cells (Figure 4B). We found that CpG site 1 was more methyl-
ated in the CD57" subsets relative to the CD57~ subsets. Impor-
tantly, IL-2 secretion in CD57-expressing memory CD4" T cells
was 5-fold lower than IL-2 secretion in CD57~ memory CD4"
T cells even after strong T-cell stimulation with PMA/ionomycin
(14.9% vs 83.7%; Figure 4C). These data indicate that CD57" cells
among late effector memory CD4" T cells were remethylated at
CpG site 1 of the IL2 promoter, which was coupled to restricted
IL-2 expression.

CD57*CD4* T Cells in HIV-1-Infected Noncontrollers Have a
Methylated /L2 Promoter and Restricted IL-2 Expression

It has also been reported that HIV-1-specific CD57"CD4" T cells
have reduced IL-2 expression [35, 39]. Abnormal T-cell dif-
ferentiation of polyclonal CD4" and CD8" T cells in HIV-1-
infected individuals is associated with increased levels of CD57
expression [5, 35]. To determine whether the increased immune
dysfunction in polyclonal memory T cells during chronic HIV-1
infection is associated with stable epigenetic programming of the
memory pool, we measured DNA methylation of the IL2 pro-
moter in memory CD4" T-cell subsets from HIV-1-infected in-
dividuals. As previously reported [5, 35}, the number of CD57*
effector memory (early, intermediate, and late) CD4" T cells
was higher in chronically infected individuals, compared with in-
dividuals without HIV infection (Figure 5A). We also observed
an increase in methylation of the IL2 promoter, not only in the
late effector memory subset, but also in the less differentiated
early effector memory and intermediate effector memory subsets
from noncontrollers (Figure 5B). These data suggest that aberrant
epigenetic modification at IL2 promoter, coupled to CD57 ex-
pression, occurs at an early stage of CD4" T-cell differentiation
during chronic HIV-1 infection.
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Figure 6. CD57 expression and methylation analysis of CpG site 1 in the /L2 locus of CD4 memory T-cell subsets from individuals with human immu-
nodeficiency virus type 1 (HIV-1) infection. A, Summary graph of CD57 expression level in each subset of CD4* T cells classified by CD45RA and CCR7. The
Mann-Whitney U test was used for statistical analysis. B, Correlation plot of methylation at CpG site 1 vs CD57 expression in memory CD4¥ T cells. C,
Correlation plot of methylation at CpG site 1 in CD4* T-cell vs IL-2 production in PHA-stimulated PBMCs. Correlation coefficient and Pvalues in Spearman’s
rank correlation test are shown. Pvalues less than .05 with q> 0.2 show in gray. Abbreviations: C, controller; NC, noncontroller; Ac, acute HIV-1 infection;
Tx, treated with cART; HIV-, HIV-1-uninfected; CM, central memory; EM, effector memory.

‘We next measured the level of CD57 expression on individual
CD4" T-cell subsets in all study groups (Figure 64). Our data
reveal that the frequency of CD57" cells was higher in noncon-
trollers than other groups and that the mean fluorescence inten-
sity of CD57 expression on the total pool of memory CD4"
T cells was significantly higher in noncontrollers.

Finally, we performed a correlation analysis between CD57
expression, DNA methylation of the IL2 promoter, and IL-2 ex-
pression. A positive correlation was observed between CD57 ex-
pression and DNA methylation at CpG site 1 in the L2
promoter (Figure 6B). We also found a negative correlation be-
tween CD57 expression and IL-2 production in HIV-1-infected
individuals (Figure 6C). Together, these data support a model

whereby prolonged exposure of memory CD4" T cells to the
chronic inflammatory environment in HIV-1 noncontrollers
results in upregulation in CD57 expression and hypermethyla-
tion of the IL2 promoter, ultimately resulting in senescence of
polyclonal memory CD4" T cells.

DISCUSSION

Although many studies about T-cell immunopathogenesis dur-
ing chronic HIV-1 infection have been reported, the molecular
basis for T-cell dysfunction is not well understood. To better
understand the mechanism for the broad decline in CD4”
T-cell function during chronic HIV-1 infection, we performed
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a combination of molecular and cellular assays that assessed the
epigenetic profile of T cells relative to their ability to express cy-
tokines in HIV-1 noncontrollers. Our results demonstrate that
the CpG sites in the IL2 promoter are highly methylated in
CD4™ T cells in noncontrollers and that the lower IL-2 expres-
sion is correlated with IL2 promoter DNA methylation in CD4"
T cells. Furthermore, DNA methylation was positively correlat-
ed with CD57 expression on memory CD4" T cells. To under-
stand the relationship between CD4" T-cell quality and the IL2
DNA methylation, we sorted CD4" T-cell subsets on the basis
of differentiation and senescent markers and analyzed the
methylation of CpG sites in the IL2 locus. Naive CD4" T cells
were fully methylated, and demethylation occurred at all CpG
sites during T-cell differentiation, consistent with previous re-
ports using mouse model systems [17, 19]. CpG sites were par-
tially but significantly remethylated in terminally differentiated
CD4" T cells in healthy individuals. We also found that CD57"
cells, most of which possessed a terminally differentiated phe-
notype in HIV-uninfected individuals, were highly methylated
at CpG site 1, compared with CD57~ memory CD4" T cells. In
contrast, the IL2 promoter in memory CD4" T cells from HIV-
1-infected noncontrollers was highly methylated. Further, the
promoter was also methylated in less differentiated CD57"
memory CD4" T cells. Taken together, our data suggest that
loss of IL2 expression in senescent CD4™ T cells is regulated
by DNA methylation during chronic HIV-1 infection.

Our results indicate that the genomic region proximal to CpG
site 1 in the IL2 promoter is important for transcriptional regula-
tion of the gene. This regulatory region includes binding sites for
critical transcription factors in the IL2 promoter/enhancer region
[18, 40, 41]. It has also been shown that the CpG site 1-specific
methylation abrogates Oct-1/NFAT binding to the regulatory re-
gion and causes inhibition of IL2 expression in Jurkat cells [18]. In
the present study, we observed higher methylation in not only site
1 but all CpG sites in HIV-1 noncontrollers, suggesting that other
CpG sites may be involved in IL2 gene regulation by altering ac-
cessibility of chromatin and/or transcription factor binding.

IL-2 expression strongly depends on costimulatory signals
through the CD28 superfamily of receptors during antigenic
stimulation [40, 42]. It has been reported that the increase in
histone acetylation and DNA demethylation at the IL2 locus
after T-cell receptor activation is impaired in the absence of
CD28 costimulation [29, 30]. In this study, we observed in-
creased levels of methylation of the IL2 promoter only in termi-
nally differentiated CD4" T cells without CD28 expression in
HIV-1-uninfected individuals, supporting the idea that CD28
signaling plays an important role in DNA demethylation and/
or remethylation of the IL2 gene. However, we also observed
DNA hypermethylation in early effector memory subsets with
CD28 expression in HIV-1 noncontrollers, in which CD57
expression was abnormally elevated. In our experiments us-
ing HIV-1-uninfected subjects, CpG site 1 methylation was

approximately 3-fold higher in CD57" versus CD57~ memory
CD4" T cells. Furthermore, we observed a positive correlation
between CD57 expression in memory CD4™ T cells and DNA
methylation at CpG site 1 in the IL2 promoter and also found
a negative correlation between CD57 expression and IL-2 pro-
duction in stimulated PBMCs. Taken together, our data indicate
that CD57 engagement results in epigenetic modification of the
IL2 gene in a CD28-independent manner. The mechanism for
gene regulation of CD28 and CD57 during the development of
senescent T cells in the aged population remains unknown.
Therefore, future studies should investigate molecular mecha-
nisms underlying the relationship between the expression of
IL-2 and these surface molecules. Of note, we observed no dif-
ference in IL2 promoter DNA methylation in CD8" T cells.
Meanwhile, it has been reported that IL-2 secretion in HIV-1-
specific CD8" T cells was also impaired in progressors [7, 43].
Therefore, it is likely that mechanisms aside from DNA methyl-
ation regulate IL-2 expression. It will also be important for future
studies to include analysis of epigenetic programs of effector mol-
ecules in HIV-1-specific T cells before and after cART initiation.

In the present study, we have identified epigenetic modifica-
tion of the IL2 promoter as a potential mechanism for the loss
of IL-2 expression in CD4* T cells. This reprogramming of the
IL2 promoter may be coupled to the signaling events that also
induce T-cell senescence during chronic HIV-1 infection. Indi-
viduals with chronic HIV-1 infection with a high viral load who
maintained a certain CD4" T-cell count were recruited as non-
controllers, and individuals in late phase of HIV-1 infection and
patients with AIDS were excluded in this study. Although there
was no significant difference in CD4" T-cell count between
controllers and noncontrollers in our cohort (by design), we
observed DNA hypermethylation of the IL2 locus in noncon-
trollers. In contrast, acutely infected individuals with a high
viral load did not show the defect. These data suggest that
CD4" T cells become senescent with loss of IL-2 expression be-
fore the decline in CD4" T-cell quantity if the immune system is
persistently exposed persistently to high viral loads during
chronic HIV-1 infection. Our data support the concept that
early initiation of cART is a promising way to slow HIV-1
disease progression and immunosenescence.
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Introduction

Since combination antiretroviral therapy (cART) was intro-
duced, the prognosis of patients with HIV-1 infection has
improved dramatically [1,2]. In resource-rich settings, new classes,
new drugs or new formulations of previously-known classes of
antiretraviral drugs (ARV) have been introduced continuously for
clinical use. Nucleoside/nucleotide reverse transcriptase inhibitor
(NRTT) resistance has declined over time in resource-rich settings,
presumably reflecting the improvement of treatment regimens
[3,4]. Rates of transmitted HIV-1 drug resistance (DR) have
remained limited also in resource-limited settings; however,
limitation of the first-line and subsequent regimens would be a
concern. cART consisting of two NRTIs and one non-nucleoside
reverse transcriptase inhibitors (NNRTI), most often zidovudine
(AZT) + lamivudine (3TC) or stavudine (d4T) + 3TC plus
nevirapine (NVP) or efavirenz (EFV), has been widely used as the
treatment regimen in the resource-limited settings {5,6]; conse-
quently, DR might become a larger public health challenge in the
developing countries.

DR can be examined genotypically or phenotypically [7]
(http:/ /www.aidsmap.com/pdf/ Resistance-tests/page/ 1044559/
). Although sequencing is the gold standard of the genotypic
resistance testing (GRT), high-throughput GRT targeted to the
codons responsible for DR may be more convenient and suitable
for public health research [8,9]. We applied the PCR-SSOP-
Luminex method [10-12] to an HIV-1 GRT. As an initial
approach, we focused on designing an assay for six major DR
mutations: M41L, K65R, K70R, K103N, M184V and T215Y/F.
M41L, K70R, T215F/Y are examples of thymidine analogue
mutations (TAMs) and associated with AZT and d4T [13] (HIV
Drug resistance database, Stanford University, http://hivdb.
stanford.edu/index.html). K65R is associated multi-nucleoside
and nucleotide DR. Although K65R is selected by nucleotide
reverse transcriptase inhibitor tenofovir (TDF) usually, it can be
selected by d4T. K103N is highly associated with EFV and NVP
resistance. The K103N mutation reduces susceptibility to NVP by
50-flod, and EFV by 20-fold. M184V is highly associated with
3TC and emtricitabine (FTC) resistance, and reduce the
susceptibility to 3TC by 200-fold. The monitoring of these six
DR mutations should be important for molecular epidemiologic
study estimating the efficacy of anti-HIV drugs especially in
resource limited settings. We synthesized the oligonucleotides for
the primers and probes based on the Japanese data base on reverse
transcriptase mutations. In order to validate the initial assay
system and examine the flexibility for customization, we focused
on the clade B HIV-1 which is most prevalent in Japan. Here we
report the results of the comparison between sequencing and the
PCR-SSOP-Luminex assay using the specimens of a Japanese
cohort.

Methods

PCR-SSOP-Luminex assay

HIV-1 DR genotyping described here is based on the reverse
SSOP method coupled with a microsphere beads array platform
(Luminex Corporation, Austin, TX, USA). Briefly, the method
involves PCR amplification by biotinylated primers, hybridization
to nucleotide probes coupled to microbeads, detection of the
bound PCR products by streptavidin-phycoerythrin (SAPE)
reaction, and quantitation by measurement of median fluores-
cence intensity (MFI).

Color-coded microbeads were coupled to oligoprobes derived
from DR mutations or conserved sequences in HIV-1 RT coding
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region. These synthesized probes were modified at the 5’-end with
a terminal amino group and covalently bound to the carboxylated
fluorescent microbeads using ethylene dichloride (EDC), following
the procedures recommended by the manufacturer (Wakunaga
Pharmaceutical Co. Ltd, Hiroshima, Japan). Briefly, 6.25x10”
carboxylated microbeads were suspended in 50 pl of 0.1 M MES
(2-(N-morpholino) ethane sulfonic acid, pH 4.5 (Dojindo Labora-
tories, Kumamoto Techno Research Park, Kumamoto, Japan).
Afterwards, 0.5 UM of amine-substituted oligonucleotide probes
was added, followed by 100 mg/ml EDC (1-Ethyl-3-(3-dimethy-
laminopropyl) carbodiimido hydrochloride) (Pierce Biotechnology,
Rockford, IL, USA), and the mixture was incubated in the dark for
30 min at 25°C. The EDC addition and incubation were repeated
twice and the microbeads were washed once with 0.02% Tween-
20 and once with 0.1% SDS. After the final wash, the pellets were
resuspended in 50 ul TE buffer (pH 8.0), and counted on a
hemocytometer. The concentration of fluorescence-labeled mi-
crobeads coupled to oligonucleotide probes (oligobeads) was
adjusted to 8000-12000/pl, and oligobeads were stored at 4°C
in the dark.

Five-microliter aliquots of the 5’-biotinlabeled amplified DNA
were added to wells in a 96-well PCR tray containing 5 pl/well of
denaturation solution, and allowed to denature for 5 min at RT.
Hybridization mixture was prepared using oligobeads stocks,
SAPE and hybridization solution, according to the manufacturer’s
instructions (Wakunaga Pharmaceutical Co. Ltd, Hiroshima,
Japan). Twenty-five-microliter aliquots of hybridization mixture
containing 500 each sequence-specific oligobeads were added to
each well. The amplicons were hybridized at 55°C for 30 min
using the thermal cycler. Hybridized amplicons were washed twice
with 75 Wl of wash solution in each well. Reaction outcomes were
measured by the Luminex 100 flow cytometer that is equipped
with two types of lasers. The bead populations were detected and
idendfied using the 635 nm laser. The SAPE fluorescence of the
biotin labeled amplicons that had hybridized to the oligobeads was
quantitated using the 532 nm laser. The MFI of SAPE was used to
quantify the amount of DNA bound to the oligobeads. Assays were
performed in triplicate.

Site-directed mutagenesis and plasmid construction

To assess the feasibility of the assay system, we chose cloned SF2
genome (GenBank accession number K02007) as a template.
Synthesized PCR fragments with DR mutations created by site-
directed mutagenesis were inserted into the SF2 genome. The
numbering system used to refer to DR mutations was based on
HXB2 genome (HXB2 location 2485-3308, GenBank accession
number K03455) sequences. The SF2 and HXB2 genome had the
same sequence in the regions covered by the probes.

Plasmid p9B/R7 from the HIV-1 SF2 strain was a kind gift of
Dr. T. Shioda (Osaka University, Osaka, Japan) [14,15]. An Xho
I- BamH 1 fragment including the pol gene from p9B/R7 was
subcloned into pBluescript II SK (+) (Stratagene, La Jolla, CA,
USA). As shown in Fig. 1A, various DR mutations were
introduced into the Xho I- BamH 1 fragment of the plasmid by
site-directed mutagenesis using oligonucleotides and PCR methods
as previously described [16], and were confirmed by sequencing.

Clinical specimens

Sixty subjects were selected from among patients participating
in an ongoing study on microbes at an HIV outpatient clinic
affiliated with the Institute of Medical Science, the University of
Tokyo (IMSUT). The study was approved by the internal review
board of IMSUT (20-31-1120), and all subjects provided written
informed consent. The median HIV-1 RNA and CD4 cells count
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(512bp) ¢ >
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B
PCR primers
RTIF: 5-ATGATAGGGGGAATTGGAGGTTT-3’
RTIR: 5°-TACTTCTGTTAGTGCTTTGGITCC-3
RT2Fa: 5°- GACCTACACCTGTCAACATAATTGG-3
RT2Re: 5°- TGGAATATTGCTGGTGATCC- 3

RT2Fc: 5°-AACTCAAGACTTCTGGGAAGT-3
RT2Rb: 5’-CAGTCCAGCTGTCTTTTTCTGGC- 3’

Sequencing primers

T7: 5“TAATACGACTCACTATAGGG-3'

Rev: 5'-CAGGAAACAGCTATGAC-3'

Figure 1. Schematic representation of PCR amplification and sequences of primers for PCR and sequencing. (A) Top: Site-directed
mutagenesis using oligonucleotide is shown using K103N as an example. Desired mutations in the reverse transcriptase gene were engineered in two
PCR fragments, then incorporated into a larger fragment (1050 bp, HXB2 location 2388-3425) by the second PCR, and cloned into pBluescript il SK (+)
at Xhol-BamH| sites. Bottom: Negative strand cDNA was synthesized from patients’ plasma. After the first strand PCR using RT1F and RT1R as primers,
Fragment a or Fragment ¢ were amplified by nested PCR. (B) Primer sequences for PCR amplification and sequencing.

doi:10.1371/journal.pone.0109823.g001

at sampling were 4.15 (range 2.60-5.88) log 10 copies/ml and 264
(range: 9-902) cells/Jl, respectively. Seventy-four specimens from
60 patients were analyzed in this study. Forty-eight patients
contributed one plasma specimen, 10 patients contributed two
plasma specimens from different time points, and two patients
contributed three separate plasma specimens. Twenty-two spec-
imens were {rom patients who were treatment-naive when the
plasma specimens were obtained. The remaining 52 specimens
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were from patients on failing treatment including NRTI at the
time of sample collection.

Viral RNA extraction, cDNA synthesis, and PCR

amplification
Viral RNA was extracted from 140 pl plasma using QIAamp
Viral RNA Mini Kit (QIAGEN, Valencia, CA, USA) and eluted
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Table 1. Design of cligoprobes based on clade B HIV-1 sequences from Japanese surveillance database.

100% match
genetic ‘ Nucleotide sequence isolates of
Locus code Frequency(%) Name of probe Oligoprobes (5’-3") database

M41-ATG 795/795(100) M41M-ATG GTACAGAAATGGAA 618/868(71.2%)

MA1L-CTG 69/180(38.3) M41L-CTG GTACAGAACTGGAA

M41L-TTR 1/180(0.6)

961/1012(95.0)  K65K-AAA 516/870(59.3%)

K65-AAA ATAAAGAAAAAAGACAG

K65-AAR 21/1012(2.1)

K65R-AGG 0/7(0.0)

K70-AAA 849/885(95.9) K70K-AAA-1 GACAGTACTAAATG 621/769(80.8%)

K70-AAG 17/885(1.9)

K70R-AGA 85/88(96.6) K70R-AGA GTACTAGATGGAGA

K70R-AGR 3/88(3.4)

K103-AAA 815/867(94.0) K103K-AAA AAAAAAGAAAAAATCAG 558/785(71.1%)

K103-AAR 27/867(3.1)

K103N-AAT 3/128(2.3) K103N-AAT AAAAAAGAATAAATCAGT

Mi184 TAT CAA TAC ATG GAT GAT

M184V-GTG 295/335(88.1) M184V-GTG TATCAATACGTGGATG

M184V-GTR 26/335(7.8)

T215-ACC 692/724(95.6) T215T-ACC-1 GGGGATTTACCACA — 583/813(71.7%)

T215-ACT 13/724(1.8)

T215-ACG 3/724(0.4)

T215-ACM 1/724(0.1)

T215Y-TAC 182/185(98.4) T215Y-TAC GGGGATTTTACACAC

T215Y-TAY 1/185(0.5)

53252 CATCCTGATAAATGGACAG
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Table 1. Cont.

genetic

Locus code Frequency(%) Name of probe

Oligoprobes

100% match
Nucleotide sequence isolates of
{5'-3") database

R: Mixed base of A and G; Y: Mixed base of C and T; M: Mixed base of C and A.
doi:10.1371/journal.pone.0109823.1001

with 60 pl AVE buffer. For ¢cDNA synthesis, 55 il of RNA
solution was mixed with 5 pl of 100 pmol/pl random primer
(TaKaRa Bio, Otsu, Shiga, Japan) or specific primer, RTIR
(Fig. 1B), and 5 pl of 10 mM dNTPs, and denatured at 70°C for
10 min. The RT mixture containing 20 pl of 5x First-Strand
buffer, 5 pl of 0.1 M DTT, 5 pl of RNaseOUT Recombinant
RNase inhibitor (40 U/pl; Invitrogen, Carlshad, California, USA)
and 5 pl of SuperScript IIT RT (200 U/ul, Invitrogen) was added
to the 65 {l denatured viral RNA-primer-dNTP mixture. The
reaction mixture (100 pl final volume) was incubated at 25°C for
5 min for annealing and then at 55°C for 60 min for reverse
transcription. The reaction was inactivated by heating at 70°C for
15 min.

RT gene fragments were amplified by nested PCR from cDNAs
or by single PCR from plasmids. For the first reaction a 1050 bp
fragment from the RT coding region was amplified from 5 pl
aliquots of cDNAs using RT1F and RT1R as outer primers in a
reaction mixture containing 50 pl of 1XPrime STAR buffer,
0.2 mM of each dNTPs, 0.5 uM of each primer, and 0.5 pl Prime
STAR HS DNA Polymerase (25 U/ul, TaKaRa Bio, Otsu, Shiga,
Japan). Amplification conditions consisted of 35 cycles denatur-
ation at 98°C for 10 s, annealing at 55°C for 5 s, and extension at
72°C for 30 s.

For the second reaction of the nested PCR and for the single
PCR from plasmids (0.1 pg), RT coding fragments were amplified
in two PCR fragments using two 5’ biotinylated primer sets, PS1
and PS2, as described previously [17]. The PS1 primer set
produced a 547 bp amplicon that was used to detect M41L,
K65R, K70R, and K103N, and the PS2 primer set produced a
512 bp amplicon that was used to detect K103N, M184V, and
T215Y/F (Fig. 1A). The reaction mixture used 5 pl of the first
PCR products or 0.1 pg of plasmid DNA in a final volume of
50 pl, as described above, with amplification conditions as follows:
25 cycles (second nested PCR) or 35 cycles (plasmid DNA
amplification) of denaturation at 98°C for 10 s, annealing at 55°C
for 5 s, and extension at 72°C for 1 min. The PCR amplicons
were used for Luminex detection or direct sequencing.

Sequencing

PCR products were purified with the QIAquick PCR Purifica-
tion Kit (QIAGEN, Valencia, CA, USA) and were directly
sequenced in both directions using ABI 3130xl genetic analyzer
(Applied Biosystems, Foster City, CA, USA) and Big Dye
terminator V3.1 cycle sequencing kit (Applied Biosystems). In
the case of sequence ambiguity due to a coexistence of multiple
nucleotides, we confirmed the sequence by cloning and sequenc-
ing. For cloning and sequencing, the purified PCR fragments were
phosphorylated using T4 polynucleotide kinase (TaKaRa Bio,
Otsu, Shiga, Japan) and inserted into the dephosphorylated
EcoRV restricdon site of pBluescript II SK(+). Inserts were
sequenced using T7 and Rev universal primers (Fig. 1B).
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HIV-1 Japanese surveillance database

In Japan 10 university hospitals, 5 medical centers, 5 public
health laboratories, and the National Institute of Infectious
Diseases are collaborating in the surveillance of newly diagnosed
HIV/AIDS cases. HIV/AIDS patients with both acute and
chronic infections, newly diagnosed at these centers since January
2003 were enrolled [18]. Prevalence of DR codons in these
patients was determined by analysis of sequences of clade B HIV-1
reverse transcriptase positions 1-240 amino acids.

Statistical analysis

GraphPad Prism 5.0 software (GraphPad Software Inc., San
Diego, CA) was used for statistical data analysis. Statistical
significance was defined as P<<0.05.

Results

Design of oligoprobes based on the database of clade B
HIV-1 sequences in Japan

Based on the frequency of the codon usage in the Japanese
surveillance database for amino acids M41, K65, K70, K103,
M184 and T215 in RT gene, we designed the nucleotide sequence
of 18 oligoprobes for DR mutation and 5 standard probes
(Table 1). We adopted nucleotide sequences of HXB2 strain for
the flanking sequences. Synthesized oligoprobes could cover
71.2%, 59.3%, 80.8%, 71.1%, 85.7% and 71.7% of M41, K65,
K70, K103, M184 and T215, respectively (Table 1). Five standard
probes were designed in the conserved region of RT gene and used
as the assay control.

Evaluation of PCR-SSOP-Luminex DR assay using cloned
HIV-1

We examined the sensitivity and specificity of the PCR-SSOP-
Luminex DR assay using cloned HIV-1. The test fragments were
amplified (Fig. 2A), and the amplicons were hybridized to the 16
oligobeads. We performed three independent assays with triplicate
hybridizaton and detection in each assay. The mean positive
signal and standard deviation were 5237%1398 (Fig. 2B). The
CV% of positive signal and standard deviation were 10.1% *10.7.
The mean of negative signal and standard deviation were
131.2£69.4. The CV% of negative signal and standard deviation
were 21.6%23.6 (mean = S.D.). MFIs of hybridization signals
were clearly high only when the oligoprobes matched the
mutations in the fragments (Fig. 2B). These data confirmed that
the assay system could discriminate one base mismatch at M41,
K65, K70, K103, M184 and T215 codons in the plasmid-probe
model system.

Next, we examined the sensitivity to detect a particular
sequence in a mixture for each DR-related site. The plasmids
carrying the wild type and mutant sequences were mixed at
various ratios. In samples containing only the wild type sequences,
the mean background signal (% *2SD) was 2.0% *1.2, 4.1%
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Oligoprobes

Figure 2. Validation of PCR-SSOP-Luminex assay using plasmids as templates. (A) Agarose gel electrophoresis of amplified fragments.
Lanes 1-6: Fragment a (547 bp). Lanes 7-14: Fragment ¢ (512 bp). 1, wild type; 2, M41L-TTG; 3, M41L-CTG; 4, K65R-AGA; 5, 70R-AGA; 6, 70R-AGG; 7,
wild type; 8, 103N-AAG; 9, K103N-AAT; 10, M184V-GTG; 11, T215Y-TAG; 12, T215F-TTC. (B) Median fluorescence intensities (MFls). The plasmid in the
test sample is indicated on the top of each panel. Oligoprobes used for detection are indicated at the bottom. Matched results are shown as black
bars, mismatched results as white bars. Assays were performed in triplicate. The mean = standard deviation is shown at the top of each bar.
doi:10.1371/journal.pone.0109823.g002

+2.6, 3.3% *1.2, 46% =18, 6.2% =3.2 and 3.3% *0.4 at The signal for the mutant was judged positive when “% signal®
M41, K65, K70, K103, M184 and T215, respectively (Fig. 3B). from the mutant oligobeads exceeded the mean + 2SD; 3.2%,
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Figure 3. Assay sensitivity in a mixture. (A) Agarose gel electrophoresis of mixtures of amplified fragments. Left panel: Fragment a (547 bp).

Right panel: Fragment ¢ (512 bp). Wild-typemutant ratio; Lanes 1 (10:0); 2 (3:1); 3 (8:2); 4

(7:3); 5 (5:5); 6 (3:7); 7 (2:8); 8 (1:9); 9 (0:10). (B) Signals from

wild type probes (black bars) and mutant probes (white bars) in each mixture. “% of signal” was calculated by “MF| of wild type or mutant signal”
divided by "MFI of wild type plus mutant signal” and muitiplied by 100. Triplicate experiments were performed three times. “% of signal” is shown

with standard deviations.
doi:10.1371/journal.pone.0109823.g003

6.7%, 4.5%, 6.4%, 9.4%, 3.7% at M41, K65, K70, K103, M184
and T215, respectively. Actual signals from the mutant oligop-
robes at 9:1 (wild type:mutant) mixture at these sites was 5.1%,
23.6%, 19.2%, 10.7%, 12.3%, 9.8%, respectively. Therefore, we
infer that the assay can detect 10% DR mutants in the population.
There was a big variation (5.1 to 23.6%) in detection of 10%
mixtures. We suppose that the difference in minor variant
detection could be caused by the melting temperature (GC
content and length). Although we compared the GC content and
probe length, we could not find a reasonable explanation from this
list (data not shown).
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Identification of DR mutations in clinical specimens by
sequencing

In order to determine the sequence, we amplified the RT gene
in two separate fragments from frozen plasma (Fig. 1A). We
succeeded to amplify fragment a (containing M41, K65, K70)
from all 74 specimens, but failed to amplify fragment c (containing
K103, M184, T215) in one patient. Infection with clade B HIV-1
was confirmed by phylogenetic analysis of the RT gene. DR
mutations were found at codons M41L (n=22), K65R (n=3),
K70R (n=10), KI03N (n=7), M184V (n=21) and T215Y/F
(n=22) in 40 specimens (Table 2).
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Table 2. Comparison of the results between sequencing and PCR-SSOP-Luminex assay.

Position Aminoacid Codons Number of specimens (percentage)

41 Met ATG 52 (70.3) 41 (55.4)

AAG 4 (5.4) 0

Arg AGA 3 (4.1) Q

Arg AGA 8 (10.8) 8 (10.8)

Lys, Arg mix 1(1.4) 0

AAA, AAG mix 101.4) 0

AAT 2(2.7) 2(27)

184 Met ATG 52 (71.2) 46 (63.0)

GTA 1(1.4) 0

Tyr TAC 16 {21.9) 15 (20.5)

Thr, Tyr mix 1014 1(1.4)

No reaction - 5 (6.8)

doi:10.1371/journal.pone.0109823.t002

|dentification of DR mutations in clinical specimens by 68/73 (93.2%) for M41, K65, K70, K103, M184 and T215,
the PCR-SSOP-Luminex DR assay respectively. The median of background signal (without sample)
We performed the PCR-SSOP-Luminex DR assay on 74 was MFI =178, and median negative signal from the patients
specimens whose DR mutations had been sequenced (Fig. 4). The ~ Sample was MFI=181 (interquartile range (IQR)=101-307).
lowest MFT of five standard probes (MFI = 837.5) was assumed as PCR.—SSO'P—Lummex assays create very low background and non-
the cut off value for the positive signal. We synthesized two specific signal frorr% negative samples. When the. genotype was
additional wﬂd-type OligOpI‘ObCS (K70K-AAA‘2 and T215T-ACC- SuCCCSSquy determined by the PCR-SSOP-Luminex assay, the
2), since the original oligobeads (K70K-AAA-1 and T215T-ACC- results were always concordant with those of sequencing (Table 2).
1) gave marginal signals in some specimens (Table 1 and Fig. 4). We inferred that the failure to determine the genotype was due to
By the modification of the position of the target codons and the sequence diversities. Therefore, we decided to customize the assay
length of flanking sequences, we could obtain higher MFT signals. according to the l)sequences around K65 which had the lowest
Successful determination of the genotypes was 62/74 (83.8%), 43/ success rate (58.1%).
74 (58.1%), 70/74 (94.6%), 55/73 (75.3%), 63/73 (86.3%) and
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Figure 4. PCR-SSOP-Luminex DR assay of clinical samples. Results of 18 probes for 6 DR loci and 5 standard probes are shown. Each dot
represents the mean of triplicates. Dashed line indicates the cut-off value, the lowest MFl among 5 standard probes (MFl =837.5).

doi:10.1371/journal.pone.0109823.g004

Customization of oligoprobes to detect genetic diversity
around K65

In 31 specimens without signals, the sequence around K65 was
very diverse, especially at codons K65, K66 and K67 (Table 3).
The nucleotide position of A2723G, A2747G and C2750T were
frequent polymorphism for the wild type amino acid K65, K66
and D67, respectively. Fourteen specimens had a G2748A
mutation that led to D67N, a thymidine analogue mutation
[19]. Based on these results we synthesized 10 additional
oligoprobes (Table 4).

The specificity of the newly added oligoprobes was confirmed
by the plasmids carrying the mutation (data not shown).
Customization of the assay decreased the number of specimens
without signals from 31 to 6 (Fig. 5).

Discussion

We developed a PCR-SSOP-Luminex DR assay that can
identify 6 clinically important DR mutations for NRTI and
NNRTI in a single well. To simplify the development, we chose
clade B virus and focused on the following mutations in the RT
region: M41L, K65R, K70R, K103N, M184V and T215Y/F. We
designed a series of capture probes according to the database of
the Japanese patients. MFI from hybridization with the corre-
sponding probes was greater than 20-fold signal-to-noise ratio in
plasmid experiments (Fig. 2), at least 2-fold signal-to-noise ratio
using clinical samples (Fig. 4). The initial positive reaction was as
low as 58.1% (43/74) in the highly polymorphic K65 region. The
use of additional probes designed to match sequences in the
patients’ specimens improved the detection rate to 91.9% (68/74),
demonstrating that the PCR-SSOP-Luminex assay can be
customized to reflect sequences of the viruses prevalent in a given
environment.

Transmission of viral strains with major DR mutations can
reduce the efficacy of first-line regimens. Since the first report of a
horizontal transmission of HIV-1 harboring a zidovudine-resistant
mutation [20], 5% to 15% of treatment-naive, HIV-I-infected
individuals harbored the viruses with DR mutations in early 2000s
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in resource-rich settings [21-24]. It was suggested that transmis-
sion of drug resistance in the resource-rich settings can remain
stable and at a low level [25]. However, in Japan where the
transmission of drug-resistant viruses has historically been low,
there seems to be an increasing trend [18,26]. Rates of transmitted
HIV drug resistance has remained limited also in resource-limited
settings (http://www.who.int/hiv/topics/drugresistance/en/),
however, limitation on the first line and subsequent regimens
would be a concern. Continued surveillance of drug resistant HIV-
1 is warranted.

There are some multiplex strategies to detect the single-
nucleotide differences, LigAmp assay [27,28], Nanostring assays
[29], oligonucleotide ligation assay-based DNA chip [30], AS-
PCR [31,32]. These assays provide substantial improvements in
their detection sensitivity over conventional sequencing-based
assays, however major limitation of these assays could be detecting
one or few DR mutations at a time. PCR-SSOP-Liminex assay
should be able to accommodate more DR mutations than the
others.

One limitation of PCR-SSOP-Luminex assay is the assay
sensitivity caused by diversity of HIV. We were able to detect DR
mutations that constituted 10% of the mixture in the isogenic
system using plasmids. Even after successful amplification, we
could not get signal in considerable number of patient’s specimens.
By comparison with cloning and sequencing, we estimate that at
least 20% mutant was necessary in the patient’s specimens to be
detected by the PCR-SSOP-Luminex assay. The sensitivity of
detection by Sanger sequencing has been reported to be ~20%
[33,34]. Sanger sequencing and PCR-SSOP-Luminex had
approximately the same detection sensitivity on patient materials.
In Sanger sequencing, nucleotide sequences are determined by the
wave height. When the virus in the plasma is a mixture of the wild
type and a mutant, each nucleotide is displayed as two waves in
the same locus with different height according to the fraction in
the sample. In the case of PCR-SSOP-Luminex, the wild type or
mutant nucleotides are detected independently by the signal
bound to the proper probes. Therefore, as we showed partly in this
paper, the mutant detection by PCR-SSOP-Luminex assay could
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Table 3. Sequence diversity around K65 in the 31 specimens.

Amino acid (HXB2-wt) 163 K64 K65 K66 D67 S68

2747

2747 2748

2748

2750

2748

2748

2747 2748

2741 2748

2747 2750

2748 2750

2750 2751

K65R-AGA/KEEK-AAG

K65R-AGA/DE7D-GAT

®R: Mixed base of A and G.
doi:10.1371/journal.pone.0109823.t003

be improved by further customization to the circulating viruses. In The evaluation of assay volume etc. would be necessary to
our paper, we used maximum 23 oligoprobes in one tube or well. determine actually possible maximum number of ologibrobes in

Table 4. Design of additional oligoprobes based on clinical samples.

Locus Name of probe Oligoprobes Nucleotide sequence {5’-3)

K66K-AAG ATAAAGAAAAAGGACAG

K66K-AAG/DE7N-AAC

D67N-AAC

AGAAAAAA

D67D-GAT ATAAAGAAAAAAGATAGT

K65K-AAG ATAAAGAAGAAAGACAG —G -

doi:10.1371/journal.pone.0109823.1004
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One hundred % is the sample number (74) successfully amplified by
PCR.

doi:10.1371/journal.pone.0109823.g005

one tube. 100 color-coded beads are available, theoretically, 100
probes  could be applied (http://www.luminexcorp.com/
Products/ Instruments/Luminex100200/). Since the wild type or
mutant nucleotides are detected as the signal of hybridized probes
for each in the PCR-SSOP-Luminex assay, inclusion of multiplex
probes based on the codon usages for the DR mutations and the
sequence variations in the flanking region of circulating viruses
would improve the detection. According to our results, we could
develop, validate and customized PCR-SSOP-Luminex assay for
detecting DR mutations at six positions in HIV-1 RT gene. The
study numbers are very limited and we worked only on subtype B
HIV-1 in this article. HIV-1 diversity is notoriously huge and
sequences in an individual could be more diverse than acutely
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Abstract

Nef-Y135F in circulating HIV-1 sequences.

Background: Human Leukocyte Antigen (HLA) class | restricted Cytotoxic T Lymphocytes (CTLs) exert substantial
evolutionary pressure on HIV-1, as evidenced by the reproducible selection of HLA-restricted immune escape mutations
in the viral genome. An escape mutation from tyrosine to phenylalanine at the 135th amino acid (Y135F) of the HIV-1
nef gene is frequently observed in patients with HLA-A*24:02, an HLA Class | allele expressed in ~70% of Japanese
persons. The selection of CTL escape mutations could theoretically result in the de novo creation of novel epitopes,
however, the extent to which such dynamic "CTL epitope switching” occurs in HIV-1 remains incompletely known,

Results: Two overlapping epitopes in HIV-1 nef, Nef126-10 and Nef134-10, elicit the most frequent CTL responses
restricted by HLA-A*24:02. Thirty-five of 46 (76%) HLA-A*24:02-positive patients harbored the Y135F mutation in their
plasma HIV-1 RNA. Nef codon 135 plays a crucial role in both epitopes, as it represents the C-terminal anchor for
Nef126-10 and the N-terminal anchor for Nef134-10. While the majority of patients with 135F exhibited CTL responses
to Nef126-10, none harboring the "wild-type" (global HIV-1 subtype B consensus) Y135 did so, suggesting that
Nef126-10 is not efficiently presented in persons harboring Y135. Consistent with this, peptide binding and limiting
dilution experiments confirmed F, but not Y, as a suitable C-terminal anchor for HLA-A*24:02. Moreover, experiments
utilizing antigen specific CTL clones to recognize endogenously-expressed peptides with or without Y135F indicated
that this mutation disrupted the antigen expression of Nef134-10. Critically, the selection of Y135F also launched the
expression of Nef126-10, indicating that the latter epitope is created as a result of escape within the former.

Conclusions: Our data represent the first example of the de novo creation of a novel overlapping CTL epitope as a
direct result of HLA-driven immune escape in a neighboring epitope. The robust targeting of Nef126-10 following
transmission (or in vivo selection) of HIV-1 containing Y135F may explain in part the previously reported stable
plasma viral loads over time in the Japanese population, despite the high prevalence of both HLA-A*24:02 and

Background

Cytotoxic T lymphocytes (CTLs) are key players in the
immune control of Human Immunodeficiency Virus 1
(HIV-1), as they recognize virally-derived peptide epi-
topes presented by HLA class I molecules on the in-
fected cell surface [1,2]. Over the course of infection
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however, HIV-1 mutations arise within the infected indi-
vidual, notably in targeted CTL epitopes, that allow the
virus to escape immune recognition by CTLs. Importantly,
despite the hypermutability of HIV-1, these immune
escape mutations often arise in a stereotypical manner
[3,4] that is highly predictable based on the specific
HLA class I molecules expressed by the host [5-8].
Although selection of HLA-associated mutations in
HIV-1 is driven by immune pressure, these amino acid
substitutions sometimes result in the induction of a
de novo immune response in which the mutant epitope
is recognized by a TCR associated with a different CTL
subset [7,9]. What is less well-characterized is the
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